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Abstract. This paper introduces a deep learning approach to the feature extrac-

tion of P300 cognitive component existing in electroencephalogram signals col-

lected in an autobiographical paradigm test. A deep belief network is used to 

extract deep features instead of raw feature vectors to train the classifier. It is 

shown that the classification accuracy is satisfactory by learning deep from the 

training data. The effectiveness of the algorithm has been validated through ex-

periments. A high accuracy of recognizing concealed information with a single 

electroencephalogram channel is obtained. Moreover, performances of support 

vector machine with different feature extraction methods are compared. 
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1 Introduction 

In recent years, EEG-based concealed information test has drawn considerable atten-

tion in the field of criminal investigation. Many effective methods have been used for 

EEG signal analysis in Concealed Information Test (CIT) [1]. Compared to traditional 

methods based on physiological responses which are easily affected by emotions and 

stress, cognitive behavior based polygraph is considered more reliable and scientific 

that can reduce the risk in false positive errors [2]. In addition, EEG is more conven-

ient, more harmless and more economical than other brain activity monitoring meth-

ods such as PET, MEG and fMRI [3].  

Due to the complexity and particularity of actual criminal investigation tasks and 

poor signal-to-noise ratio (SNR) of raw EEG signals, improving recognition perfor-

mance remains a live problem. In which, methods based on machine learning algo-

rithms have achieved the most effective results. Numerous feature extraction ap-

proaches have been adopted in machine learning algorithms such as time or frequency 

methods [4], model parameter methods [5], and wavelet decomposition -based meth-

ods [6], etc. [7]. However, the distinguishability of a certain feature is uncertain in 

different tasks, which may lead to a failure of recognition. Therefore, feature extrac-



tion methods with good ability of feature self-learning are necessary to be studied in 

this field. Recently, deep learning strategy has made great progress and the related 

algorithms have been applied to many fields including EEG signal processing [8]. It 

can be viewed as a computational intelligent method since its similar mechanism to 

human brain. To improve the generalization performance of EEG feature, deep belief 

networks (DBN) is adopted to learn features automatically. 

In this paper, we use the CIT technique and focus primarily on the feature extrac-

tion process of different brain waves evoked by relevant stimulus and control stimu-

lus. DBN was applied to self-learn features of EEG signals. Then support vector ma-

chine (SVM) was implemented as the classifier. The classification performance is 

satisfactory and the runtime is acceptable.  

2 Data and Methods 

2.1 Data Description 

 

Fig. 1. The 10–20 system of electrode placement 

The data used in this paper were recorded during an autobiographical paradigm test 

[9]. There were eleven subjects in total participated. They are all male volunteers 

between the ages of 22 and 35. They are all right handed and had normal or corrected-

to-normal vision. They are not familiar with the scientific basis of the test and only 

have knowledge about how to perform the test. Each subject was asked to provide 

five numbers (all 4 digits long), one of them being their year of birth. The subjects did 

not reveal to the experimenter which one of the numbers is their birth date until the 

end of experiment. Each subject participated in 2 experimental runs, except for sub-

ject 11, who participated in 3 runs. For subject 1, 3, and 7, one run was discarded 

because of incorrect target stimulus counting (see below). Therefore, a total of 20 

experimental runs were used in this study. In each run, each number was displayed to 

the subject randomly with thirty repetitions, resulting in a total of stimuli. Each num-

ber was displayed for one second and between the numbers, the screen was blank for 



two seconds. The subjects did not respond to the items, but were instructed to count 

the number of times the target stimulus (year of birth) was presented (they were una-

ware that all stimuli were repeated 30 times in each run). EEG signals were recorded 

at frontal (Fz), central (Cz), and parietal (Pz) electrode positions of the 10–20 interna-

tional electrode placement system (Fig. 1). All electrodes were referenced to linked 

mastoids. Vertical EOG was also recorded for blink artifact detection. EEG signals 

were digitally sampled at 256 Hz [10]. 

2.2 Methods 

For the complexity and weak anti-interference capability of EEG, it is very difficult to 

recognize useful information from raw signals. Fig. 2 shows the raw waveforms. It is 

observed that the potential offset value of each sample belonging to the same category 

is quite different and there is no obvious distinction between samples belonging to 

separate categories. 

 

Fig. 2. Raw EEG waveforms 

As shown in Fig. 3, EEG signal processing mainly includes data collection, pre-

processing, feature exaction and pattern classification. 

1) Pre-processing 

This process comprises selection of electrodes, signal segmentation, superposition and 

filtering. For low SNR of EEG signals, the repetitive stimulations are superimposed to 

reduce the interference signals and enhance the desired information. Since the fre-

quency of P300 is mainly distributed in low frequency area, a 6-order band pass Che-

byshev Type I filter with cut-off frequencies 0.5 and 35 Hz is designed to filter each 

epoch. Moreover, the data matrix is mapped into a bound between 0 and 1 according 

to equation (1). 
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Fig. 3. The flowchart of signal processing 

2) Deep Feature Extraction 

To begin with, k-means method is adopted to represent features preliminary as de-

scribed in [11]. Using subject 1 as an example, some differences between the two 

categories can be seen in Fig. 4 after the initial feature extraction. However, the dif-

ference is still too small to distinguish samples. Further feature extraction is imple-

mented as following. 

 

 

Fig. 4. Comparison of mean values of the two categories 

DBN could be viewed as a stack of restricted Boltz-man machines (RBMs), which 

are motivated from the idea of equilibrium from the statistical physics literature [12]: 
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 Equation (2) could be optimized in a tricky way by contrastive divergence that is 

commonly used to approximate the expectation by a sample generated after a limited 

number of Gibbs sampling iterations [13]. 

The joint probability distribution over v and h is: 
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where z  is a normalizing factor. Then 
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Model (2) can be simplified by using binary input variables. The conditional prob-

abilities can be formulated as: 
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To make RBM stability, the energy of system should be the minimum. By the 

above formulas,  P v should be maximized. The partial derivative of loss function 

 P v  is calculated as: 
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Thus, the parameter θ corresponding to maximum  P v  is obtained. DBN could 

then be trained in a greedy layer-wise manner [12]. Each RBM is trained greedily and 

unsupervised [14]. The posterior distribution of the first RBM is used as the input 



distribution of the second RBM. Then the weights are fine-tuned by back propagation 

(BP) neural network. The architecture of DBN model is shown in Fig. 5. Fig. 6 shows 

the comparison of mean values of the two categories. The difference is significant 

after feature learning by DBN.  

 

          Fig. 5. The architecture of DBN model 

 

Fig. 6. Comparison of mean values of the two categories 

3) Classification.  
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DBN model is viewed as a feature extraction system in this paper. Outputs of the last 

model were used as the new input feature vectors with labels of samples to train the 

SVM classifier.  

3 Experiments 

Responses to the birth year of the subject are expected to contain the P300 component 

which is considered as the most typical and common event-related potential (ERP) 

closely related to human cognitive process, P300 is a late positive component. For the 

time-locked assumption between the stimulus and the response [15], we took the val-

ues of the signal during 0-700ms after stimulus onset from selected electrode chan-

nels. The weights were randomly initialized and the turning parameters were set as: 

learning rate=0.07, momentum=0.95. For the first RBM, the number of the visible 

units is 200 and the number of the hidden units is 100. For the second RBM, the num-

ber of the visible units is 100 and the number of the hidden units is 50. The fifty-

dimensional feature vector is input to libsvm. 

To reduce the bias of training and testing data, a 10-fold cross-validation method 

was employed. According to this technique, the dataset was divided into ten subsets 

[16]. To improve the dependability, the 10-fold cross-validation procedure was per-

formed 10 times. Each time, one of the ten subsets was utilized as the testing dataset 

and the other 9 subsets were put together to form the training dataset. In particular, the 

data from test fold is not be involved in the optimization procedure. All final results 

were averaged over the ten repetitions. 

4 Results and Discussion 

In this section, the classification performance of the DBN-SVM algorithm was tested 

on the dataset described in section 2.1. Table. 1 and Fig. 7 show the results. Specifi-

cally, Table. 1 shows the recognition accuracy and runtime over all eleven subjects. 

Fig. 7 compares performances of classifiers adopted different effective feature extrac-

tion methods for SVM classifier. All the experiments are repeated ten times, and the 

average results are reported. 

From the effects of perspective, a high average accuracy is obtained. In addition, as 

shown in Fig. 7, compared with other features used methods, the performance of our 

approach is significantly better. 

Moreover, it is worth noticing that no time-consuming pre-processing operations 

such as artifact removal or bootstrapping is required which makes the approach possi-

ble to be applied to actual tasks.  

However, the complex application environment and unpredictable interference will 

definitely put forward higher requirements considering the practical applications in 

crime information identification tasks. As for future works, it would be interesting to 

investigate a way to overall fine-tune the weights of DBN model with regard to SVM 

learning rule [13]. 



Table 1. Performances of the algorithmover all subjects 

Subject 
Amount of 

samples 
Accuracy (%) 

S1 150 95.5 

S2 300 98.9 

S3 300 97.6 

S4 150 96.7 

S5 150 97.5 

S6 300 98.0 

S7 300 97.0 

S8 150 96.3 

S9 300 97.6 

S10 300 96.2 

S11 450 98.9 

Average  97.3 

 

Fig. 7. Comparison of classification performances over  

different feature extraction methods 

5 Conclusion 

In this paper, deep learning strategy is applied for signal processing in EEG-based 

concealed information test. The purpose of introducing DBN is to better express char-

acteristics of different signals. We choose SVM as the classifier which can avoid 

overfitting effectively. The results show that our method achieves high recognition 

accuracy. The study in this paper suggests that it is valuable to do further develop-

ment on deep learning or other computational intelligence strategies used in the field 

of EEG-based CIT and provide reliable supports to actual investigations in the future. 
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