Direct Sparsity Optimization Based Feature Selection for Multi-Class Classification

Hanyang Peng¹ and Yong Fan²

¹National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China ²Department of Radiology, Perelman School of Medicine, University of Pennsylvania,

July 13, 2016

Outline

- Introduction
- 2 Direct $L_{2,p}$ -Minimization for feature selection
- The Optimization Algorithm for the Model
- Proof of Convergence
- Experiments
- 6 Discussions and Conclusions

Why Feature Selection?

- To remove redundant or noisy features
- To improve the generalized performance
- To reduce the computational burden
- To enhance the interpretability of intrinsic characteristics of data

Fundamental Model for Feature Selection

Solving the following l_0 -Minimization problem, subject to data fitting constraints, Xw = y, and then utilize the non-elements of solution to select useful features, i.e.,

$$\min_{w} ||w||_{0} , s.t., Xw = y$$
 (1)

Basis Pursuit

By satisfying some assumptions(Restricted Isometry Property, RIP), the solution of Problem (1) can be obtained by solving (2), i.e.,

$$\min_{w} ||w||_1 , s.t., Xw = y$$
 (2)

It is not so robust when the data X or class label y is corrupted by noise.

Sparse SVM

Many Sparse SVM methods with discriminant margin are proposed to improve the robustness and enhance performance, such as l_1 -SVM, i.e.,

$$\min_{\mathbf{w}} \|\mathbf{w}\|_{1} , s.t., \mathbf{y} \odot \mathbf{X} \mathbf{w} \geqslant \mathbf{1}$$
 (3)

The optimization algorithm is special design for binary-class problem, hence the multi-class problem do not have compact form.

Sparsity Regularization Based Methods

Many Sparsity Regularization Based Methods have been proposed with different sparsity regularization terms, such as Lasso

$$\min_{\mathbf{W}} \|\mathbf{X}\mathbf{W} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{W}\|_{1} \tag{4}$$

A trade-off between a data-fitting loss function term and a sparsity term should be took, and it is sensitive to the parameter λ

Sparsity Regularization Based Methods

In recent years, To learn sparse representations shared across multiple tasks or multiple classes, $l_{2,1}$ –norm based regularized method are proposed, and the class label is rearranged as oneversus-rest model, where $\mathbf{Y} = \{\mathbf{f}^i\}_{i=1}$ and $\mathbf{f}^i = [-1, ..., 1, ..., -1]$, such as Robust Feature selection (RFS),

$$\min_{\mathbf{W}} \|X\mathbf{W} - Y\|_{2,1} + \lambda \|\mathbf{w}\|_{2,1} \tag{5}$$

Direct $L_{2,p}$ -Minimization for feature selection

The Proposed Original Model

$$\min_{\mathbf{W}} \|\mathbf{W}\|_{2,p}, \quad s.t., \mathbf{Y} \odot \mathbf{X} \mathbf{W} \geqslant \mathbf{1} \tag{6}$$

Advantages

- $\ell_{2,p}$ -norm (0 < p < 1) can give rise to more sparse solutions
- No regularization term, do not need to make a compromise between residual of data-fitting and sparsity
- Enlarging discriminant margin between classes can boost generalization performance

It is difficult to solve directly.

July 13,2016

Direct $L_{2,p}$ -Minimization for feature selection

Equivalent Model

The optimization problem of (6) can be reformulated by introducing a slack variable E whose elements have the same sign as the corresponding elements of Y, i.e.,

$$\min_{W,E} ||W||_{2,p}, \quad s.t., XW = Y + E, Y \odot E \ge 0$$
 (7)

Direct Optimization

- Step 1: solve the linear equation XW = Y + E to obtain the solution space of W with variable E
- Step 2: directly search the solution space to find a solution to minimize $||W||_{2,p}$

An Optimization Algorithm for the Model

Solution Space of W

Gaussian Elimination

$$[X : (Y + E)] = [X_1 X_2 : (Y + E)] \xrightarrow{\text{left-multiply } L} \begin{bmatrix} I & M : N + LE \\ \mathbf{0} & \mathbf{0} : \mathbf{0} \end{bmatrix}$$
(8)

The solution space of W is

$$W = PU + Q + F = \begin{bmatrix} M \\ I \end{bmatrix} U + \begin{bmatrix} N \\ 0 \end{bmatrix} + \begin{bmatrix} LE \\ 0 \end{bmatrix}$$
 (9)

The problem (10) can be reformulated as

$$\min_{\boldsymbol{U},\boldsymbol{E}} \left\| \boldsymbol{P}\boldsymbol{U} + \boldsymbol{Q} + \begin{bmatrix} \boldsymbol{L}\boldsymbol{E} \\ \boldsymbol{0} \end{bmatrix} \right\|_{2,p}, s.t., \boldsymbol{Y} \odot \boldsymbol{E} \geqslant \boldsymbol{0}, \tag{10}$$

 $\ell_{\rm 2,p}\text{-norm}$ (0 < $p \leq$ 1) is non-smooth and non-convex when 0 < p < 1

An Optimization Algorithm for the Model

Iterative Optimization Algorithm

- we alternately optimize variables U and E for optimization problem (14).
- Adopting Iteratively Reweighted Least Square (IRLS) straregy, $\ell_{2,p}$ -minimization problem can be reformulated as a least square minimization problem.

At each iterative step, the objective function of the subproblem can become convex and smooth.

An Optimization Algorithm for the Model

Optimizing Variable U

At
$$k$$
-th step $W^k = PU^k + Q + \begin{bmatrix} LE^k \\ 0 \end{bmatrix}$ $G^k = Q + \begin{bmatrix} LE^k \\ 0 \end{bmatrix}$ $U^{k+1} = \underset{U}{\operatorname{argmin}} \| \boldsymbol{\Sigma}^k (PU + G^k) \|_F^2$, where the i -th diagonal element of $\boldsymbol{\Sigma}^k$ is $1/\|\boldsymbol{w}_i^k\|_2^{1-p/2}$

Optimizing Variable E

At
$$k$$
-th step $V^k = -MU^{k+1} + N + LE^k$ $H = -MU^{k+1} + N$ $E^{k+1} = \underset{E}{\operatorname{argmin}} \| \Lambda^k (LE + H) \|_F^2$, s. t. $Y \odot E \ge 0$, where the i -th diagonal element of Λ^k is $1/\|v_i^k\|_2^{1-p/2}$

Proof of Convergence

Lemma 1

Given any two vectors a and b, we have

$$(1-\theta)\|\boldsymbol{a}\|_{2}^{2} + \theta \|\boldsymbol{b}\|_{2}^{2} \ge \|\boldsymbol{a}\|_{2}^{2-2\theta}\|\boldsymbol{b}\|_{2}^{2\theta}$$

where $0 < \theta < 1$ and the equality holds if and only if a = b.

Lemma 2

Given an optimization problem:

$$\min_{\mathbf{Z}} \| \mathbf{S} \boldsymbol{\Phi}(\mathbf{Z}) \|_{\mathbf{F}}^{2}, s.t. \ \mathbf{Z} \in \boldsymbol{\mathcal{F}}$$

where $\Phi(\mathbf{Z})$ is a function of \mathbf{Z} , \mathbf{F} is the feasible region, and \mathbf{S} is a diagonal matrix whose i-th diagonal element is $1/\|\Phi(\mathbf{Z}_0)_i\|_2^{1-p/2}$ (\mathbf{Z}_0 could be any object in \mathbf{F} , $\Phi(\mathbf{Z}_0)_i$ is the i-th row vector of $\Phi(\mathbf{Z}_0)$ and $0), we have <math>\|\Phi(\mathbf{Z}^*)\|_{2,p} \le \|\Phi(\mathbf{Z}_0)\|_{2,p}$ where \mathbf{Z}^* is the optimal solution of Eqn. (19) and the equality holds if and only if $\Phi(\mathbf{Z}^*) = \Phi(\mathbf{Z}_0)$

Proof of Convergence

Theorem 1

The sequence $\{W^k\}$ produced via the Algorithm has the following properties: $\|W^k\|_{2,p}$ is non-increasing at successive iteration steps and $\{\|W^k\|_{2,p}\}$ converges to a limited value.

Theorem 2

If sequences $\{W^k\}$ and $\{E^k\}$ produced in The Algorithm have limit points, the limit points satisfy the Karush–Kuhn–Tucker (KKT) conditions of Eqn. (6). When $p \ge 1$, the limited points are globally optimal.

Experiments

Effect of parameter *p*

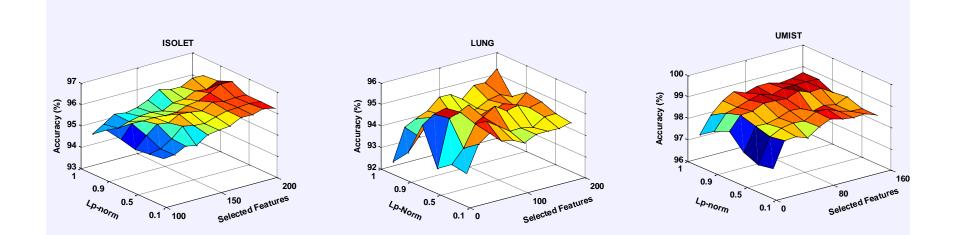


Figure 1: Classification accuracy with different numbers of features selected with different values of p. The results shown were obtained based on datasets: (a) ISOLET, (b) LUNG, and (c) UMIST

Experiments

Effect of parameter *p*

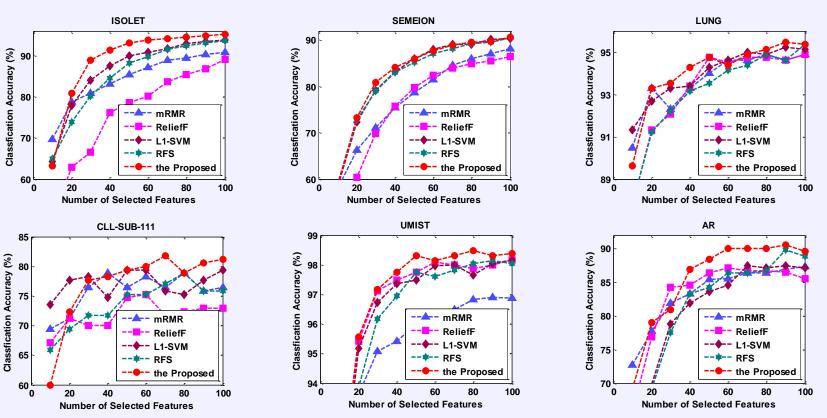


Figure 2: Average classification accuracy of 10 trials for linear—SVM built on the selected top 100 features by different algorithms. The results shown were obtained based on datasets: (a) ISOLET, (b) SEMEION, (c) LUNG, (d) CLL-SUB-111, (e) UMIST, and (f) AR

Conclusions and Discussions

Summary

- Proposed Model: $L_{2,p}$ -Minimization subject to data-fitting inequality constraints
- Outstanding Features
 - $L_{2,p}$ -norm boosts more sparsity
 - No regularization term free tuning the parameter
 - Enlarging margin between classes improve the robustness to noise and generalization performance
- Optimization Approach
 - Adopting Gaussian Elimination, obtaining the solution space of W with variable E
 - Utilizing IRLS strategy, at each iterative step, reformulating the non-convex and non-smooth problem to a least square minimization problem

Questions

Thanks for your attention