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ABSTRACT

The enhancement of Low Light Level Images (LLLIs) is challenging, due to their poor brightness and low contrast. Tradi-
tional enhancement methods fail to perform satisfactorilywhen applying to LLLIs. In this paper, we formulate the LLLI
enhancement as a regression problem: the regressor maps patches of input image to enhanced patches, and the regression
function is estimated by learning from sample images. We implemented two efficient regression methods based on piece-
wise linear regression: locally linear regression and random forest (RF). Meanwhile, we designed a new split function
considering reconstruction error for random forest method. Experimental results on an open dataset and practical LLLIs
demonstrate the effectiveness of our methods. The RF regression method performs superiorly in both enhancement quality
and computation efficiency.
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1. INTRODUCTION

Low Light Level Images (LLLIs) have low brightness and low contrast, and their poor visual quality deteriorates remote
sensing, object recognition and so forth. The objective of LLLI enhancement is to produce a visually pleasing image from
a LLLI.

Although the problem is ill-posed and ambiguous, histogramequalization (HE)1 and contrast limited adaptive histogram
equalization (CLAHE)2 have been used to generate the enhanced images. These methods are extremely fast but do not
perform satisfactorily due to simple assumptions on image histograms.

Using multiple input images can help improve the enhancement quality. Zhuo et al.3 achieved context enhancement with
images captured by multiple sensors. Cai et al.4 fused images of the same scene during day and night time for enhancement.
Henrik et al.5 and Bennett et al.6 exploited image sequence to recover details as many as possible. However, the availability
of multiple images on the same target is not common in practice.

More powerful methods usually apply learning based techniques to transform a low contrast image to an enhanced one.
Shan et al.7 assumed linear mapping between pairs of patches from the input image and its enhanced version, and performed
adjustments with a well designed constrained regularization on the transformation coefficients. The authors of8–10 treated
the inversion of a LLLI as a hazy image, and made use of linear hazing model to obtain the result. However, the former
does not perform stably on test images, while the latter lacks a rigorous formulation on the connection between a hazy
image and an inverted LLLI.

In our work, we directly cast LLLI enhancement as a regression problem, and take piecewise linear regression to achieve
good tradeoff between regression ability and computation efficiency. Locally linear regression is a choice to achieve this
goal. Furthermore, we employ random forest11–13 to alleviate the locally linear assumption. Random forest (RF) is a
non-linear learner and runs extremely fast during learningand inference. While a tree is a piecewise linear regressor,the
ensemble of multiple trees in RF improves the regression accuracy significantly. In the process of tree growing, we design
the split objective function considering the reconstruction of enhanced images. Our experimental results demonstrate the
effectiveness of the proposed methods. Particularly, random forest regression performs superiorly compared to previous
representative methods.

The rest of this paper is organized as follows. Section II describes regression methods for LLLI enhancement. Section III
presents the experimental results, and Section IV concludes the paper.
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2. APPROACH

Image (including LLLIs) enhancement can be viewed as a process that a patch in the input image is mapped to the cor-
responding patch in the enhanced image. Recently, regression methods have been successfully applied into the image
enhancement problems, such as image denoising14 and super resolution15 . These methods cannot apply to LLLI enhance-
ment directly, however. We propose to tackle LLLI enhancement using piecewise linear regression, with locally linear
regression as a baseline.

2.1 Locally Linear Regression for LLLI Enhancement

We first tackle the LLLI enhancement as linear regression from LLLI’s patchesyi to the onesxi of the enhancement
counterpart. To approximate nonlinear regression, we consider locally linear regression by adopting the divide-and-conquer
strategy. Specifically, we propose to conduct k-means clustering operation on the raw patches of LLLIs from the image
pairs dataset, and for each cluster a linear mapping matrixW is learned. For a cluster i, we compute the linear mapping
matrix via
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where each column ofYi is a raw patch in cluster i,1 is a row vector with all values as 1, andλ is the regularization
parameter.

Locally linear regression, though performs fairly well on LLLI enhancement, its performance depends on the cluster
number K, which compromises the regression error and the running time. Besides, locally linear assumption should be
relaxed in order to model the relationships of patch pairs more reasonably. Therefore, we use a tree classifier to replace
clustering for acceleration and fuse multiple trees in random forest for enhancing the regression accuracy.

2.2 Random Forest for LLLI Enhancement

Random forest is an ensemble of random decision binary trees. Each treeTj independently separates the data space into
disjoint units, namely leaf nodes. The two key aspects of random forest modeling LLLI enhancement are the objective
functions of leaf nodes and splitting functions of intermediate nodes. These two functions will be carefully designed to
fulfill the requirements of LLLI enhancement.

For each leaf nodelji of treeTj , we take the same objective function as locally linear regression:
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where each column ofY
l
j

i
is an input raw patch in the leaf nodelji , andλ is the regularization parameter.

The structure of treeTj is determined by the node splitting function with patch pairsxi,yi:

S(yi, θ) =

{

1, yi[d]− θ > 0;

0, otherwise,
(3)

whereyi[d] means randomly selecting one feature fromyi, andθ is the threshold to control split. The typical procedure for
finding a good value ofθ in random forest is to sample a random set of parameter valuesand choose the bestθ∗ according
to a pre-defined measure, for example, minimum of data variance. Considering that our task is to restore the enhancement
patches, we design the evaluation measure as:
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whereN is the total number of samples at current node,NL andNR are the numbers of samples allocated to the left and
right subnode, respectively,xt

i andyt
i are the sample pairs allocated to the subnode t, andWt can be estimated via Eq.



(2). For all internal nodes inTj , splitting starts at the root node and continues in a greedy manner down the tree until a
maximum depth D is reached. When splitting stops, a leaf nodeis created.

The inference or testing process of random forest is simple.The enhancement result of a single patch is the average of
predictions of all the trees. For an input LLLI, we estimate the enhancement results of all extracted patches. If the extracted
patches have overlap, we will get the means of overlap regions as the final values.

3. EXPERIMENTS

We evaluated the performance of our regression methods for single LLLI enhancement on an open dataset and test im-
ages downloaded from the Internet. We compare our methods with five typical methods: HE,1 CLAHE,2 learning based
enhancement methods of Shan et al.,7 Dong et al.8 and Zhang et al.10 These algorithms are implemented in Matlab with
3.20GHz Intel Core i5 Processor and 4GB RAM. The parameters in these methods are equal to the default values recom-
mended by their authors. We scale the intensities of all images into [0, 1]. When processing color images, we transform
them into the HSV color space and operate enhancement on the Vchannel.

3.1 Training Data and Experimental Setup

In practice, it’s difficult to prepare a large quantity of image pairs composed of a LLLI and its bright version. We employ
the image pairs provided by EMPA Media Technology. Each image pair is comprised by an image with a short exposure
time to stand for a LLLI, and an image with a long exposure timeto represent the reference of the enhanced style. We
have converted the 48bit images in the EMPA dataset into 24bit images with size 400×400 by Photoshop. 10 image pairs
were selected as training data, and 5 image pairs were for testing. From the training image pairs, 500,000 patch pairs were
randomly extracted for training locally linear regressionand RF.

In order to obtain more diverse training data, we also attempt to randomly synthesize image pairs from 200 images of the
Berkeley segmentation dataset. Two functions are chosen togenerate LLLI patches from the well illuminated ones: gamma
correction and linear transformation (Note that we have scaled intensities of images into [0, 1]).

For each randomly selected patchx̂i, we sample the parameterγ from the distribution Uniform(L,U ) and applied gamma
correction to generate a LLLI patch. In our experiments, we set the parameterL = 1 andU = 4. The linear transformation
is formulated aŝyi = wx̂i andw = t ·m+ b, where m is randomly sampled from distribution Uniform(0, 1), and we set
t = 1, b = 0.05. We make use of two functions to generate 500,000 patch pairsseparately, prepared to serve as training
data.

We used the intensity values of raw patch as the features of regression, and the patch size was 5×5. The regularization
parametersλ was set to 0.1. For locally linear regression, we set the cluster number K in linear regression to 50, which was
shown to perform satisfactorily. The number of trees T and the maximum depth D of random forest were set as 10 and 5,
respectively. During testing, we extracted patches from the input image with overlap of one pixel. All the parameters were
set empirically, but we observed that moderate variations do not harm the visual quality of enhancement.

3.2 Results and Discussions

As mentioned above, we take advantage of two datasets to evaluate the performance of algorithms quantitatively and
qualitatively. The two datasets contain 5 image pairs from EMPA dataset and 110 LLLIs downloaded from the Internet via
Google with keywords ”low light level image”.

The first experiment was conducted on the 5 images pairs from the EMPA dataset. Each image pair involves a LLLI and
a reference image of the enhanced version. The peak signal-to-noise ratio (PSNR) and the Structural SIMilarity (SSIM)
index are used to measure the enhancement quality.

In the quantitative assessment, we take the results of regression methods with linearly synthesized training data for compar-
ison, because they have produced better visual quality thanthe methods with real and gamma correction synthesized data.
From Table 1, it can be seen that LLR and RF rank fourth and third on the average values of PSNR, and on the average
values of SSIM they achieve the second and first place, respectively.

To compare the enhancement effects on general scenario, we validated our methods on 110 LLLIs collected from the
Internet. This time we have no reference enhancement results. The comparisons on example images are shown in Fig.
1. Generally, our methods greatly reveal the details of the dark regions, and balance well between contrast and overall



Table 1: PSNR and SSIM comparisons.

Image Index HE CLAHE Shan Dong Zhang LLR RF
FORTH1 PSNR(dB) 17.1 6.98 5.51 12 25 10.25 10.87

SSIM 0.73 0.68 0.66 0.76 0.79 0.78 0.81
FORTH2 PSNR 10.18 4.61 10.13 7.89 5.8 5.78 5.89

SSIM 0.65 0.53 0.73 0.72 0.65 0.66 0.69
Knossos PSNR 14.1 6.23 13.77 8.92 7.27 7.26 7.39

SSIM 0.67 0.59 0.68 0.72 0.62 0.68 0.7
MonSaintMichel PSNR 5.28 12.35 8.11 12.04 10.64 9.3 11.5

SSIM 0.46 0.68 0.34 0.52 0.53 0.56 0.65
Museum PSNR 8.5 9.13 4.06 6.97 11.59 15.77 13.04

SSIM 0.62 0.79 0.63 0.79 0.89 0.87 0.87
Average PSNR 11.03 7.86 8.32 9.56 12.04 9.67 9.74

SSIM 0.67 0.65 0.61 0.7 0.7 0.7 0.75

brightness. At the same time, we can see that the RF method achieve a more natural contrast than the LLR method.
Besides, the LLR method brings artifacts to some extent. By contrast, the RF method presents a more satisfactory visual
effect.

During testing, it takes 1.5s to enhance an 800×600 LLLI for our LLR method, while the RF method takes 1s.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 1: Enhancement results of seven example images. Fromleft to right: (a) input image; (b-j) The enhancement results
of HE, CLAHE, Shan’s method, Dong’s method, Zhang’s method,our proposed locally linear regression method with real
training data and with linearly synthesized data, and our proposed random forest method with real training data and linearly
synthesized data.Best viewed in×6 sized color pdf file

4. CONCLUSION

In this paper, we propose to settle the enhancement of LLLIs with regression methods. We introduce locally linear re-
gression and random forest based regression, and give theirdetailed formulation for implementing LLLI enhancement.
The experiments have demonstrated the effectiveness of ourmethods. At the same time, we have found the usefulness
of synthesized training data to improve the performance of our methods. In the future, we will solve the enhancement of
LLLIs with noises.
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