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Abstract—In this paper, the principle of the kernel extreme 

learning machine (ELM) is analyzed. Based on that, we introduce 

a kind of multi-scale wavelet kernel extreme learning machine 

classifier and apply it to electroencephalographic (EEG) signal 

feature classification. Experiments show that our classifier 

achieves excellent performance. 
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I.  INTRODUCTION 

Electroencephalographic (EEG) is a kind of typical and 
important biological signal. It reflects the electrical activity and 
the functional status of the brain. Also, it has been proved that 
EEG has inevitable connection with human intention. EEG has 
been applied to clinical medicine [1] and cognitive science [2]. 

In a practical application, how to recognize EEG features 
effectively is the most critical part in EEG signal processing. 
The recognition procedure mainly includes feature extraction 
and classification. Many methods on that have been developed. 
Feature extraction techniques are roughly divided into four 
categories [3]: time or frequency methods, conventional time-
frequency methods, model parameter methods, and wavelet 
decomposition-based methods. Also, classification methods 
widely used include hidden Markov models (HMM) [4], k-
means clustering [5], k-nearest neighbors (kNN) [6], neural 
networks [7], support vector machines (SVM) [8, 9], etc. In 
spite of good effects the mentioned classifiers achieved, due to 
the poor signal-to-noise ratio (SNR) of raw EEG signals and 
actual application needs, the fast and accurate classification of 
EEG signals is still challenging.  

Recently, a new machine learning algorithm referred to as 
extreme learning machine (ELM) proposed by Huang et al. 
has been widely adopted in pattern classification in recent 
years. [10]. Compared to other algorithms, ELM can achieve 
satisfactory classification accuracy but require less training 
time. Many problems encountered by traditional gradient-
based neural network learning algorithms, including local 
minima and various training parameters (training efficiency, 
stopping criteria, learning epochs and the hidden layer unit 
number) are avoided in ELM.  Also, ELM has higher 
generalization performance than the established gradient-

based learning methods. For its superior performance, ELM 
has been applied to EEG signal feature classification [11, 12]. 

This paper focuses on the classification process in the 
recognition procedure for EEG signals. We present a new 
algorithm, which introduces the multi-scale wavelet as the 
kernel function into ELM. The effectiveness of the algorithm is 

validated through experiments on the dataset Ⅱ of the brain-

computer interface (BCI) Competition Ⅲ (P300 speller).  

II. KERNEL ELM 

Compared to traditional single-hidden layer feedforward 
neural networks (SLFNs), ELM not only tends to reach the 
smallest training error but also the smallest norm of output 
weights, which will make it have better performance [13]. In 
ELM, the hidden layer need not be tuned iteratively. The 
hidden layer parameters can be given randomly at the 
beginning and fixed during the process of training. Then the 
output weights can be resolved using the lease-square method 
[10]. Moreover, Huang et al. [14] put forward that kernel 
method can also be applied to ELM, which will makes the 
algorithm obtain more stable and better generalization 
performance. 

A. Basic ELM 

Suppose there are N arbitrary samples  ,i ix t , where 

1 2
T[ ], , ,i i in

n
i x x x x R  , 1 2

T[ ], , ,i i im
m

i t t t t R  . 

Then standard SLFNs with L hidden nodes can be 
mathematically expressed as following:  
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where 1 2
T[ , , , ]i i ina a ai a  is the weight vector connecting 

the i th hidden node and the input nodes, ib  is the threshold of 

the i th hidden node. 1 2
T[ , , , ]i i imi    is the weight 

vector connecting the i th hidden node and the output nodes. 

i
g denotes the output function ( ), ,i iG ba x  of the thi hidden 

node (cf. Fig. 1). 
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Fig.1 Single hidden layer feedforward network 

If the SLFN with activation function ( )g x can approximate 

these N training samples  ,i ix t  with zero error, the following 
liner system is set up. 
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The weight  can be obtained by solving the following 

equations by least-square method. 

ˆ min


   H T H T                       (3) 

The solution is 

̂


 H T                                       (4) 

The training steps of ELM algorithm is as follows. 

Step1: Randomly assign input weights ia  and biases ib  

according to some continuous probability density function; 

Step2: Calculate the hidden layer output matrix H ; 

Step3: Calculate the output weights ̂


 H T . 

B. Kernel ELM 

If HH
T
 is nonsingular, to improve the stability of ELM, we 

can have: 

1
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where  1 C  is a positive value, and the corresponding output 

function of ELM is: 
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If the hidden layer feature mapping ( )h x is unknown to 

users, an ELM kernel function can be constructed to replace 
T

HH [13]:  
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Thus equation (6) can be written as: 
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For binary classification, the decision function of kernel 
ELM is: 
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Compared to traditional ELM, kernel ELM has more 
powerful function approximation ability. 

III. MUTI-SCALE WAVELET KERNEL ELM 

A. Wavelet Kernel Function 

Compared to other kernel functions, the approximation 
ability of the wavelet kernel function is more powerful. It has 
been introduced to SVM [16]. Moreover, it has been proved 
that the ability of SVM with wavelet kernel dealing with the 
nonlinear classification problem is stronger than common 
kernels. This section will introduce the wavelet kernel to ELM 
to analyze. 

The essence of the wavelet analysis is to express or 
approximate a signal or function through a family of functions 
generated by dilations and translations of a function called the 
mother wavelet. The following equation can express the 
wavelet base function: 
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where a  and b  are the dilation factor and translation factor, 

respectively. 
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A multidimensional wavelet function can be written as the 
tensor product of multiple one-dimensional wavelets:                                     

   
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According to the above formula, if nR'x, x , we can 

construct the translation invariant kernel function as follows: 
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We select the Morlet wavelet function: 
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then the corresponding kernel function can be represented as 

below： 
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In some complicated cases, the kernel machine constructed 
by single kernel function cannot satisfy for the request of 
applications such as uneven distribution of training samples, 
huge sample size. The combination of multiple kernel 
functions can obtain better approximation ability. 

Commonly, we can construct a hybrid kernel function by 
means of superposition of different kernel functions to 
improve the classifying ability, i.e., 

1 1 2 2 n nK a K a K a K                 (15) 

The wavelet kernel function not only has the characteristic 
of nonlinear mapping but also integrates the characteristic of 
wavelet analysis which describe the non-stationary input 
parameters level by level detailed. ELM with wavelet kernel 
function adopted will also have this ability. 

B. Muti-scale wavelet kernel ELM classifier 

The wavelet kernel function itself has the ability of multi-
scale extension. As expressed in (15), wavelet kernel functions 
with different scale can compose a multi-scale wavelet kernel 
function which is shown as follows ( 1, 2, ... )n N . 
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which can be abbreviated to  
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For binary classification, ELM only needs to set up two 
outputs, then the class of the sample through the competition 
mechanism. Moreover, we can adopt a single ELM classifier 
to solve multi-class problem. If the samples belong to n 
categories, the output of ELM needs to be set at n. The 
number of the maximum output value is the class of the 
sample. 

IV. EXPERIMENTS 

Ideally, a good classifier for BCI should produce high 
classification accuracy with minimal computational complexity. 
In this section, we evaluate the proposed classification method 
in accuracy and computation time, by comparing it with 

different classifiers on the same data set (BCI Competition Ⅲ 

dataset Ⅱ). As shown in Fig .2, the EEG signal processing 

mainly includes data collection, pre-processing, feature 
exaction and classification. 

A. Data Set Description 

The proposed multi-wavelet kernel ELM approach for the 
classification of the EEG signals is carried out on BCI 

Competition Ⅲ  dataset Ⅱ  (i.e.P300 speller BCI data) by 

MATLAB R2012a.  

This dataset represents a complete record of P300 evoked 
potentials. The objective is to predict the correct character in 
each of the provided character selection epochs. In this P300 
speller paradigm, a 6 6 matrix containing 36 symbols is 

presented to the subjects. As shown in Fig. 3, the row-column 
P300 speller paradigm is adopted, and the highlight row is the 
one intensified. For the spelling of each character, all rows and 
columns of this matrix are randomly intensified. The sets of 12 
intensifications are repeated 15 times for each character epoch. 
The flashing of the rows or columns containing the target 
characters will evoke P300 of subjects. 

For each of the two subjects, the 64-channel EEG signals 
are collected and digitized at 240Hz. The recorded EEG data 
contains one training set (85characters) and one test set (100 
characters) for each subject.  

 

 

Fig. 2 The flowchart of EEG signal processing 
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Fig. 3 P300 speller paradigm 

According to the process described in section 3, signals of 
the 10 selected channels are band-pass filtered from 0.5Hz to 
30Hz.  

For each channel, all data samples between 0 to 677 ms 
posterior to the beginning of an intensification are extracted. At 
this point, an extracted signal from a single channel is 
composed of 160 points. Thus, the training set is composed of 

1020 (85 12 ) post-stimulus feature vectors and each feature 

vector contains 160 elements. The test set is composed of 1200 

(100 12 ) feature vectors of 160 dimension.  

B. Preprocessing 

Raw EEG signals mixed with a lot of interference signals 
such as EOG and power line interference. Therefore 
preprocessing is necessary to construct high-level signal 
characteristics suitable for classification. The process 
comprises selection of electrodes, signal segmentation, 
superposition, filtering and data normalization.  

For the time-locked assumption between the stimulus and 
the response [17], we took the values of the signal during 0-
700ms (P300 is one of late positive component.) after stimulus 
onset from the electrode channels Fz, Cz, Pz, Oz, C3, C4, P3, 
P4, PO7, and PO8.  

For low SNR of EEG signals, the repetitive stimulations are 
superimposed to reduce the interference signals and enhance 
the desired information. Moreover, since the frequency of P300 
is mainly distributed in low frequency area, an 6-order band 
pass Chebyshev Type I filter which cut-off frequencies are 0.5 
and 30 Hz is designed to filter each extracted signal. 

C. Feature Extraction 

The purpose of feature exaction progress is to find effective 
features to characterize the cognitive components. The exacted 
feature vectors of different tasks are expected to have obvious 
differences. 

Since EEG signal is nonlinear, time-varying and non-
stationary, traditional analysis methods cannot clearly 
distinguish the frequency components contained in a certain 
time range and some transient minutiae feature. We choose the 
discrete wavelet packet decomposition (WPD) which describes 
information in various time windows and frequency bands to 
extract EEG features [18].  

WPD implements the equal width decomposition not only 
in the low frequency band but also in the high frequency band, 
which provides a more precise way to complex EEG signals. 
Based on that, each single epoch is decomposed into three 
levels by wavelet packet transform. Quadratic B-Spline 
functions are used as mother wavelets due to their similarity 
with the evoked responses. Eight sets of coefficient within the 
following frequency bands are obtained: 0.5-4Hz, 4-8Hz, 8-
12Hz, 12-16Hz, 16-20Hz, 20-24Hz, 24-28Hz, and 28-30Hz. 

Feature vectors are constructed by the wavelet packet 
energy and entropy of each node. The wavelet packet energy 
indicates the strength of the signal as it gives the area under the 
curve of power. The energy of EEG signal of finite length is 
given by (18). 

  2
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where
is represents the projection coefficients of signal s in an 

orthonormal basis. The energy feature of each epoch is: 
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where n  is the amount of epochs. j represents the selected 10 

channels. 

The wavelet packet entropy is calculated according to (20) 
to measure the complexity of EEG signals. The Shannon 
entropy is employed. 

 
2 2

( ) log( )
i i

i

Ent s s s                      (20) 

where is also represents the projection coefficients of signal 

s in an orthonormal basis. Therefore, the entropy feature 

vector of each epoch is: 
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Consequently, the feature vector of each epoch is 
constructed as following: 

 , , 1, 2, ,
i i i

i n x Enx Entx  

According to above procedure, a 160-dimensional feature 
vector for each epoch is extracted from EEG signals. 

D. Classification Result 

The classification performance of the proposed multi-scale 
wavelet ELM classifier is evaluated on the dataset described 
above. The number of hidden neurons is 1000. Three wavelet 
kernel functions are adopted. The corresponding parameters 
are set as a1=1.38, a2= a1/10, a3= a1/100. C is set to 100. 

The accuracy of predicted characters is used to evaluate 
the classification accuracy. Each target character is detected 
by the intersection of the row and the column containing P300. 



Thus, the classifier is trained for binary classification, and the 
instances are labeled with “1”/“-1” for P300 presence/ absence. 
The maximum score of the discriminant function (17) 
indicates the presence of a P300.  

TablesⅠ to Ⅲ show the results. Specifically, TableⅠ 

shows the spelling accuracy of our method on the test datasets 
of the two subjects with respect to the number of repetitions 

used in superposition. Table Ⅱ compares several effective 

methods with 15 repetitions. Table Ⅲ shows the training and 

testing time as different classifier is applied.  

From the results, we can see that the proposed algorithm 

performs well in the recognition of P300. TableⅡshows the 

recognition accuracies are almost the same when respectively 
using SVM, BP neural network (BPNN), ELM and the method 

proposed by us. However, Table Ⅲ shows that SVM spends 

the longest time to train the classifier, and the time consumed 
by BP network is over ten times longer than ELM and multi-

scale wavelet kernel ELM. As shown in Table Ⅱ ,the 

performance of our algorithm is superior to the standard ELM 
algorithm and is comparable with it in terms of efficiency. 

V. CONCLUSION 

In this paper, by introducing multi-scale wavelet function 
into ELM as the kernel function, a kernel ELM based approach 
was proposed to address the cognitive component classification 
problem of EEG signals.  

A comparative study on performance is conducted among 
different classifiers. Experiments on the BCI speller dataset 
shows the improved performance of the proposed algorithm 
comparing with original ELM. Moreover the proposed 
algorithm can achieve similar recognition accuracy with much 
less training time. 

TABLE I.  CLASSIFICATION PERFORMANCES IN % OF CORRECTLY 

RECOGNIZE CHARACTERS 

Subject 
Repetitions 

1 5 10 15 

A 20 50 89 96 

B 31 59 93 97 

TABLE II.  COMPARISON OF CLASSIFICATION PERFORMANCES IN % OF 

CORRECTLY RECOGNIZED CHARACTERS 

Subject 
Classifier 

SVM BPNN ELM Ours 

A 92 92 94 95 

B 90 91 95 97 

TABLE III.  COMPARISON OF THE TRAINING AND TESTING TIME  

Time(s) 
Classifier 

SVM BPNN ELM Ours 

Training 10.981 1.676 0.075 0.186 

Testing 3.732 0.022 0.019 0.020 

Since the multi-scale wavelet kernel function is the 
combination of multiple wavelet kernel functions with different 
scale, the choice of kernel parameters of it can greatly get 
relaxed, or even diluted. The overall implementation of the 
algorithm is easy to understand, and the computational burden 
is low. Moreover, the multi-scale wavelet kernel ELM has high 
approximation capacity, which makes it more convenient to 
use and has better recognition performance. In addition, if we 
consider practical applications, such as crime information 
identification based on EEG signals, the advantages of short 
training time and good generalization ability, the proposed 
method would have the ability to deal with the complex 
application environment and unpredictable interference. The 
related experiment is now in progress. 

Nevertheless, there remains scope of this algorithm for 
improvement in various aspects such as data compression and 
feature selection. To make the algorithm be applied in practice, 
more experiments on training and testing time and other ERP 
components are required. In practice, since labeled data are 
usually insufficient for effective classification, a semi-
supervised version of the algorithm should be considered. 
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