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Abstract 

A variety of feature selection methods based on sparsity reg-

ularization have been developed with different loss functions 

and sparse regularization functions. Capitalizing on the exist-

ing sparsity regularized feature selection methods, we pro-

pose a general sparsity feature selection (GSR-FS) algorithm 

that optimizes a ℓ2,𝑟-norm (0 < 𝑟 ≤ 2) based loss function 

with a ℓ2,𝑝 -norm (0 < 𝑝 ≤ 1 ) sparse regularization. The 

ℓ2,𝑟-norm (0 < 𝑟 ≤ 2) based loss function brings flexibility 

to balance data-fitting and robustness to outliers by tuning its 

parameter, and the ℓ2,𝑝-norm (0 < 𝑝 ≤ 1) based regulariza-

tion function is able to boost the sparsity for feature selection. 

To solve the optimization problem with multiple non-smooth 

and non-convex functions when 𝑟, 𝑝 < 1, we develop an ef-

ficient solver under the general umbrella of Iterative Re-

weighted Least Square (IRLS) algorithms. Our algorithm has 

been proved to converge with a theoretical convergence order 

of at least min(2 − 𝑟, 2 − 𝑝). The experimental results have 

demonstrated that our method could achieve competitive fea-

ture selection performance on publicly available datasets 

compared with state-of-the-art feature selection methods, 

with reduced computational cost. 

1.  Introduction   

Feature selection plays an important role in high-dimen-

sional data analysis for selecting informative features and 

removing irrelevant or redundant ones (Cawley et al., 2006; 

Guyon & Elisseeff, 2003; Kira & Rendell, 1992; Lewis, 

1992; Peng et al., 2005). Among existing feature selection 

methods, sparsity regularization based methods are appeal-

ing for their excellent performance (Argyriou & Evgeniou, 

2007; Bradley & Mangasarian, 1998; Liu et al., 2009; Nie et 

al., 2010; Obozinski et al., 2006; Tibshirani, 1996; Wang et 

al., 2008; Xiang et al., 2012). In particular, ℓ1 -norm has 

been widely adopted in feature selection algorithms, such as 
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Lasso (Tibshirani, 1996) and sparse SVM (Bradley & Man-

gasarian, 1998; Wang, et al., 2008). Built upon ℓ1 -norm 

based regularization models, ℓ2,1-norm has been used for 

feature selection in problems with multiple tasks or multiple 

classes (Argyriou & Evgeniou, 2007; Liu, et al., 2009; Nie, 

et al., 2010; Obozinski, et al., 2006; Xiang, et al., 2012). 

More recently, ℓp-norm and ℓ2,p-norm (0 < 𝑝 < 1) based 

regularization models have gained increasing attention (Bo-

lon-Canedo, et al., 2013; Chartrand & Staneva, 2008; Kong 

& Ding, 2014; Liu et al., 2007; Peng & Fan, 2016; Zhang et 

al., 2014) since they can yield sparser solutions than ℓ1 -

norm and ℓ2,1-norm based models (Chartrand, 2007; Zeng 

et al., 2014). 

 Although a variety of sparsity regularization based fea-

ture selection methods with different sparse regularization 

functions have been developed, most of them adopt a least 

square loss function. The least square loss function has good 

data-fitting performance. However, it is sensitive to outliers. 

A robust feature selection (RFS) method with joint ℓ2,1 -

norm minimization on both the loss function and regulariza-

tion function was proposed (Nie, et al., 2010; Xiang, et al., 

2012) and has been extended (Wang & Chen, 2013) with 

joint ℓ2,𝑝-norm  (0 < 𝑝 ≤ 1). However, it is not necessary 

to use the same norm for both the loss function and sparse 

regularization function. To make the sparsity regularized 

feature selection method more flexible, we propose a gen-

eral sparsity regularized feature selection (GSR-FS) algo-

rithm that optimizes a ℓ2,𝑟 -norm (0 < 𝑟 ≤ 2) based loss 

function and a ℓ2,𝑝-norm (0 < 𝑝 ≤ 1) sparse regularization 

function. Particularly, the ℓ2,𝑟-norm (0 < 𝑟 ≤ 2) based loss 

function can balance the data fitting and robustness to out-

liners and the ℓ2,𝑝-norm (0 < 𝑝 < 1) based regularization 

function is able to boost the model sparsity for feature selec-

tion.  

 The optimization algorithms used in the existing sparsity 

regularized methods typically handle optimization problems 

 



with one non-smooth term1 and are not suitable for our op-

timization problem with two non-smooth terms when 𝑟, 𝑝 ≤
1. Iteratively reweighted least squares (IRLS) based meth-

ods have been widely used to solve sparse optimization 

problems in many fields (Candes et al., 2008; Chartrand & 

Yin, 2008; Gorodnitsky & Rao, 1997; Lu et al., 2014). How-

ever, the existing IRLS based algorithms only handle opti-

mization problems with no more than one non-smooth func-

tion (Lu et al., 2015). To optimize our problem, we develop 

a novel algorithm based on IRLS with a convergence order 

of at least min(2 − 𝑟, 2 − 𝑝). 
 Our method has been validated based on 6 publicly avail-

able datasets and achieved competitive feature selection per-

formance with respect to both classification accuracy and 

computational cost compared with 6 state-of-the-art feature 

selection algorithms, including Minimum-Redundancy 

Maximum-Relevance (mRMR) (Peng, et al., 2005), ReliefF 

(Kira & Rendell, 1992), Multi-Task Feature Selection 

(MTFS) (Argyriou & Evgeniou, 2007; Liu, et al., 2009; 

Obozinski, et al., 2006), Robust Feature Selection (RFS) 

(Nie, et al., 2010; Xiang, et al., 2012), an extended RFS(E-

RFS) (Wang & Chen, 2013), and Rank One Update Algo-

rithm (RK1U) (Zhang, et al., 2014). 

2. A unified sparse feature selection algorithm  

Given a matrix 𝑨 ∈ ℝ𝑚×𝑛, its ℓ2,𝑝-norm(𝑟 > 0,𝑝 > 0) is 

defined as: 

‖𝑨‖2,𝑝 = (∑ (∑ |𝒂𝑖,𝑗|
2𝑛

𝑗=1 )

𝑝

2𝑚
𝑖=1 )

1

𝑝

= (∑ (‖𝒂𝑖‖2
2)

𝑝

2
𝑚
𝑖=1 )

1

𝑝
,(1)  

where ‖𝒂𝑖‖2 denotes ℓ2-norm of the 𝑖-th row vector of 𝑨.  

 Given 𝑚  training samples 𝑿 =  {𝒙𝑖}𝑖=1
𝑚 , 𝒙𝑖 ∈ ℝ𝑛 , be-

longing to c(c ≥ 2)  classes, and their class labels 𝒀 =
{𝒇𝑖}𝑖=1

𝑚 , 𝒇𝑖 = [−1,… ,1, … , −1] ∈ ℝc (the 𝑗-th element is 1 

and others are −1 for the 𝑖-th data point belonging to the j-
th class). In this paper, we adopt a ℓ2,𝑟-norm (0 < 𝑟 ≤ 2 ) 

based loss function and a ℓ2,𝑝-norm (0 < 𝑝 ≤ 1 ) based reg-

ularization function for feature selection, i.e., 

min
𝑾

𝒥(𝑾) =‖𝑿𝑾− 𝒀‖2,𝑟
𝑟 + 𝜆‖𝑾‖2,𝑝

𝑝
,(2) 

where 𝑾 ∈ ℝn×c  is the weight matrix to be learned, and 

non-zero rows of  𝑾 indicate the selected features.  

 We choose ‖𝑿𝑾 − 𝒀‖2,𝑟
𝑟  (0 < 𝑟 ≤ 2) instead of the tra-

ditional ‖𝑿𝑾 − 𝒀‖𝐹
2  as the loss function for following rea-

sons. In general, a loss function with smaller 𝑟 is more ro-

bust to outliers, whereas with larger 𝑟 has better data-fitting 

performance. As indicated by the plots shown in Figure 1 

(a), a small 𝑟 ≤ 1 for ℓ𝑟-norm could reduce the impact of an 

outlier on the loss function compared with a larger 𝑟. The 

impact of outliers in classification is also illustrated by the 

simple 2D linear classification models with different set-

tings of ℓ𝑟 -norm based loss functions. In particular, as 

shown in Figure 1 (b), the classification lines remain un-

changed with 𝑟 if no outlier is present in the training data. 

However, the classification model with a ℓ2 -norm based 

loss function could change dramatically with outliners, and 

the classification models with a smaller 𝑟  are relatively 

more robust to outliers, as illustrated by Figure 1 (c). The 

regularization function ‖𝑾‖2,𝑝
𝑝

 has a direct impact on the 

solution’s sparsity, and small 𝑝 ≤ 1 is able to boost sparsity. 

 The proposed method in Eqn. (2) is a generalization of 

existing sparsity regularization based feature selection 

methods, and many of them are special cases of the proposed 

method. Differences between our method and the existing 

methods under comparison are summarized in Table 1. 

3. A novel IRLS method 

The optimization problem of Eqn. (2) is a difficult problem 

with 2 non-convex, non-smooth optimization functions 

when 0 < 𝑟 < 1 and 0 < 𝑝 < 1. To efficiently solve this 

problem, we propose an iterative algorithm, and at each it-

eration step we remodel the optimization problem of Eqn. 

(2) as are-weighted least square minimization problem with 

analytical solutions. 

When ‖𝒙𝑖𝑾− 𝒚𝑖‖ ≠ 0  and ‖𝒘𝑖‖ ≠ 0  (𝒙𝑖𝑾− 𝒚𝑖  and 𝒘𝑖  

are the 𝑖-th row vector of 𝑿𝑾 − 𝒀 and 𝑾, respectively),  

 
  

(a) (b) (c) 

Figure 1： (a) |𝑎|𝑟 with different 𝑟. (b) Optimal classification lines for ℓ𝑟-norm loss functions without any outlier. (c) Optimal 

classification lines for ℓ𝑟-norm loss functions with outliers. 

                                                 
1  RFS and the extended RFS reformulated their optimization objective 
function with two non-smooth terms as a problem with one non-smooth 

term due to both the loss function and the regularization term share the 
same ℓ2,𝑝-norm(0 < 𝑝 ≤ 1) form (Nie, et al., 2010; Wang & Chen, 2013). 
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Table1: Comparisons of MTFS, RK1U, RFS, Extended RFS and our method 

Method name Objective function Value of 𝑟 Value of 𝑝 Are 𝑟 and 𝑝 must be the same 

MTFS ‖𝑿𝑾−𝒀‖𝐹
2 + 𝜆‖𝑾‖2,1 𝑟 = 2 𝑝 = 1 NO 

RK1U ‖𝑿𝑾− 𝒀‖𝐹
2 + 𝜆‖𝑾‖2,𝑝

𝑝
 𝑟 = 2 0 < 𝑝 ≤ 1 NO 

RFS ‖𝑿𝑾−𝒀‖2,1 + 𝜆‖𝑾‖2,1 𝑟 = 1 𝑝 = 1 YES 

E-RFS ‖𝑿𝑾−𝒀‖2,𝑝
𝑝

+ 𝜆‖𝑾‖2,𝑝
𝑝

 0 < 𝑟 ≤ 1 0 < 𝑝 ≤ 1 YES 

Ours ‖𝑿𝑾−𝒀‖2,𝑟
𝑟 + 𝜆‖𝑾‖2,𝑝

𝑝
 0 < 𝑟 ≤ 2 0 < 𝑝 ≤ 1 NO 

 

the gradient of 𝒥(𝑾) in Eqn. (2) with respect to 𝑾 is  

𝜕𝒥(𝑾)

𝜕𝑾
= 2𝑿𝑇𝑺1(𝑿𝑾− 𝒀)+ 2𝜆𝑺2𝑾,(3) 

where 𝑺1 ∈ ℝ𝑚×𝑚  and 𝑺2 ∈ ℝ𝑛×𝑛  are diagonal matrices, 

and their 𝑖 -th diagonal elements are 𝒔1
𝑖𝑖 =

𝑟 (2‖𝒙𝑖𝑾− 𝒚𝑖‖2
2−𝑟)⁄  and 𝒔2

𝑖𝑖 = 𝑝 2‖𝒘𝑖‖2
2−𝑝⁄ . When 

‖𝒙𝑖𝑾− 𝒚𝑖‖ = 0  and ‖𝒘𝑖‖ = 0 , we just handle it as the 

same as that in paper (Nie, et al., 2010). 

 Setting 𝜕𝒥(𝑾) 𝜕𝑾⁄  to be 0, then we have a solution of 

Eqn. (2), i.e., 

𝑾 = (𝑿𝑻𝑺𝟏𝑿+ 𝝀𝑺𝟐)
−𝟏𝑿𝑻𝑺𝟏𝒀.(4) 

 If 𝑺1 and 𝑺2 are fixed, we can construct an auxiliary ob-

jective function 𝒥1(𝑾) to have the same gradient as 𝒥(𝑾) in 

Eqn. (2), 

𝒥1(𝑾) = ‖𝜮1(𝑿𝑾− 𝒀)‖𝐹
2 +𝜆‖𝜮2𝑾‖𝐹

2 ,(5) 

where 𝜮1 = (𝑺1)
1/2and 𝜮2 = (𝑺2)

1/2 , and their 𝑖-th diago-

nal elements are 𝝇1
𝑖𝑖 = √r/2 ‖𝒙𝑖𝑾− 𝒚𝑖‖2

1−𝑟 2⁄⁄  and 𝝇2
𝑖𝑖 =

√𝑝/2 ‖𝒘𝑖‖2
1−𝑝 2⁄

⁄ , respectively. Then, we can obtain a solu-

tion by solving the re-weighted least square minimization 

problem, i.e.,  

min
𝑾

‖𝜮1(𝑿𝑾 − 𝒀)‖𝐹
2 +𝜆‖𝜮2𝑾‖𝐹

2 . (6) 

 Since 𝑺1 and 𝑺2 (or 𝜮1 and 𝜮2) are functions of 𝑾, we use 

an iterative algorithm to compute the solution. At each itera-

tive step, 𝑺1  and 𝑺2  are fixed first, then 𝑾 is obtained ac-

cording to Eqn. (4), and finally we update 𝑺1 and 𝑺2 based on 

𝑾. The iterative algorithm is summarized in Algorithm 1, 

and its convergence is proved in the following subsection. 

Algorithm 1. A unified sparse feature selection 

1. Input: data points {𝒙𝑖}
𝑖=1

𝑚
(𝒙𝑖 ∈ ℝ𝑛 ) and their corre-

sponding label {𝑦𝑖}
𝑖=1

𝑚
; loss function norm order 𝑟 ; 

sparse regularization norm order 𝑝; regularization pa-

rameter 𝜆; number of features 𝑑 to be selected. 

2. Construct 𝑿 and 𝒀 

3. as identity matrices 

4. Set 𝑘 = 1  and initialize 𝑺10  ∈ ℝ𝑚×𝑚  and 𝑺20  ∈ ℝ𝑛×𝑛 

as identity matrices 

5. repeat 

6. Calculate 𝑾𝑘 = (𝑿𝑇𝑺1𝑘−1𝑿+ 𝜆𝑺2𝑘−1)
−1
𝑿𝑇𝑺1𝑘−1𝒀 

7.    Calculate 𝑬𝑘 = 𝑿𝑾𝒌 − 𝒀 

8.   Update 𝑺1𝑘, where 𝑖-th diagonal elements is 
𝑟 2⁄

‖𝒆𝑖𝑘‖2

2−𝑟 

 

9.   Update 𝑺2𝑘,where 𝑖-th diagonal elements is 
𝑝 2⁄

‖𝒘𝑖𝑘
‖
2

2−𝑝 

10.   Update 𝑘 = 𝑘 + 1 

11. Until convergence 

12. Output: Sort all features according to ‖𝒘𝑖‖2 and select 

the top largest 𝑑 features. 

4. Convergence analysis and convergence rate 

The objective function 𝒥(𝐖)  monotonically decreases at 

every iteration step and Algorithm 1 finally converges.  

 Lemma 1. Given any nonzero vectors 𝒂 and 𝒃, we have  

‖𝒃‖2
2𝜃 − 𝜃 ∙

‖𝒃‖2
2

‖𝒂‖2
2−2𝜃

≤ (1 − 𝜃)‖𝒂‖2
2𝜃 ,(7) 

where 0 < 𝜃 < 1 and the equality holds if and only if 𝒂 = 𝒃.  

 Based on Lemma 1 (its proof is available in the supple-

mental material), we have Lemma 2. 

 Lemma 2. Given an optimization problem: 

𝑚𝑖𝑛
𝒁

𝑓(𝒁) + ‖𝜮𝜱(𝒁)‖𝐹
2 ,𝑠. 𝑡.𝒁 ∈ ℱ,(8) 

where 𝑓(𝒁) is a matrix function of 𝒁 and 𝜱(𝒁) is a function 

matrix of 𝒁, ℱis the feasible region. 𝜮 is a diagonal matrix 

in which the 𝑖-th diagonal element is √𝑞/2 ‖𝜱(𝒁0)𝑖‖2
1−𝑞 2⁄

⁄  

(𝒁0  is one element in ℱ , 𝜱(𝒁0)𝑖  is the 𝑖-th row vector of 

𝜱(𝒁0) and 0 < 𝑞 ≤ 2). If 𝒁∗ is the optimal solution of the 

above optimization problem Eqn. (8), we have  

𝑓(𝒁∗) + ‖𝜱(𝒁∗)‖2,𝑞
𝑞

≤ 𝑓(𝒁0) + ‖𝜱(𝒁𝟎)‖2,𝑞
𝑞
,(9) 

 Proof. Since 𝒁∗ is the optimal solution of Eqn.(8), we have 

𝑓(𝒁∗) + ‖𝜮𝜱(𝒁∗)‖𝐹
2 ≤ 𝑓(𝒁0) + ‖𝜮𝜱(𝒁0)‖𝐹

2 .(10) 

 Therefore 

𝑓(𝒁∗) +∑
𝑞

2

‖𝜱(𝒁∗)𝑖‖2
2

‖𝜱(𝒁0)𝑖‖2
2−𝑞

𝑖
 

≤ 𝑓(𝒁0) +∑
𝑞

2
‖𝜱(𝒁0)𝑖‖2

𝑞

𝑖
(11) 

 When 0 < 𝑞 < 2, according to Lemma 1, we have  

∑ (‖𝜱(𝒁∗)𝑖‖2
𝑞
−
𝑞

2

‖𝜱(𝒁∗)𝑖‖2
2

‖𝜱(𝒁0)𝑖‖2
2−𝑞)

𝑖
 

≤∑ (1 −
𝑞

2
) ‖𝜱(𝒁0)𝑖‖2

𝑞

𝑖
.(12) 

 Summing Eqn. (11) and Eqn. (12), we obtain  

𝑓(𝒁∗) +∑ ‖𝜱(𝒁∗)𝑖‖2
𝑞

𝑖
≤ 𝑓(𝒁0) +∑ ‖𝜱(𝒁0)𝑖‖2

𝑞

𝑖
.(13) 



 Finally, we obtain  

𝑓(𝒁∗) + ‖𝜱(𝒁∗)‖2,𝑞
𝑞

≤ 𝑓(𝒁0) + ‖𝜱(𝒁0)‖2,𝑞
𝑞
,(14) 

where the equality holds if and only if 𝜱(𝒁∗) = 𝜱(𝒁𝟎). 
 When 𝑞 = 2, 𝜮 becomes an identity matrix, the equality in 

Eqn. (14) still holds.□ 

 Theorem 1. The objective function of problem (2) mono-

tonically decreases at every iteration step, i.e., 

𝒥(𝑾𝑘) ≤ 𝒥(𝑾𝑘−1),(15) 

and it converges to a limit point. 

 Proof.  According to Eqn. (6), we have 

‖𝜮1𝑘−1(𝑿𝑾𝑘 − 𝒀)‖
𝐹

2
+𝜆‖𝜮2𝑘−1𝑾𝑘‖𝐹

2
 

≤ ‖𝜮1𝑘−1(𝑿𝑾𝑘−1 − 𝒀)‖
𝐹

2
+𝜆‖𝜮2𝑘−1𝑾𝑘−1‖𝐹

2
,(16) 

where the 𝑖 -th diagonal elements of 𝜮1𝑘−1  and 𝜮2𝑘−1  are 

𝝇1𝑘−1
𝑖𝑖 = √r/2 ‖𝒙𝑖𝑾𝑘−1 − 𝒚𝑖‖2

1−𝑟 2⁄⁄   and 𝝇2𝑘−1
𝑖𝑖 =

√𝑝/2 ‖𝒘𝑖𝑘−1
‖
2

1−𝑝 2⁄
⁄ , respectively. 

 According to Lemma 2, let 𝑓(𝑾) = ‖𝜮1𝑘−1(𝑿𝑾 − 𝒀)‖
𝐹

2
 

and 𝜱(𝑾) = 𝜆𝑾, we have 

‖𝜮1𝑘−1(𝑿𝑾𝑘 − 𝒀)‖
𝐹

2
+ 𝜆‖𝑾𝑘‖2,𝑝

𝑝
 

≤ ‖𝜮1𝑘−1(𝑿𝑾𝑘−1 − 𝒀)‖
𝐹

2
+ 𝜆‖𝑾𝑘−1‖2,𝑝

𝑝
.(17) 

 Then, setting 𝑓(𝑾) = λ‖𝑾‖2,𝑝
𝑝

 and 𝜱(𝑾) = 𝑿𝑾− 𝒀 , 

according to Lemma 2  we have 

‖𝑿𝑾𝑘 − 𝒀‖2,𝑟
𝑟 + 𝜆‖𝑾𝑘‖2,𝑝

𝑝
 

≤ ‖𝑿𝑾𝑘−1 − 𝒀‖2,𝑟
𝑟 + 𝜆‖𝑾𝑘−1‖2,𝑝

𝑝
.(18) 

 So, 𝒥(𝑾k) ≤ 𝒥(𝑾k−1), and the equality holds if and only 

if 𝑾k = 𝑾k−1. Since the lower bound of 𝒥(𝑾k) is limited,  

𝒥(𝑾k) converges to a limit point.□ 

 Theorem 2. Sequence {𝑾𝑘} produced in Algorithm 1 con-

verges, and the limit point is a stationary point of optimiza-

tion problem (3).  

 Proof is presented in the supplemental material.  

 When 𝑝 = 1 and 𝑟 ≥ 1, Eqn. (2) is a convex optimization 

problem, hence its solution obtained by Algorithm 1 is  glob-

ally optimal. When 0 < 𝑝 < 1  or 0 < 𝑟 < 1 , it may con-

verge to a local optimum.  

 The convergence rate of Algorithm 1 is derived as follow-

ing. If 𝑾∗  is the optimal solution of min𝑾‖𝑿𝑾 − 𝒀‖2,𝑟
𝑟 +

𝜆‖𝑾‖2,𝑝
𝑝

, then the optimal residual 𝑬∗ = 𝑿𝑾∗ − 𝒀. When 

𝑾∗ is sparse, the rows of 𝑾∗ can be split into two parts: 𝑾1
∗  

and 𝑾2
∗ , where 𝑾2

∗ = 𝟎  and 𝑾1
∗  is the remainder. In the 

same way as partitioning 𝑾∗ into 𝑾1
∗  and 𝑾2

∗ , the rows of 

𝑾𝑘 and the columns of 𝑿 are partitioned into 𝑾1𝑘
and 𝑾2𝑘

, 

𝑿1  and 𝑿2 , respectively. Similarly, 𝑬∗  can be split into 𝑬1
∗  

and 𝑬2
∗ , where 𝑬2

∗ = 𝟎 and 𝑬1
∗  is the remainder, and the rows 

of 𝑬𝑘(𝑬𝑘 = 𝑿𝑾𝑘 − 𝒀) and the columns of 𝑰 (∈ ℝm×m) are 

partitioned into 𝑬1𝑘 and 𝑬2𝑘
, 𝑳1 and 𝑳2, accordingly. We de-

fine 𝑨1 = [𝑿1,𝑳1] , 𝑨2 =  [𝑿2,𝑳2] , 𝑼1𝑘
𝑇 =

[𝑾1𝑘
, −𝑬1𝑘]

𝑇
, 𝑼2𝑘

𝑇 = [𝑾2𝑘
, −𝑬2𝑘

]
𝑇

 and (𝑼1
∗)𝑇 =

[𝑾1
∗ , −𝑬1

∗ ]𝑇. Then we have Lemma 3.  

 Lemma 3. The following inequalities hold in successive 

iteration steps of Algorithm 1. 

‖𝑼1𝑘 −𝑼1
∗‖ ≤

2
𝑝
‖𝑾2𝑘−1‖2,2−𝑝

2−𝑝
+
2𝜆
𝑟
‖𝑬2𝑘−1‖2,2−𝑟

2−𝑟

2
𝑝
‖𝑾1𝑘−1‖2,2−𝑝

2−𝑝
+
2𝜆
𝑟
‖𝑬1𝑘−1‖2,2−𝑝

2−𝑝
∙ 

√𝑠0‖𝑰 − 𝑩+𝑩‖2‖𝑨1
+𝑨2‖

2‖𝑼1
∗‖,(19) 

‖𝑼2𝑘‖ ≤ 

2
𝑝
‖𝑾2𝑘−1‖2,2−𝑝

2−𝑝
+
2𝜆
𝑟
‖𝑬2𝑘−1‖2,2−𝑟

2−𝑟

2
𝑝
‖𝑾1𝑘−1‖2,2−𝑝

2−𝑝
+
2𝜆
𝑟
‖𝑬1𝑘−1‖2,2−𝑝

2−𝑝
∙ 

√𝑠0‖𝑰 − 𝑩+𝑩‖‖𝑨𝟏
+𝑨2‖‖𝑼1

∗‖,(20) 

where 𝑠0  is the number of columns of 𝑨1 , and 𝑩 = (𝑰 −
𝑨1𝑨1

+)𝑨2 . (Proof of Lemma 3 is presented in the supple-

mental material). 

 According to Lemma 3, we can obtain the convergence or-

der of Algorithm 1. 

 Theorem 3. The convergence order of Algorithm 1 is at 

least 𝑚𝑖𝑛(2 − 𝑝, 2 − 𝑟). (Proof of Theorem 3 is presented in 

the supplemental material.)_ 

5. Experiments 

5.1 Results based on a synthetic dataset 

To investigate how the loss function function’s parameter 𝑟 

in our method affects the feature selection performance, we 

generated a synthetic dataset using following procedure. First, 

we generated 𝑛  samples with features 𝑿1, 𝑿2 ∈ ℝ𝑛×𝑑1 , 

where elements of 𝑿1, 𝑿2 were randomly generated accord-

ing to Gaussian distribution  𝒩(0,1). Second, we introduced 

redundant features 𝑿3 = 0.5(𝑿1, +𝑿2) + 𝝐 ∈ ℝ𝑛×𝑑1  to the 

samples, where elements of 𝝐  were randomly generated ac-

cording to 𝒩(0,0.1). Third, irrelevant features 𝑿4 ∈ ℝ𝑛×𝑑2  

were injected into the samples, where elements of 𝑿4 were 

randomly generated according to uniform distribution 

𝒰(−1,1). So, we obtained samples with features 𝑿 = [𝑿1,
𝑿2, 𝑿3, 𝑿4 ] ∈ ℝ𝑛×𝑑 , 𝑑 = 3𝑑1 + 𝑑2 . Then, we generated 

multi-tasks labels for these samples as 𝒀0 = 𝑿𝑾+ 𝝇 ∈
ℝ𝑛×𝑐 , where 𝑾 = [𝐖1; 𝐖2; 𝟎] ∈ ℝ𝑑×𝑐 , 𝑾1, 𝑾2 ∈ ℝ𝑑1×𝑐 

and their elements were randomly generated according to  

uniform distribution 𝒰(0,1), and 𝝇 were randomly generated 

according to 𝒩(0, 0.5). Finally, to simulate outlier samples, 

we randomly picked a subset of 𝒀0 with a percentage of 𝑎, 

and reversed their positive or negative signs, yielding new la-

bels 𝒀1. 

Setting 𝑛 =2000, 𝑑1 =100, 𝑑2 =700, 𝑐 = 5, and 𝑎 = 0, 0.01, 

and 0.1, we obtained 3 simulated data sets, each of them hav-

ing 1000 features, among which 200 features were informa-

tive. 

 We evaluated our method using 10-fold cross validation 

based on the simulated dataset with respect to different 𝑟 = 

0.5, 1, 2 by setting 𝑝 = 1. The performance was gauged with 



root mean square error (RMSE) between actual values and 

predicted values base on top 200 selected features. As shown 

in Figure 2, the least square loss had the best data-fitting per-

formance for samples without outliers. However, it was sen-

sitive to outliers as 

   
Figure 2: Average RMSE of 10-fold cross-validation for least 

square loss, ℓ2,1-norm loss, and ℓ2,0.5-norm loss, respectively.  

reflected by relatively larger RMSE when the samples con-

tained 1% and 10% outliers. Not surprisingly, the feature se-

lection with ℓ2,𝑟-norm based loss functions (𝑟 ≤ 1) was ro-

bust to outliers but might sacrifice data-fitting accuracy. All 

these results indicate that the loss function’s parameter 

should be adaptive to the problem under study. 

5.2 Classification experiments on real-world da-

tasets  

We also evaluated our algorithm, referred to as general spar-

sity regularized feature selection (GSR-FS), based on 6 pub-

licly available real-world datasets. In particular, 2 datasets 

were obtained from UCI, including ISOLET and SEMEION. 

ISOLET is a speech recognition data set with 7797 samples 

in 26 classes, and each sample has 617 features. SEMEION 

contains 1593 handwritten images from ~80 persons, 

stretched in a rectangular box of 16 × 16. Three face image 

datasets were obtained from AR, ORL, and the frontal pose 

sub-dataset (09) of CMU-PIE. Particularly, AR has 1680 

samples with 2000 features, ORL contains 400 samples with 

92 × 112 pixels as features, and the CMU-PIE subset con-

tains images of 64 persons with different illuminations. The 

last dataset contains confusable hand writing images 4 and 9, 

obtained from MNIST.  

 We compared our method with 4 sparsity regularized fea-

ture selection algorithms, including MTFS (Argyriou & 

Evgeniou, 2007; Liu, et al., 2009; Obozinski, et al., 2006), 

RFS (Nie, et al., 2010; Xiang, et al., 2012), an extended RFS 

(E-RFS) (Wang & Chen, 2013), and RK1U (Zhang, et al., 

2014). We also compared our method with two filter feature 

selection methods, namely ReliefF (Kira & Rendell, 1992) 

and mRMR (Peng, et al., 2005). 

 In our experiments, we first normalized all the features to 

have 0 mean and unit standard deviation. Then, 10 trials were 

carried out on each dataset for feature selection. In each trial, 

each dataset was randomly spilt into training and testing sub-

sets with a ratio of 6:4. Classification accuracy was used to 

evaluate the feature selection methods. Particularly, linear 

SVM (Chang & Lin, 2011) was used to build classifiers based 

on the selected features. The parameter 𝐶 of linear SVM clas-

sifiers was tuned using a cross-validation strategy by search-

ing a candidate set of [10-3, 10-2,  10-1, 1, 101, 102]. The 

regularized parameter 𝜆 in our algoithm, MTFS, RFS and 

RK1U was tuned using the same cross-validation strategy by 

searching a candidate set of [10-3, 10-2, 10-1, 1, 101, 102]. 

 Our algorithm has 2 hyper parameters 𝑟 and 𝑝. For evalu-

ating the impact of 𝑝 on the sparsity and directly comparing 

our method with MTFS, RFS and RK1U, we evaluated our 

algorithm by setting 𝑝 = 1, 0.75, 0.5 and 0.25. Since the loss 

function with smaller 𝑟 is more robust to outliers but a larger 

𝑟  of the loss function may yield better data-fitting perfor-

mance, in our experiments 𝑟 was tuned by cross-validation 

with a candidate set of [0.5, 1, 2]. For the E-RFS and RK1U, 

𝑝 = 0.5 since it had better classification performance than 

other values (Wang & Chen, 2013; Zhang, et al., 2014). 

 Table 2 and Figure 3 summarize the average classification 

performance of classifiers built on features selected by differ-

ent methods in 10 trials. The average classification accuracy 

rates with top [10, 20, …, 100] features are shown in Figure 

3. Table 2 summarizes mean and standard deviation of the 

classification rates in 10 trails for classifiers built on the top 

50 features. These results demonstrated that our method with 

different 𝑝 achieved overall the best classification accuracy 

on most of the datasets, especially when 𝑝 = 0.75, 0.5. When 

of the flexibility in our data-loss function. When 𝑝 = 0.5, our 

method performed better than E-RFS and RK1U. Not surpris-

ingly, the sparsity regularization methods had better perfor-

mance than filter methods. 

Table 2： Mean and standard deviation of the classification accuracy (%, mean±std) of Linear-SVM classifiers built on the top 50 

features selected by different algorithms on different datasets.  
Algorithm ReliefF mRMR MTFS RFS Extended 

RFS (p=0.5) 

RK1U  

( p=0.5) 

GSR-FS 

( p=1.0) 

GSR-FS 

( p=0.75) 

GSR-FS 

( p=0.5) 

GSR-FS 

( p=0.25) 

ISOLET 77.02±0.82 85.10±0.62 90.40±0.68 91.38±0.73 91.36±0.56 92.50±0.79 92.98±0.44 93.92±0.46 94.10±0.29 93.93±0.40 

SEMEION 78.70±1.39 78.75±1.82 84.11±1.12 85.82±1.25 85.89±1.61 85.45±1.01 86.24±1.45 86.97±1.13 86.87±0.89 86.58±1.17 

AR 57.89±4.58 87.77±1.36 85.24±2.99 88.90±1.41 88.36±1.82 87.90±1.88 92.38±1.24 94.49±0.56 94.51±0.96 94.06±0.89 

ORL 56.50±6.12 87.81±3.23 74.00±3.60 80.25±2.74 88.44±2.11 90.13±1.81 90.88±2.83 91.50±2.27 91.13±2.93 90.06±2.33 

CMU-PIE 75.35±1.50 89.91±1.04 85.41±1.39 90.83±0.79 90.98±1.01 91.70±0.97 93.01±0.87 93.85±0.83 93.67±1.08 93.39±0.79 

MNIST 90.62±0.35 92.55±0.19 95.30±0.21 94.25±0.38 94.04±0.55 95.31±0.20 95.53±0.21 95.85±0.24 95.53±0.18 95.49±0.35 

a = 0 a = 0.01 a = 0.05
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Table 3： Running Time (unit: second) Taken by different Algorithms  

Algorithm ReliefF mRMR RFS Extended  

 RFS(p=0.5) 

() (p=0.5) 

RK1U  

( p=0.5) 

GSR-FS 

( p=1.0) 

GSR-FS 

( p=0.75) 

GSR-FS 

( p=0.5) 

GSR-FS 

( p=0.25) 

ISOLET 319.48 52.85 2954.07 2100.20 6467.20 26.70 24.70 21.47 17.01 

SEMEION 6.18 4.70 56.38 32.93 101.69 11.11 5.52 5.58 5.60 

AR 37.13 24.67 67.44 48.92 2070.54 62.08 30.19 26.36 20.49 

ORL 23.04 157.69 12.01 

 

 

7.81 5750.64 12.11 11.97 4.60 3.21 

CMU-PIE 89.35 62.24 66.47 67.31 4563.38 49.38 53.22 35.64 19.43 

MNIST 676.21 48.83 9275.84 6199.82 1050.98 26.87 22.56 18.81 18.87 

 

   
( a )  ( b )  ( c )  

   
( d )  ( e )  ( f )  

Figure 3：Average classification accuracy of 10 trials for classifiers built on the selected features by different algorithms. The 

results shown were obtained on (a) ISOLET, (b)SEMEION, (c) AR, (d) ORL, (e) CMU-PIE, and (f) MNIST.  

5.3 Computational cost 

We also compared our algorithm with other methods with 

respect to their computation cost2. The convergence of all 

the sparse feature selection algorithms was determined 

based on the same criterion: the change of objective function 

value is less than 10-4 between 2 successive iteration steps 

with the regularized parameter λ=1. And the filter algo-

rithms run until top 100 features were selected. The param-

eter 𝑟 in our algorithm was set to 2. We run different meth-

ods on a desktop with a Intel i7-4470 cpu, 3.4GHz and 8G 

RAM. The computation costs of different algorithms are 

summarized in Table 3. As shown in Table 3, our algorithm 

was faster than other sparse feature selection algorithms on 

most of the datasets, and had similar costs as mRMR and 

ReliefF. Particularly, RK1U and our method achieved simi-

lar classification performacne on some datasets, but the 

computational time of RK1U is more than 50 times longer 

than ours on average. 

                                                 
2 MTFS was implemented in C, and other algorithms were implemented in 
Matlab. So, we did not directly compare our algorithm with MTFS. How-
ever, RK1U was faster than MTFS (M. Zhang, et al, 2014) , and our method 
is faster than RK1U. 

6. Discussions and Conclusion 

We have presented a general framework for sparsity regu-

larized feature selection and a novel iterative reweighted 

least square minimization optimization algorithm. Several 

existing sparsity regularized feature selection methods could 

be treated as its special cases. The objective function of our 

method consists of a ℓ2,r-norm (0 < 𝑟 ≤ 2) based loss func-

tion and a ℓ2,p-norm (0 < 𝑝 ≤ 1) sparse regularization, re-

sulting in an adaptive setting for handling outliers by turning 

its parameters. Such flexibility could improve feature selec-

tion performance as demonstrated by the experimental re-

sults. The novel IRLS algorithm is capable of solving prob-

lems with multiple non-smooth functions, and could find its 

applications in other fields. We will extend our method to 

constrained optimization problems and investigate how to 

choose optimal parameters 𝑟 and 𝑝 besides cross-validation. 
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