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Abstract - In this paper, we introduce a metric learning 

approach for the classification process in the recognition 

procedure for P300 waves in electroencephalographic (EEG) 

signals. We show that the accuracy of support machine vector 

(SVM) classification is significantly improved by learning a 

similarity metric from the training data instead of using the 

default Euclidean metric. The effectiveness of the algorithm is 

validated through experiments on the dataset Ⅱ of the 

brain-computer interface (BCI) Competition Ⅲ(P300 speller). 
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1. INTRODUCTION 

 

The P300 is the event related potential (ERP) component 

most commonly used as a metric of cognitive function in 

decision making processes on account of the presence, 

magnitude, topography and timing of its signals. The P300 

has been applied to multiple brain-computer interface (BCI) 

systems, such as the P300 speller [1, 2], psychological tests 

[3, 4], and clinical medicine [5]. The issue critical to the 

design and effectiveness of all its applications is the ability 

to correctly recognize the P300 component from the 

electroencephalographic (EEG) signals collected from the 

brain. 

In recent years, many methods have been developed for 

the effective recognition of P300 waves. However, due to 

the poor signal-to-noise ratio (SNR) of raw EEG signals, 

improving recognition performance in signal processing 

remains a live problem. The recognition procedure mainly 

includes feature extraction and classification of signals. 

Approaches to feature extraction fall roughly into one of 

four categories [6]: time or frequency methods [7], 

conventional time-frequency methods [8], model parameter 

methods [9], and wavelet decomposition-based methods [10, 

11, 12]. Among these, wavelet decomposition-based 

methods can best represent non-stationary EEG signals. In 

such methods, information is described in various time 

windows and frequency bands. Also, many effective 

classification algorithms have been used for the recognition 

of P300 such as neural networks [13], hidden Markov 

models (HMM) [14], k-means clustering [13, 15], k-nearest 

neighbors (kNN) [16], support vector machines (SVM) [1, 

17], etc. 
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This paper focuses primarily on the classification process 

in the recognition procedure for P300 waves. In most of the 

abovementioned classification methods, a Euclidean metric 

is commonly used to measure similarities among raw data 

points, and often fails to generate discriminative 

representations for a given problem. To solve this problem, 

we present a similarity metric-learning algorithm for the 

classification of P300 waves in EEG signals. We focus on 

the measurement of the distance between samples for an 

SVM classifier. The performance of the classifier is 

significantly improved by learning a global Mahalanobis 

distance metric from labeled samples. 

 

2. SUPPORT VECTOR MACHINE 

 

An SVM is a learning strategy based on statistical theory. 

In this strategy, the data entered is mapped into a 

high-dimensional feature space where samples belonging to 

different categories are separated by an optimal hyperplane. 

We are given the dataset 1{( , )}n
i i iy x , where ,d

i Rx  

{1, 1}iy   . To obtain the optimal hyperplane to separate  

the samples, the following quadratic programming problem 

(1) is solved: 
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where w  and b  determine the hyperplane in feature 

space, C  is the punishment factor to emphasize the loss 

caused by outliers, i  
is a slack variable, 0p   ( 1p   

and 2p   are two common choices, called 1L
 

loss and 

2L  loss, respectively), and   maps the input vectors into 

high-dimensional space. Usually, the above quadratic 

programming problem is solved using its dual: 
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K  x x x x  is the kernel 

function to generalize the SVM to non-linear decision 

functions. The unknown input pattern x  is classified 



according to the following decision function:
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3. METHOD 

 

As shown in Fig 1, EEG signal processing mainly 

includes data collection, pre-processing, feature exaction 

and pattern classification. 

Data Collection Pre-processing

Feature Exaction Classification

 

Fig. 1 Flowchart of EEG signal processing. 

 

3.1 Preprocessing 

 

To construct high-level signal characteristics suitable for 

classification, signal preprocessing is required. The process 

consists of signal segmentation, selection of electrodes, 

superposition, filtering, and data normalization.  

It is well known that the P300 is a kind of late positive 

component [22]. For the time-locked assumption between 

the stimulus and the response, we take the values of the 

signal from 0 to 700ms after stimulus onset from the 

electrode channels Fz (34), Cz (11), Pz (51), Oz (62), C3 (9), 

C4 (13), P3 (49), P4 (53), PO7 (56), and PO8 (60), where 

channel assignment numbers are indicated in parentheses. 

Data from other electrode channels is also used but has no 

obvious influence on the result. 

Since the SNR of EEG signals is usually very low, the 

application of the superposition operation to the recorded 

reactions of the repetitive stimulations is necessary to 

reduce interference signals and enhance the desired signals. 

Otherwise, since the frequency of P300 waves is mainly 

distributed in low-frequency regions, a six-order band-pass 

Chebyshev Type I filter – the cutoff frequencies for which 

are 0.5Hz and 30 Hz – is designed to filter each extracted 

signal. Following this, signals from each selected channel 

are normalized to zero mean and unit variance. 

 

3.2 Feature exaction 

 

The purpose of feature exaction is to find features in EEG 

signals that effectively characterize the cognitive task in 

question. The extracted feature vectors representing 

different tasks are expected to have obvious differences, 

which forms the basis of the recognition of cognitive 

components. 

Due to the temporally varying and non-stationary 

character of EEG signals, traditional analysis methods  
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Fig. 2 Structure of WPD. 
j

iV indicates the space expanded by the 

jth node of the ith-layer WPD. 

cannot clearly distinguish frequency components 

representing cognitive processes contained in a certain 

timeframe from some minute, transient feature. Therefore, 

discrete wavelet transform, which is a typical 

time-frequency analysis method, is suitable to analyze EEG 

signals. 

However, wavelet decomposition (WD) partitions only 

the frequency axes in the low-frequency band, which may 

reduce analytical precision. To solve this problem, wavelet 

packet decomposition (WPD) is adopted [12]. Compared to 

WD, WPD implements equal width decomposition not only 

in low-frequency bands but also in the high-frequency ones, 

which provides a more precise way to analyze 

non-stationary EEG signals. The structure of WPD is shown 

in Fig 2. 

In this study, we decompose each epoch into three levels 

using wavelet packet transform. Quadratic B-Spline 

functions are used as mother wavelets because of their 

similarity to evoked responses. Since the signal has already 

been filtered, eight sets of coefficients from the following 

frequency bands are obtained: 0.5-4Hz, 4-8Hz, 8-12Hz, 

12-16Hz, 16-20Hz, 20-24Hz, 24-28Hz and 28-30Hz. The 

wavelet packet decomposition of EEG signals is 

implemented by using the MATLAB software package. 

Following this, the wavelet packet energy and entropy of 

each node are calculated to construct feature vectors. The 

wavelet packet energy indicates the strength of the signal as 

it gives the area under the curve of the power. The energy of 

an EEG signal of finite length is given by (4). 
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where is represents the projection coefficient of signal s in 

an orthonormal basis. The energy feature of each epoch is: 
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where 0
3l ~ 7

3l represents the segments in nodes of the third 

layer. n represents the number of epochs and j represents 

the 10 selected channels. 

Wavelet packet entropy is a measure of the disorderliness 

of EEG signals. According to Quiroga [18], with the 

emergence of the P300, the use of wavelet packet entropy 

for signal analysis has witnessed a marked decline. There 

are several entropy types, such as Shannon, log energy, sure, 

threshold, etc. Here, Shannon entropy is employed and 
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calculated according to (6) to measure the complexity of 

EEG signals. 
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where
is also represents the projection coefficient of signal

s in an orthonormal basis. Therefore, the entropy feature 

vector of each epoch is: 
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Finally, the feature vector of each epoch is constructed as 

 , , 1,2, ,i i i i n x Enx Entx
        

(8) 

According to the above procedure, a 160-dimensional (10 

channels  8 frequency bands  2 (energy, entropy)) feature 

vector for each epoch is extracted from the EEG signals. 

Together with their category labels, the instances from a 

training set are used to design the classifier. 

 

3.3 Classification 

 

A conventionally used kernel function in SVM is the 

category in which the Euclidean distance is contained in 

order to determine the degree of similarity between data 

points in the kernel space. The kernel function is formulated 

as: 

    , ,i j i jK f dx x x x         (9) 

There are several widely used kernel functions, such as 

the radial basis function (RBF), the negative distance kernel, 

the logarithmic kernel and the B-spline kernel. SVMs using 

these kernels are successfully used in many applications. 

However, the Euclidean distance ignores structure 

information which can provide more clues for classification. 

In many cases, the samples are still inseparable after 

having been mapped into the high-dimensional kernel space. 

In traditional SVMs, by maximizing the margin between 

two classes, the learned transformation controls the distance 

between classes while ignoring the distance between data 

points within a class. Therefore, since it keeps instances of 

the same class close while pushing instances of different 

classes farther away, a metric learning algorithm is a 

reasonable way to improve the classification accuracy of the 

SVM [19]. 

Inspired by the metric learning theory, a Mahalanobis 

similarity metric learnt from labeled instances is used in this 

paper in place of the Euclidean metric in the kernel of the 

SVM, in order to improve classification performance. The 

principle of metric learning is illustrated in Fig 3 [20]. 

For SVM, we choose the exponential radial basis 

function (RBF) as the kernel function: 
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is the 

Mahalanobis distance between ix  and jx , and 0   is  

 

 

 

 

 

 

 

 

Fig. 3 Illustration of the distribution of instances belonging to two 

classes [19]. By applying the metric learning algorithm 

(minimizing the distances between instances in the same class 

while keeping instances from the other class far away), the input 

instance is surrounded by training instances of the same class.  

the width of the Gaussian distribution. TM L L  is a 

positive semi-definite matrix. To distinguish it from 

Euclidean distance, the Mahalanobis distance is indicated 

by (10).
 

     ,
T

M i j i j i jd M  x x x x x x
    

(10) 

In order to separate instances belonging to different 

classes, the desired metric should satisfy the following 

constraints: 
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Usually, the above constraints are too strict to satisfy. 

Therefore, slack variables are introduced as follows: 
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Finally, the optimization problem is formulated as: 
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where  1,0ijy   indicates whether ix and jx are in the 

same class, and  1,0ij   indicates whether jx is a 

selected neighbor of ix within the same class. 

Following this, the algorithm proposed in [19], – called 

the large margin nearest neighbor (LMNN) method – is 

used to solve (13). 

 

4. EXPERIMENTS 

 

4.1 Dataset description 

 

To make the results comparable, the SVM-based metric 

learning approach for the classification of EEG signals is 

carried out on a public dataset: dataset Ⅱ of the BCI 

Competition Ⅲ (P300 speller). We briefly introduce the 

experiment and the data processing.  

margin 

M 
margin 



 

Fig. 4 Adopted P300 speller paradigm. The highlighted row is the 

one intensified. 

The row-column P300 speller paradigm is adopted where 

a 6 6 matrix (shown in Fig. 4) containing 36 symbols is 

presented to subjects. In order to spell each character, all 

rows and columns of this matrix are randomly intensified. 

Sets of 12 intensifications are repeated 15 times for each 

character epoch. P300 exist in the EEG signals associated 

with the rows or columns containing the desired characters. 

The 64-channel EEG signals are collected from two 

subjects, A and B. For each, the recorded data contains one 

training set (85 characters) and one test set (100 characters). 

The collected signals are digitized at 240Hz. According 

to the process described in section 3, signals from the 10 

selected channels are band-pass filtered from 0.5Hz to 30Hz. 

For each channel, all data samples obtained between 0 to 

677ms after intensification begins are extracted. At this 

stage, an extracted signal from a single channel is composed 

of 160 points. The training set is composed of 1020 

(85 12 ) post-stimulus feature vectors and each feature 

vector contains 160 elements. The test set is composed of 

1200 (100 12 ) 160-dimensional feature vectors. 

 

4.2 Results 

 

In this section, we test the classification performance of 

the metric learning-based algorithm on the dataset described 

above. The accuracy of the predicted characters is used to 

evaluate the classification accuracy. The input character is 

detected by the intersection of the row and the column 

associated with the P300 wave. For this purpose, the 

classifier is trained for binary classification, and instances 

are labeled “1”/“-1” for P300 presence/absence, respectively. 

The maximum score of the discriminant function (3) 

indicates the presence of a P300 wave. Parameters such as 

C are determined by a five-fold cross validation [21]. 

Tables 1 to 3 show the results. Specifically, Table 1 

shows the spelling accuracy of our method on the test 

datasets of the two subjects with respect to the number of 

repetitions used in superposition. Table 2 compares several 

effective methods. 15 repetitions are used for all of them. 

Table 3 shows the spelling accuracy of our method for 

different features using the test datasets.  

As we can see, the accuracy improves with increasing 

number of repetitions. As shown in Table 2, the 

performance of our algorithm is superior to the standard 

SVM algorithm and is comparable to the winning algorithm 

as reported in the competition in [1]. Furthermore, as shown 

in Table 3, the combined use of energy and entropy features 

obtains more accurate classification results than the 

respective use of each. 

Table 1 Classification performances (in %) of  

correctly recognized characters 

Repetitions 1 3 5 7 10 15 

Subject A 12 48 70 82 87 95 

Subject B 27 57 75 86 92 96 

Table 2 Comparison of classification performances (in %)  

of correctly recognized characters 

Method Standard SVM Ensemble SVM Ours 

Subject A 92 97 95 

Subject B 89 96 96 

Table .3 Classification performances (in %) of correctly  

recognized characters for different features 

 Feature Energy(En) Entropy(Ent) En&Ent 

Subject A 87 85 95 

Subject B 89 90 96 

  From the results, we can see that the proposed algorithm 

performs well in the recognition of P300. The combined use 

of the energy and entropy features and the strategy of metric 

learning both make great contributions to the improvement 

of the classification performance. 

 

4.3 Discussion 

 

An advantage of our approach is that no time-consuming 

operations, such as artifact removal or bootstrapping, are 

required during preprocessing. This makes it possible for 

our method to be applied to online tasks. However, for 

many practical applications, EEG data may be seriously 

contaminated by various disturbances. In such cases, several 

operations—especially artifact rejection—have to be 

applied to the data to obtain a reasonable SNR. Hence, no 

automatic method developed thus far is good enough for all 

practical applications.  

In the feature-extraction phase of our method, each epoch 

is decomposed into three levels by wavelet packet transform. 

We also tried to decompose signals to five or seven levels, 

which had no significant effects on the results. However, the 

optimal basis selection of wavelet packet decomposition as 

well as feature selection features such as Principal 

Component Analysis (PCA) can be added to our method for 

data compression in future research. 

With regard to future research, exploring wavelet packet 

energy and entropy as well as other features that can better 

represent the cognitive component in EEG signals is a 

feasible way to improve the performance of the 

classification system. Moreover, for practical applications, 



since labeled data are usually insufficient for effective 

classification, a semi-supervised version of the algorithm 

should be considered. That is to say, both labeled and 

unlabeled data should be used in the train of the classifier. 

Finally, to improve the adaptability of the algorithm and 

reduce training time, online updates of the model should be 

considered. 

 

5. CONCLUSIONS 

 

In this paper, a metric learning approach was proposed to 

address the cognitive component classification problem of 

EEG signals. By learning a Mahalanobis distance metric 

that captures discriminating information of features from 

labeled instances, the kernel function of the SVM is 

redefined. That is to say, before the SVM classifier is 

applied, instances of different classes are transformed to a 

new space in which the separation between data points is 

significantly improved. The overall implementation of the 

algorithm is easy to understand, and the computational 

burden is low. Experiments on the BCI speller dataset 

showed the improved performance of the proposed 

algorithm. The results showed that the metric 

learning-based method is suitable to address EEG 

signal-processing problems.  

Nevertheless, there remains scope for improvement in 

various aspects of the algorithm by way of future work such 

as data compression and feature selection. To expand the 

application scope of our algorithm, more experiments on the 

recognition of P300 or other ERP components are required. 

In addition, if we consider practical applications, such as 

crime information identification based on EEG signals, the 

complex application environment and unpredictable 

interference will certainly make challenging demands of our 

algorithm. 
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