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To improve the generalized performance 

 Why Feature Selection? 

Introduction 

To remove redundant or noisy features   

To reduce the computational burden 

To enhance the interpretability of intrinsic 

characteristics of data 
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 Fundamental Model for Feature Selection 

Introduction 

Solving the following 𝑙0-Minimization problem,  subject to data 
fitting constraints, 𝑿𝒘 = 𝒚, and then utilize the non-elements of 
solution to  select useful features, i.e., 

    min
𝒘

𝒘 0  , 𝑠. 𝑡. , 𝑿𝒘 = 𝒚                                          (1) 

 Basis Pursuit  

By satisfying some assumptions(Restricted Isometry Property, RIP), 
the solution of Problem (1) can be obtained by solving (2), i.e.,  

 min
𝒘

𝒘 1  , 𝑠. 𝑡.,  𝑿𝒘 = 𝒚                                       (2) 

It is not so robust when the data  𝑿 or class label 𝒚 is corrupted by 
noise. 
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 Sparse SVM 

Introduction 

Many Sparse SVM methods with discriminant margin are proposed 
to improve the robustness and enhance performance , such as 𝑙1-
SVM, i.e., 

    min
𝒘

𝒘 1  , 𝑠. 𝑡. , 𝒚 ⊙ 𝑿𝒘 ≽ 𝟏                                (3) 

Sparsity Regularization Based Methods  

Many Sparsity Regularization Based Methods have been 
proposed with different sparsity regularization terms, such as 
Lasso 

𝑚𝑖𝑛
𝑾

 𝑿𝒘 − 𝒚 2
2 + 𝜆 𝒘 1                                         (4) 

A trade-off between a data-fitting loss function term and a sparsity 
term should be took, and it is sensitive to the parameter 𝜆  

The optimization algorithm is special design for binary–class 
problem, hence the multi-class problem do not have compact form. 
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Introduction 

Sparsity Regularization Based Methods  

In recent years, To learn sparse representations shared across 
multiple tasks or multiple classes, 𝑙2,1 −norm based regularized 
method are proposed, and the class label is rearranged as one-
versus-rest model, where 𝒀 =  𝒇𝑖

𝑖=1
 and  𝒇𝑖 = −1,… , 1, … ,−1 ,  

such as Robust Feature selection (RFS),  

𝑚𝑖𝑛
𝑾

 𝑿𝑾− 𝒀 2,1 + 𝜆 𝒘 2,1                                         (5) 
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Direct 𝐿2,𝑝-Minimization for feature selection 

The Proposed Original Model  

                            𝑚𝑖𝑛
𝑾

𝑾 2,𝑝 ,   𝑠. 𝑡. , 𝒀 ⊙ 𝑿𝑾 ≽ 𝟏                          (6) 

𝓁2,𝑝-norm (0 < 𝑝 < 1) can give rise to more sparse 
solutions 
              
No regularization term , do not need to make a 
compromise between residual of data-fitting and 
sparsity 

Advantages 

Enlarging discriminant margin between classes can 
boost generalization performance  

It is difficult to solve directly.  
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Direct 𝐿2,𝑝-Minimization for feature selection 

Equivalent Model 

        𝑚𝑖𝑛
𝑾,𝑬

𝑾 2,𝑝 ,   𝑠. 𝑡. , 𝑿𝑾 =  𝒀 + 𝑬, 𝒀⊙𝑬 ≽ 𝟎               (7) 

The optimization problem of (6) can be reformulated by 
introducing a slack variable 𝑬 whose elements have the 
same sign as the corresponding elements of 𝒀, i.e., 

Direct Optimization 

Step 1:  solve the linear equation 𝑿𝑾 =  𝒀 + 𝑬 to obtain 
the solution space of  𝑾 with variable 𝑬 

Step 2: directly search the solution space to find a solution to 
minimize  𝑾 2,𝑝 
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An Optimization Algorithm for the Model  

Solution Space of W 

Gaussian Elimination 

𝑿 ⋮  (𝒀 + 𝑬) =  𝑿1 𝑿2 ⋮  (𝒀 + 𝑬)  
left−multiply 𝑳 𝑰 𝑴

𝟎 𝟎
 
⋮ 𝑵 + 𝑳𝑬
⋮ 𝟎

       (8) 

    

The solution space of 𝑾 is  

     𝑾 =  𝐏𝑼 + 𝑸 + 𝑭 =
𝑴
𝑰

𝑼 + 
𝑵
𝟎

+ 
𝑳𝑬
𝟎

                                           (9) 

The problem (10) can be reformulated as 

min 
𝑼,𝑬

 𝑷𝑼 + 𝑸+
𝑳𝑬
𝟎 2,𝑝

, 𝑠. 𝑡. , 𝒀 ⊙ 𝑬 ≽ 𝟎 ,                                          (10)                                                      

𝓁2,p-norm (0 < 𝑝 ≤ 1) is non-smooth and non-convex when 
0 < 𝑝 < 1 
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An Optimization Algorithm for the Model  

Iterative Optimization Algorithm  

we alternately optimize variables 𝑼 and 𝑬 for optimization 
problem (14). 

Adopting Iteratively Reweighted Least Square (IRLS)  
straregy, 𝓁2,p-minimization problem can be reformulated 
as a least square minimization problem. 

At each iterative step, the objective function of  the sub-
problem can become  convex and smooth.  
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An Optimization Algorithm for the Model  

Optimizing Variable U 

At 𝑘-th step   
𝑾𝑘 =  𝐏𝑼𝑘 + 𝑸 + 𝑳𝑬𝑘

𝟎
  

𝑮𝑘 =  𝑸 + 𝑳𝑬𝑘

𝟎
  

𝑼𝑘+1 = argmin 
𝑼

𝜮𝑘 𝑷𝑼 + 𝑮𝑘
𝐹

2
 , where the 𝑖-th diagonal element of 

𝜮𝑘  is 1 𝒘𝑖
𝑘

2

1−𝑝 2 
  

Optimizing Variable E 

At 𝑘-th step   
𝑽𝑘 = −𝑴𝑼𝑘+1 +𝑵+ 𝑳𝑬𝑘  

𝑯 = − 𝑴𝑼𝑘+1 +𝑵  

𝑬𝑘+1 = argmin 
𝑬

𝜦𝑘 𝑳𝑬 + 𝑯
𝐹

2
, s. t.  𝒀 ⊙ 𝑬 ≽ 𝟎, where the 𝑖-th diagonal 

element of 𝜦𝑘 is 1 𝒗𝑖
𝑘

2

1−𝑝 2 
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Proof of Convergence 

Lemma 1. 

Given any two vectors 𝒂 and 𝒃, we have  

1 − 𝜃 𝒂 2
2  + 𝜃 𝒃 2

2 ≥ 𝒂 2
2−2𝜃 𝒃 2

2𝜃 

where 0 < 𝜃 < 1 and the equality holds if and only if 𝑎 = 𝑏. 

Lemma 2. 

Given an optimization problem: 

    min 
𝒁

 𝑺 𝜱 𝒁  𝑭
2  , 𝑠. 𝑡.  𝒁 ∈  𝓕 

where 𝜱 𝒁  is a function of 𝒁, 𝓕 is the feasible region, and 𝑺 is a diagonal matrix 

whose 𝑖-th diagonal element is 1/ 𝜱 𝒁0 𝑖 2
1−𝑝 2 

 (𝒁0 could be any object in 𝓕, 
𝜱 𝒁0 𝑖  is the 𝑖-th row vector of 𝜱 𝒁0  and 0 < 𝑝 ≤ 2 ), we have 

𝜱 𝒁∗ 2,𝑝 ≤ 𝜱 𝒁𝟎 2,𝑝 

where 𝒁∗ is the optimal solution of Eqn. (19) and the equality holds if and only if 
𝜱 𝒁∗ = 𝜱 𝒁0  
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Proof of Convergence 

Theorem 1. 

The sequence 𝑾𝑘  produced via the Algorithm has the following 
properties: 𝑾𝑘

2,𝑝
 is non-increasing at successive iteration steps and 

𝑾𝑘
2,𝑝

 converges to a limited value. 

Theorem 2. 

If sequences 𝑾𝑘  and 𝑬𝑘  produced in  The Algorithm have limit 
points, the limit points satisfy the Karush–Kuhn–Tucker (KKT) 
conditions of Eqn. (6). When 𝑝 ≥ 1, the limited points are globally 
optimal. 
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Experiments 

Effect of parameter 𝑝 
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Figure 1: Classification accuracy with different numbers of features 
selected with different values of 𝑝. The results shown were obtained 
based on datasets: (a) ISOLET, (b) LUNG, and (c) UMIST 
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Experiments 

Effect of parameter 𝑝 

Figure 2: Average classification accuracy of 10 trials for linear—SVM built on the 
selected top 100 features by different algorithms. The results shown were obtained 
based on datasets: (a) ISOLET, (b) SEMEION, (c) LUNG , (d) CLL-SUB-111, (e) UMIST, 
and (f) AR 
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Conclusions and Discussions 

Summary  

Proposed Model:  𝐿2,𝑝-Minimization subject to data-fitting 
inequality constraints 

Outstanding  Features  

𝐿2,𝑝-norm boosts  more sparsity 

No regularization term free tuning the parameter  

Enlarging  margin between classes improve the 
robustness to noise and generalization performance  

Optimization Approach  

Adopting Gaussian  Elimination,  obtaining the solution 
space of  𝑾 with variable 𝑬 

Utilizing IRLS strategy,  at each iterative step,  
reformulating  the non-convex and non-smooth problem 
to a least square minimization problem 
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Questions 

Summary  


