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Abstract. A good representation of the audio is important for music
genre classification. Deep neural networks (DNN) enable a better
approach to learn the representation of audio. The representation learned
from DNN, which is known as bottleneck feature, is widely used for
speech and audio related application. However, in general, it needs a
large amount of transcribed data to learn an effective bottleneck feature
extractor. While, in reality, the amount of transcribed data is often
limited. In this paper, we investigate a semi-supervised learning to train
the bottleneck feature for music data. Then, the bottleneck feature is
used for music genre classification. Since the target dataset contains few
data, which cannot be used train a reliable bottleneck DNN, we train
the DNN bottleneck extractor on a large out-of-domain un-transcribed
dataset in semi-supervised way. Experimental results show that with the
learned bottleneck feature, the proposed system can perform better than
the state-of-the-art best methods on GTZAN dataset.

Keywords: Bottleneck, DNN, Semi-supervised, Multilingual, Cross-
lingual

1 Introduction

For music genres classification tasks, most conventional methods use a common
procedure which consists of two stages: feature extraction and classification.
A discriminative feature and a good classifier can often lead to a better
classification result [1].

Recently, Deep Neural networks (DNN) have become increasingly popular in
many fields [2] [3]. Classification systems based on DNN usually have a better
performance than others, which also includes audio classification. DNN is widely
used especially for the big data cases, in which the amount of available data is
large. Music genre classification is a special kind of audio classification. Generally
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there are two ways to incorporate the DNN into the classification system: using
DNN as the classifier [4] [5], or training a DNN to learn the feature of audio [6].
The deep architecture enables DNN to learn more invariant and discriminative
features. There are many techniques to use a deep architecture to learn the
representation of audio data. For example, Sigtia [7] improves feature learning
for audio data using DNN. This method provides a significant improvement in
training time, and the features learned are better than state-of-art handcrafted
features. Andén [8] proposes the deep scattering transform to extract feature
from a deep convolution network. This deep scattering feature can perform
better when using long frame window and improves the music genre classification
performance.

For automatic speech recognition (ASR), the most popular feature learned by
using DNN is bottleneck feature. It uses a small hidden layer (bottleneck layer)
which is smaller than other hidden layers in DNN to train a feature extractor.
Bottleneck feature is used widely and can achieve good results [9] [10]. However,
there is a limit that we don’t always have enough data to train a bottleneck DNN,
and little data makes the extractor become over-fitting easily. In order to solve
this problem, multilingual bottleneck and cross-lingual bottleneck are proposed
[11] [12]. The multilingual bottleneck and cross-lingual bottleneck extractors
are trained on other languages (rich-resource datasets), and then the trained
bottleneck DNN is used to extract bottleneck feature for target dataset with
limited amount of data. Experiments show that the bottleneck system trained
on other languages outperform the system trained on limited data in ASR [13]
[14].

Inspired by this, the semi-supervised training for bottleneck feature (ST-
BN system) is proposed for music genre classification. Since there is no “other
language” for bottleneck DNN training like ASR, we use semi-supervised method
to train a bottleneck DNN on a large similar out-of-domain dataset instead.
Semi-supervised is an important topic, especially when target dataset is small
while large un-transcribed audio data is available [15]. After the low-level feature
is extracted, we first use some of the limit target dataset to train an artificial
neural network (ANN) to label the large out-of-domain dataset, which is used
for semi-supervised training. The out-of-domain dataset is a dataset which is
similar to the target dataset. Then the labeled out-of-domain dataset is used
to train a bottleneck DNN. At last, the trained bottleneck DNN is used to
extract bottleneck feature for target dataset, and the bottleneck feature is used
for training and testing the classification system. The experiment results show
that our bottleneck feature perform better than the low-level feature.

To the best of our knowledge, in this paper, it is the first work to apply
the bottleneck feature to music genre classification. This ameliorates the over-
fitting problem of DNN caused by the lacking of training target data. The
proposed ST-BN system achieves 94% average classification result, which is the
best classification result on GTZAN dataset [16] compared with other methods.

The rest of this paper is organized as follows. Section 2 describes the prior
work related to this paper. Section 3 and section 4 is the feature extraction and
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proposed ST-BN system respectively. Experiment and results analysis are given
in Section 5, followed by a conclusion section.

2 Prior Work

The multilingual DNN for music genre classification has been explored in our
previous work [17]. It uses an out-of-domain dataset to train a DNN classification
model, then transfer it to target dataset. The DNN model trained on out-of-
domain dataset can be seen as a pre-training of the target DNN classification
model, and the pre-training on out-of-domain dataset improves the performance.
In this work, the out-of-domain dataset is used to train a bottleneck extractor in
semi-supervised way, and this is different from the pre-training in the previous
work. The feature extracted from the trained bottleneck extractor are more
discriminative and robust, which can improve the accuracy of “dissimilar” music
track. This model is easy to implement as there are a lot of un-transcribed music
data available on the Internet. Also, the trained bottleneck extractor can be used
to extract music features for other music systems. So, this model can be used
more widely than the previous work.

3 DATA AND FEATURE

3.1 Data

The GTZAN database is used here as the target dataset to evaluate the proposed
system. This dataset has been used by many authors [7] [18] [19] for music genre
classification. GTZAN dataset is divided into ten genres: classical, jazz, blues,
metal, pop, rock, country, disco, hip-hop, reggae. Each genre has 100 tracks with
30 seconds duration for every track. The detail of the the database is described
as Table 1.

Table 1. Database Description

GTZAN ISMIR
genre tracks genre tracks(train/test)
classical 100 Classical 320/320
jazz 100 Electronic 115/114
blues 100 Jazz/Blue 26/26
metal 100 Metal/Punk 45/45
pop 100 Rock/Pop 101/102
rock 100 World 122/122
country 100
disco 100
hiphop 100
reggae 100
total 1000 total 729/729
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The ISMIR dataset [20] is used as the large out-of-domain dataset for the
semi-supervised training of a bottleneck DNN. It is a large dataset which contains
100 hours of music data with 1458 music tracks. The time length of each track
is different, ranging from 8 seconds to 42 minutes. Those tracks contain six
genres: classical, electronic, jazz/blue, metal/punk, rock/pop, and world. In this
paper, we do not use these genre labels, and the genre labels of ISMIR dataset
is re-labeled by the ANN trained on GTZAN dataset and then used for semi-
supervised training. The detail of the the database is described as Table 1.

3.2 Scattering Feature

The Mel-Frequency Cepstral Coefficient (MFCC) is widely used in many fields.
The scattering feature is an extension of MFCC. It is computed by scattering
the signal information along multiple paths, with a cascade of wavelet modulus
operators implemented in a deep convolution neural network (CNN). For music,
rhythm or beat is an important information to distinguish different music tracks,
and short frame features cannot represent this information well. Therefore,
long time representation can represent music data better for music genre
classification, while MFCC may lose information by averaging spectrogram of
long time window. The scattering moments can recover the lost information,
which has been proved by [8] [21].

Before feature extraction, each audio file in ISMIR and GTZAN has been
converted into a 22050Hz, 16 bit, and single channel WAV file. We extract the
scattering feature for GTZAN and ISMIR using ScatNet [22]. In our work, we
calculate first-order and second-order time scattering coefficients using a window
of 370 ms with half overlap. The parameters for scattering transform are just
the same as our previous work in [17]. After that, we stack the 3 consecutive
frame features into a long frame feature vector with context information.

4 ST-BN System

4.1 Framework

The proposed ST-BN system framework is illustrated in Fig. 1. The DNN and
ANN used in ST-BN are feed-forward neural networks. Karel’s DNN in the Kaldi
Toolkit[23] is used for DNN or ANN training. The DNN has one input layer,
some hidden layers and one output layer. Within each hidden layer, the sigmoid
function is used as the active function. For output layer, the soft-max function
is used to compute the posterior probability. The learning rate is 8 ∗ 10−6, and
no pre-training is used for DNN training. The cross-entropy function is used as
the objective function to optimize the ANN and DNN.

4.2 Semi-supervised Training of the Bottleneck Feature Extractor

A bottleneck DNN extractor is a special DNN which has a narrower hidden layer
compared to other hidden layers. The narrow hidden layer is called bottleneck
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Fig. 1. Architecture of ST-BN System: “BN layer” in the figure is the bottleneck layer.

layer, and the bottleneck feature is generated from this narrow bottleneck layer.
After we get the scattering feature for target dataset and large out-of-domain
dataset, the frame scattering feature of out-of-domain dataset is used for semi-
supervised training of the bottleneck DNN. It mainly contains two key stages.

In the first stage, we use scattering feature of target dataset (low-resource
data) to label the large out-of-domain dataset. First, we randomly select 70%
(we suggest equal or greater than 70% since little data cannot train a reliable
ANN) of target scattering feature for training an ANN. The structure of ANN
is described in section 4.1, and it has one hidden layer with 1024 nodes. We
train the ANN for 200 epochs. Then, the scattering feature of out-of-domain
dataset is put into the trained ANN. At last, the label of out-of-domain dataset
is decided by the posterior probability output of the ANN: the genre index of
the max probability is the label.

In the second stage, we train a bottleneck extractor. As in Fig. 1, the
bottleneck DNN has one input layer, two hidden layers followed by a bottleneck
layer, a hidden layer and one output layer. First, the frame feature of the labeled
out-of-domain dataset is used as the input to train a bottleneck DNN. The
training steps is 200. Then, we get the final bottleneck extractor by removing
the hidden layer 4 and the output layer (in Fig. 1 ) of bottleneck DNN.
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4.3 BN Feature extraction and Classification

After we get the bottleneck extractor, we extract the bottleneck features and
then do the classification. The scattering feature of target dataset is used as the
input of bottleneck extractor, then the output is bottleneck feature. After we get
the bottleneck feature of the target dataset, we divide these bottleneck feature
into training feature set and testing feature set.

In this paper, support vector machine (SVM) and ANN are used as the
classifiers of ST-BN system. The SVM used here is a linear SVM, the training
set of bottleneck feature is used as the input to train a liner SVM, and the testing
set of bottleneck feature is used to get the frame test predict genre labels. The
structure of ANN for classification is the same as the ANN in previous subsection.
We use the training set of bottleneck feature to train the ANN, and then use
testing set of bottleneck feature to get the soft-max output. After training and
testing, we got the posterior probability for each frame feature. Each predict
frame label is determined by the genre which has the maximum probability.

After classification, we get the predicted frame genre labels. However, people
are always interested in the genre label of the whole music track (a clip of music),
rather than the genres of the internal frames. So the majority voting is performed
on the frame predict labels of the testing sets to get the label of each music track.
The genre label of the whole music clip is decided by the majority of the genre
labels on the internal frames. After that we get the genre label of each test music
track, and the classification accuracy is computed on the track labels.

5 EXPERIMENT AND ANALYSIS

5.1 Evaluation Method and Baseline System

In this paper, we use 10-fold cross-validation to evaluate the performance. The
features of target database are divided into 10 folds, 9 folds of which are used for
training and the remaining one is used to test the classification accuracy. The
classification accuracy is evaluated 10 times on the 10 different combinations
of training/testing sets. The overall classification accuracy is calculated as the
average of 10 independent 10-fold cross-validations.

SVM and DNN are used to build baseline systems: Baseline-SVM and
baseline-DNN. The GTZAN dataset is used as target dataset. Frame scattering
feature of target dataset is used as the input of baseline systems. Baseline-SVM
use radial basis function as kernel function, and the parameters (the “cost”
and “gama”) for kernel function are obtained by grid search algorithm on the
GTZAN training feature sets. This baseline-DNN use the Karel’s DNN in Kaldi
Toolkit[23], and other parameters are the same as DNN or ANN described in
section 4.1. The baseline-DNN are three kinds of DNN with one, two and three
hidden layers. Each hidden layer has 1024 nodes, and the training epochs are
1000. After testing, the genre which has the maximum probability is regarded as
the frame genre labels. After getting frame labels from the baseline systems, the
majority voting is used to get the track labels. The result is reported in Table 2.



Semi-supervised Learning of Bottleneck Feature 7

Table 2. Classification Results of Baseline Systems

model name classifier(hidden layers) average accuracy

baseline-SVM SVM 88.5%
baseline-DNN1 DNN(1024) 89.4%
baseline-DNN2 DNN(1024-1024) 89.7%
baseline-DNN3 DNN(1024-1024-1024) 90.1%

5.2 Experiment of ST-BN System

After getting scattering feature of target dataset and large out-of-domain
dataset, we start to build the ST-BN system for music genre classification. In
this paper, the ISMIR dataset is used as the large out-of-domain dataset and
GTZAN dataset is used as target dataset. We first train 200 epochs to get an
ANN to label ISMIR dataset. Then use labeled ISMIR dataset to train 200
epochs to get the bottleneck extractor. At last we use the bottleneck feature
as the input of classifier to test the performance. In Table 3, we compare the
proposed ST-BN system and other works on GTZAN dataset. The hidden layer
structure of bottleneck DNN is “2048-2048-100-2048”, and the classifier is linear
SVM. From the result we can see that our model can achieve a good result and
outperform other approaches.

Table 3. The Comparison of different works

model average accuracy

ST-BN system (proposed system) 94%
Dai’s work [17] 93.4%
Pan2009music [24] 92.4%
And2013deep [8] 91.9%
Lee2009auto [25] 90.6%
Eckleafeat [18] 84.3%
Hena2011uns [19] 83.4%

5.3 Experiment Analysis

First, we analyze the effectiveness of different classifiers and different structures
of bottleneck DNN. The structure of bottleneck DNN can be represented as “i-h-
h-b-h-o”, just as in Fig. 1. The ‘i’,‘h’,‘b’,‘o’ respectively represent the number of
nodes in input layer, hidden layer, bottleneck layer and output layer. Fig. 2 shows
the performance of ST-BN system with different ‘h’, different ‘b’ and different
classifiers. From the figure, we can see that more nodes in bottleneck layer cannot
always increase the performance, and more nodes in hidden layer can increase
the result in some degree. The number of nodes in bottleneck layer cannot be too
large, but also cannot be too small. The best number of node in bottleneck layer
for GTZAN feature sets in this paper is 200. SVM perform better than ANN in
ST-BN (in Fig. 2), but perform worse than DNN in the baseline (in Table 2).
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Fig. 2. the classification results of different bottleneck DNN. “SVM” and “ANN” in
the legend indicate the classifier used for bottleneck feature classification. “h=1024”
and “h=2048” represent the nodes in hidden layers.

That’s maybe because SVM is more suitable for low dimensional features (The
scattering feature has 525*3 dimension, while the bottleneck feature has a much
lower dimension). Another reason is that the feature tends to be linear after the
processing of bottleneck extractor, therefore a linear SVM is more powerful here.

Then, we analyze how our ST-BN system improves the performance. Fig.
3 shows the detailed frame results before majority voting, and they are two
fold results chosen from the total ten folds. It indicates the frame rate for each
test music track. The total tracks for testing sets is 100, so the track id in the
figure is from 1 to 100. In Fig. 3, blue stars represent baseline frame rates in
each track, and red triangles represent ST-BN frame rates in each track. A line
connect baseline rate and ST-BN rate in a same track. A higher frame rate in a
track may led to a correct classification label of the track when perform majority
voting. In baseline system, we can see that some tracks have very high frame
rate, and some tracks have very low rate. This “un-balanced” situation appears
because the limited of training data. It makes the classification model easier to
over-fitting. For the tracks which are similar to training tracks, the algorithm
will have a good result, but for a “dissimilar” track, it will have a bad result.
So in this paper, we use a similar large dataset to training the bottleneck DNN
to make the model more stable. It improves the performance by increasing the
rate of those low frame rate tracks. From the figure, we can see that many low
frame rates are improved. Though some high rates in some tracks are decreased,
these rates are still higher enough to produce a correct label for these tracks
after majority voting. So the ST-BN system can achieve a better classification
performance.

Fig. 4 shows the comparison between the baseline systems and ST-BN
system. The figure shows the mean accuracy and variance of 10-fold cross-
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Fig. 3. The comparison of frame correct rate in test music tracks between baseline
system and ST-BN system. The baseline system used here is baseline-DNN1 system.
The structure of hidden layers in bottleneck DNN used in ST-BN is “1024-1024-100-
1024”, and the classifier is linear SVM.

validation. The accuracy used here is the accuracy after majority voting (track
accuracy). From the result, we can see that our model outperforms baseline
models.

At last, we analyze the limit of ST-BN system, which uses a large out-of-
domain data to improve the performance of target dataset. The limit is that if
the target dataset is also a large dataset (e.g. the same dataset as out-of-domain
dataset), the result can not be improved so much. That’s because that if the
target dataset is a large dataset, there will be little “un-balanced” situation or
a “dissimilar” tracks.

6 Conclusions

In this paper, we propose a music genre classification approach using bottleneck
feature, which is learned at semi-supervised learning framework. This approach
can help to learn a more stable feature representation, and the learned bottleneck
features using semi-supervised learning from the out of domain data can be
used to improve the performance of music genre classification. Experimental
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Fig. 4. The comparison of different models. The number in the figure is the mean
accuracy and the standard deviation. The hidden layer structure of bottleneck DNN
used in ST-BN system is “2048-2048-100-2048”.

results show that the proposed system outperforms the current state-of-the-art
best system on GTZAN dataset, and experimental analysis further shows the
bottleneck features can improve the classification accuracy of those music tracks
which are “dissimilar” to training tracks. Although the proposed approach is
similar with “Multilingual bottleneck” and “Cross-lingual bottleneck” in ASR,
but to our best knowledge, it is the first work to try to apply the bottleneck
feature to music genre classification or audio classification.
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