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摘摘摘 要要要

随着诸如数字信息、传感器网络与智能计算等现代技术的快速发展, 现代系统规模

愈趋庞大复杂. 为了达到满意的控制性能, 学者们做了大量努力. 尽管许多控制方法已

达到了良好的控制品质, 但希望在保证系统稳定的同时, 控制性能与控制成本也能达到

更优的水平. 经过几十年的探索，基于自适应动态规划的最优控制方法已解决了诸多非

线性系统的控制问题. 本文针对此领域中尚存的若干有待解决的问题进行了研究.

针对含有未知非匹配关联项的非线性大系统, 基于策略迭代算法解决了分散控制问

题. 利用隔离子系统的局部状态信息与耦合子系统的取代参考状态, 结合神经网络估计

未知关联项. 然后, 采用自适应估计项构造反映取代误差的改进性能指标函数, 从而得到

基于策略迭代的分散最优控制方法. 最后证明所提控制策略可使非线性大范围闭环系统

最终一致有界.

考虑未知非线性大系统, 采用基于观测器-评判结构的自适应动态规划算法提出一

种分散跟踪控制方法. 该控制器由局部期望控制器、局部误差跟踪控制器与补偿器三部

分组成. 引入局部神经网络观测器来辨识子系统动态, 进而利用辨识的子系统获取局部

期望控制器与用于设计局部跟踪误差控制器的控制输入矩阵. 同时, 通过构造评判神经

网络来求解HJB(Hamiltonian-Jacobi-Bellman)方程, 进而直接得到局部跟踪误差控制器.

为了补偿由取代、观测与神经网络估计所导致的总体误差, 加入了自适应鲁棒项以使闭

环未知大系统稳定.

为了镇定执行器故障仿射非线性系统, 提出一种基于策略迭代的在线故障补偿方

法. 该控制方法由策略迭代算法和故障补偿组成. 针对无故障系统, 通过构造评判神经

网络提出策略迭代算法去求解HJB方程, 进而直接得到估计的最优控制策略. 另一方面,

在不引入故障检测与隔离机制的条件下, 自适应地重构执行器故障以达到在线故障补偿

的目的. 闭环系统的渐近稳定性由李雅普诺夫直接法保证.

引入由故障观测器估计的执行器故障, 构造了表征故障、调节律与控制策略的改

进性能指标函数, 提出另一种执行器故障非线性系统的镇定方法. 通过采用合理的性能

指标函数, 将容错控制问题转化为最优控制问题. 利用策略迭代算法, 构造评判网络求

解HJB方程, 进而得到估计的最优控制律. 李雅普诺夫稳定性分析保证了闭环系统最终

一致有界.

为了解决含有未知执行器饱和非线性系统的镇定问题, 提出基于自适应动态规划的

控制策略. 该控制器由在线名义最优控制与神经网络前馈饱和补偿器构成. 针对不含执

行器饱和的名义系统, 构造评判网络求解HJB方程, 因此可在无需构造执行神经网络的

情形下得到在线估计的名义最优控制策略. 通过非线性变换, 将未知执行器饱和考虑成

饱和非线性, 并采用基于神经网络的前馈控制环对其补偿. 通过李雅普诺夫稳定性分析,
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保证闭环系统是最终一致有界稳定的.

综上所述, 本文扩展了自适应动态规划方法的研究领域, 解决了非线性大系统的分

散镇定、分散轨迹跟踪问题, 含有执行器故障的非线性系统的容错控制问题, 以及含有

未知执行器饱和的非线性系统镇定等问题, 并试图使该算法更适用于实际工程系统.

关键词：自适应动态规划, 分散控制, 容错控制, 强化学习, 策略迭代, 最优控制, 神经网

络, 非线性系统.



Abstract

With the development of modern technologies, such as digital information, sensor

networks, intelligent computing, etc., modern systems become large-scale and complex

increasingly. To achieve better control performance, considerable efforts have been made

to these systems. Despite of many methods have achieved excellent control performance,

it is often desirable to design a controller which not only keeps systems stable, but also

guarantees an adequate level of performance. With the exploration of recent several

decades, adaptive dynamic programming (ADP) based optimal control was proposed to

solve optimization problems for nonlinear systems in different cases. In this thesis, many

efforts have been paid to ADP based control for some unsolved problems.

For large-scale nonlinear systems with unknown mismatched interconnections, the

decentralized control problem is solved based on a policy iteration (PI) algorithm. The

unknown interconnection is approximated by a neural network (NN) with local states

of isolated subsystem and substituted reference states of coupled subsystems. Then,

an adaptive estimation term is utilized to construct the improved local performance in-

dex function that reflects the substitution error. Hereafter, the closed-loop large-scale

nonlinear system is guaranteed to be ultimately uniformly bounded (UUB) by the imple-

mentation of a set of developed decentralized optimal control policies.

Consider unknown large-scale nonlinear systems, a decentralized tracking control

scheme is developed by using observer-critic structure based ADP. The control consists of

local desired control, local tracking error control and a compensator. By introducing the

local NN observer, the subsystem dynamics can be identified. The identified subsystems

can be used for the local desired control and the control input matrix, which is used

in local tracking error control. Meanwhile, Hamiltonian-Jacobi-Bellman (HJB) equation

can be solved by constructing a critic NN. Thus, the local tracking error control can be

derived directly. To compensate the overall error caused by substitution, observation and

approximation of the local tracking error control, an adaptive robustifying term is added

to guarantee the closed-loop unknown large-scale systems stable.

In order to stabilize nonlinear systems with actuator failures, a novel online fault

compensation control scheme based on PI algorithm is developed. The control scheme

consists of a PI algorithm and a fault compensator. For fault-free dynamic models, the

PI algorithm is developed to solve the HJB equation by constructing a critic NN, and

then the approximate optimal control policy can be derived directly. Alternatively, the
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actuator failure is reconstructed adaptively to achieve online fault compensation without

the fault detection and isolation mechanism. The closed-loop system is proved to be

asymptotically stable via Lyapunov’s direct method.

Focus on nonlinear systems with actuator failures, the other approach is proposed.

The estimated actuator failure from a fault observer is utilized to construct an improved

performance index function that reflects the failure, regulation and control simultaneously.

By employing a proper performance index function, the fault tolerant control problem

can be transformed into an optimal control problem. By using PI algorithm, the HJB

equation can be solved by constructing a critic NN. Then, the approximated optimal

controller can be derived directly. The closed-loop system is guaranteed to be UUB via

the Lyapunov stability theorem.

To solve the stabilizing control problem for nonlinear systems with unknown actuator

saturation, an ADP algorithm based control strategy is developed. The controller is

composed of an online nominal optimal control and a NN based saturation compensator.

For nominal systems without any actuator saturation, a critic NN is constructed to solve

the HJB equation. Thus, the online approximate nominal optimal control policy can be

derived without action NN. Then, the unknown actuator saturation, which is considered

as saturation nonlinearity by simple transformation, is compensated by employing a NN

based feed-forward control loop. The stability of the closed-loop system is analyzed to

be UUB via Lyapunov’s direct method.

In summary, this thesis extends the ADP algorithm to many possible implementation

fields, it makes the ADP algorithm more feasible to real-world applications. It solves some

control problems, i.e., the decentralized stabilization and DTC problems for large-scale

nonlinear systems, fault tolerant control problem for nonlinear systems with actuator

failures and stabilizing control for nonlinear systems with unknown actuator saturation.

Keywords: Adaptive dynamic programming, Decentralized control, Fault tolerant con-

trol, Reinforcement learning, Policy iteration, Optimal control, Neural networks, Nonlin-

ear systems.
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Chapter 1 Introduction

1.1 Research status

With the development of computational intelligence, sensor networks, as well as the

modern mathematics, considerable attention have been paid to control nonlinear systems.

Despite of these methods have achieved excellent control performance, it is often desirable

to design a controller which not only keeps systems stable, but also guarantees an adequate

level of performance [1].

Optimal control, which is the basis and kernel of modern control theory, plays a

significant role in nonlinear systems’ control. According to the established system model,

an admissible control is chosen such that the system is driven in accordance with require-

ments to optimum. As is well known, the optimal control problem for nonlinear systems

can be addressed by the Hamilton-Jacobi-Bellman (HJB) equation. Generally speaking,

it is difficult to provide analytical solutions of nonlinear partial differential equations or

difference equations. To solve these problems, dynamic programming (DP) theory was

proposed by Bellman in 1957 [2]. However, the computation burden and spatial storage

will grow exponentially with the increasing dimensions of system states and control vec-

tor, i.e., “curse of dimensionality”. Fortunately, adaptive dynamic programming (ADP)

[3] can avoid aforementioned difficulties with the help of function approximators, such

as neural networks (NNs), since they have strong approximation capability. There are

many synonyms used for ADP, such as adaptive dynamic programming [4], approximate

dynamic programming [5], adaptive critic designs [6], neuro-dynamic programming [7, 8],

and reinforcement learning [9].

Great efforts have been made to ADP and related research fields in the past decade.

Many excellent results have significantly promoted the development of relevant disciplines.

Iterative methods that can be classified into value iteration (VI) algorithms and policy

iteration (PI) algorithms are used in ADP to solve the HJB equation indirectly. Al-

Tamimi et al. [10] proved that the iterative performance index function is a nondecreasing

sequence and with upper bound, and it converges to the optimal performance index

function, which satisfies the HJB equation. Liu et al. [11] investigated a neuro-optimal

control scheme for a class of unknown discrete-time nonlinear systems with a discount

factor in the cost function and GDHP technique. Zhang et al. [12] addressed the infinite-

time optimal tracking control problem by using the greedy HDP iteration algorithm.

We can conclude from these studies that VI can remove the requirement of the initial
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stabilizing control, but it cannot guarantee the stability of the system. Actually, only the

converged optimal control law can be used to control nonlinear systems [13]. In contrast

to VI algorithms, the iterative performance index function of PI algorithms converge to

the optimum nonincreasingly and each of the iterative controls stabilizes the nonlinear

systems [14, 15]. Abu-Khalaf and Lewis [16] proposed a PI algorithm for continuous-

time nonlinear systems with control constraints. Liu et al. [13] proposed a discrete-time

PI ADP method for solving the infinite horizon optimal control problem of nonlinear

systems. Zhang et al. [17] addressed the optimal coordination control for multiagent

differential games by solving the coupled Hamilton-Jacobi equations via a PI algorithm.

Recently, ADP algorithms were further employed to solve control problems of continuous-

time systems [18–20], discrete-time systems [21–25], unknown nonlinear systems [26], tra-

jectory tracking [12, 27, 29–33], input/output constraints [22, 34], external disturbances

and uncertainties [35–39], zero-sum games [40–43], data-driven systems [44], fault toler-

ant [45], time-delay [29], event-driven systems [46, 47], etc. Due to the advantages of

ADP methods in solving optimal control problem of nonlinear systems, they have been

implemented in many real applications, such as transportation [48], temperature control

systems [44], cooperative control [17], smart grid systems [49] and multimachine power

systems [36]. We can see from the literature that ADP algorithms can be categorized into

heuristic dynamic programming (HDP) [27], dual heuristic dynamic programming (DHP)

[50], action-dependent HDP (ADHDP) [51], ADDHP [52], globalized DHP (GDHP) [53]

and ADGDHP [6].

1.1.1 Decentralized control of large-scale nonlinear systems

The increasing demands of production quality and economic efficiency have led to

increasingly large-scale and complex modern systems, such as ecosystems, communication

systems, transportation systems, urban traffic systems and power systems. In general,

a large-scale system consists of a set of subsystems coupled by interconnections, which

lead to increasing difficulties of analysis and synthesis when utilizing centralized control.

To overcome the difficulties in controlling such systems, decentralized control strategy,

which utilizes local states of each subsystem, is an efficient and effective approach.

In recent literature, ADP based decentralized control problems have been tackled

extensively. For linear interconnected systems, Jiang et al. [54] and Bian et al. [55]

presented a decentralized control via robust ADP and PI technique. Gao et al. [39] de-

veloped a data-driven output-feedback control policy based on both PI and VI methods.

Tlili et al. [56] investigated a decentralized observation and control approach for linear

interconnected systems with nonlinear interconnections. The control problem was formu-
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lated as an optimization problem by linear matrix inequality (LMI) to compute the robust

observation and control gain matrix simultaneously. Hioe et al. [57] utilized linear partial

differential Hamilton-Jacobi equation to solve the robust nonlinear control problem which

was transformed from the dissipativity shaping problem. Liu et al. [13] constructed the

cost functions for the isolated subsystems with the assumed known bounded interconnec-

tions. Then, a decentralized control strategy was developed to stabilize continuous-time

nonlinear interconnected large-scale systems. Furthermore, Wang et al. [38] considered

the interconnected subsystems as a whole system and constructed a cost function for the

overall plant. Then, they developed the decentralized guaranteed cost control by solving

the modified HJB equation. For unknown nonlinear interconnected systems, Liu et al.

[58] established an online model-free integral PI algorithm based decentralized control

scheme via actor-critic technique. Lu et al. [59] applied the direct HDP to address the

coordinated control for large power systems with uncertainties. Yang et al. [60] designed

a tracking control with filtered tracking error by using direct HDP.

For decentralized tracking control (DTC) problem, Mehraeen et al. [24] proposed

a decentralized nearly optimal controller using online tuned action NN and critic NN

by assuming that the input gain matrix was known and the unknown interconnection

was weak. From the aforementioned literature, the optimal tracking control commonly

consists of the feedforward controller and the feedback controller [61]. The feedforward

controller requires a priori knowledge of the system dynamics, while the feedback con-

troller can be derived by only utilizing ADP methods. However, we can observe that the

existing works on DTC via ADP mainly focused on systems with known dynamics. Since

DTC for large-scale systems has wide potential in practice, only a few results based on

ADP have been carried out, and it is still an open problem to be solved.

1.1.2 Fault tolerant control problems

With the fast development of science and technology, industrial applications are

becoming increasingly complex and large-scale. Consequently, the occurrence of failures

is inevitable as the number of components increases. Malfunctions of a component may

not only degrade control performance, but also result in the loss of system reliability and

safety. It should be emphasized that about 60% of control performance degradation in

industrial systems is caused by actuator and sensor failures and equipment fouling [62].

To achieve higher reliability and better control performance, a large amount of research

efforts on fault tolerant control (FTC) systems have been made during the past 30 years

to ensure stability and maintain acceptable control. Among all kinds of possible failures,

actuator failures are considered as one of the most critical challenges, mainly for the
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reason that the control performance can be deteriorated by unexpected and unknown

actuator actions.

Many FTC approaches have been developed to deal with actuator failures, such as

linear quadratic control, intelligent control, adaptive control and methods based on a

combination of different strategies. In general, FTC approaches can be classified into

two categories, namely passive approaches and active ones. The main difference between

them lies in whether the fault tolerant controller depends on the fault detection and

identification (FDI) unit or not. By using passive designs, Zhou et al. [63] proposed

an architecture that included two parts, where the feedback control system was sole-

ly controlled by the performance controller, while the model uncertainties and external

disturbances were handled by the robustness of the controller. Xiao et al. [64] derived

an adaptive sliding mode controller by estimating the bound of actuator faults with an

online updating law. Wang et al. [65] investigated a robust fault-tolerant H∞ control of

active suspension systems with finite-frequency constraints. The passive designs achieved

insensitivity of systems to certain possible failures by their robustness, so they have the

drawback that the designed controllers are often constrained to handling large failures.

On the contrary, active FTC, which possesses stronger fault tolerant capability, achieves

stability and required performance by tuning control strategies under the decision of an

FDI unit. Zhang and Jiang [66], Hwang et al. [67] gave some excellent reviews on fault

reconfiguration methods. Different methods for handling the reconfiguration problem

have been reported, such as multiple-model approach [68, 69], adaptive control approach

[70, 71], linear quadratic control [72, 73], pseudo-inverse [74, 75], artificial intelligence

[76], model predictive control [77, 78], linear matrix inequality [79, 80], variable structure

control [81, 82], etc. Nazari et al. [83] reconfigured the sensory faulty system by using a

virtual sensor which is adapted to the FDI unit. Fault accommodation strategy is another

way to achieve the goal of active FTC. Yang et al. [84] employed a bank of T-S fuzzy

model based FDI observers to describe particular faults, such that one of them can track

the current system state, and the corresponding observer estimated error can converge

exponentially to zero. Yoo [85] investigated a time-delay independent fault detection

and accommodation scheme, where an approximation-based fault accommodation design

is activated to compensate for multiple time-delay faults after the fault being detected.

Based on the fault compensation technique, Wang et al. [86] proposed an adaptive fail-

ure compensation control scheme with the nonlinear damping and parameter projection

techniques for parametric strict feedback nonlinear systems.

Several papers considered the fault tolerance problem by using reinforcement learning

and ADP strategies. Wang et al. [87] developed a robust state feedback reliable control
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scheme integrated with an iterative learning. By solving LMIs, the developed scheme

was explicitly formulated together with an adjustable robust H∞ performance level for

batch process systems with unknown actuator failures. Feng et al. [88] proposed a

reconfigurable fault tolerant deflection routing algorithm based on reinforcement learning

for network on chip (NoC). An optimized routing algorithm based hierarchical Q-learning

was proposed to reduce the routing table size. He et al. [89] developed a reinforcement-

learning based fast algorithm for proactive network fault management. The proactive

diagnosis information was considered to produce effective monitoring and control policies

for intelligent managers or agents. Zhu et al. [90] presented a novel approach to automate

recovery policy generation with reinforcement learning techniques. It could learn a new

and locally optimal policy that outperformed the original one based on the recovery

history of the original user-defined policy. Yen et al. [91, 92] proposed a supervisor

making use of two quality indices to perform FDI and isolation based on GDHP. Although

it could reduce the reconfiguration time of the controller, the strategy was implemented

under the condition that a priori knowledge was stored in a dynamic model bank (DMB).

1.1.3 Nonlinear systems with actuator saturation

Generally, actuator saturation is often emerged in many practical systems, such as

spacecrafts [93], launch vehicles [94], robot manipulators [95, 96], helicopters [97], tele-

operation systems [98], suspension systems [99], etc. Its presence may cause control

performance reduction or even unstable of the closed-loop system. Many efforts have

been made to nonlinear systems in this situation [100–102]. It is worth pointing out that

some ADP methods have been proposed in recent years. He et al. [103] constructed a

certain strategic utility function, which was approximated by a critic NN. And then, a RL

based output feedback controller was designed to deliver a desired tracking performance

for systems with magnitude constraints. Abu-Khalaf et al. [104] presented a two-player

PI based L2-gain optimal feedback strategy for nonlinear systems with control policy

saturation constraints. Heydari et al. [105] developed a finite-horizon single network

adaptive critic based fixed-final-time control-constrained optimal controllers. Zhang et

al. [106] presented an iterative two-stage DHP method for switched nonlinear systems

subject to actuators saturation. Modares et al. [107] presented an actor-critic struc-

ture based online PI algorithm to learn the optimal control solution of unknown systems

with constrained-input. By constructing a nonquadratic cost function, Xu et al. [108]

addressed the near-optimal regulation problem via NNs to solve the time-varying HJB

equation for uncertain and quantized nonlinear discrete-time systems with control con-

straints. Song et al. [109] developed a HDP method for nonlinear discrete time-delay
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systems with saturating actuators. Zhang et al. [22] introduced a novel nonquadratic

performance function to overcome the control constraints, and used three NNs as para-

metric structures to facilitate the implementation of the iterative algorithm. Liu et al.

[110] presented a novel reinforcement learning based robust adaptive algorithm for un-

certain nonlinear systems subject to input constraints. Meanwhile, they developed a

triple-NN approximation based GDHP framework for unknown discrete-time nonlinear

systems [111]. Yang et al. respectively developed an online identifier-critic architec-

ture [112] and only system data based integral reinforcement learning algorithm [113] for

unknown nonlinear systems by updating the value function and control policy simultane-

ously. For practical systems, Pomprapa et al. [114] proposed a model-free policy iteration

algorithm based state feedback configuration for controlling arterial oxygen saturation of

an interconnecting three-tank systems. From the above literature, we can conclude that

most of the existing results were concerned with nonlinear systems subject to actuator

saturation with available limited bounds, which are always necessary for designing the

ADP based control methods directly or indirectly. However, the outputs of the actuators

may bias or suddenly abrupt in many practical systems. It implies that the saturation

bounds of the actuators are uncertain or unknown, which results in application difficulties

of the existing methods. Therefore, the optimal control strategy for the nonlinear system

in this situation is required to be further considered.

1.2 Challenge and main work

As is well known, ADP based optimal controller design for nonlinear systems have

achieved many excellent works in recent years. However, it is worth pointing out that the

existing works are mainly focused on general nonlinear systems theoretically. Some issues

for real-world implementation have not considered yet. Therefore, in this thesis, some

different control problems are solved based on ADP algorithm for nonlinear systems.

1. In the existing ADP based decentralized control methods for large-scale nonlinear

systems, the interconnection was assumed to satisfy matching condition and upper

bounded, which were necessary to analyze system stability. However, it is difficult

to satisfy these two assumptions in practice. In Chapter 2, a PI algorithm based

decentralized control scheme is presented for large-scale systems with unknown

mismatched interconnections.

2. For trajectory tracking problem of large-scale systems, the existing methods were

mainly focused on nonlinear systems with available dynamics. Since the dynamics

of large-scale systems are always unknown in real applications, an observer-critic
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architecture based decentralized trajectory tracking control is developed via ADP

strategy in Chapter 3.

3. In practical engineerings, the operational safety and reliability of nonlinear systems

are necessary to be guaranteed when they suffer from actuator failures, which are

inevitable on equipments that in harsh environments or are operated for a long

time. Therefore, two different ADP based fault tolerant controls are presented in

Chapters 4 and 5, respectively.

4. Actuator saturations were considered to be priori known in the existing ADP based

methods. The bound of actuator was required to construct cost function. However,

the drive capability of actuator may drift or loss partial effectiveness, so the limi-

tation of actuator is difficult or impossible to be known. Therefore, an ADP based

stabilization of nonlinear systems with unknown actuator saturation is proposed in

Chapter 6.





Chapter 2 Decentralized Control for Large-scale Nonlinear

Systems with Unknown Mismatched Interconnections

2.1 Introduction

Motivated by [13], [58] and [115], this chapter addresses the decentralized control

problem for large-scale nonlinear systems with unknown mismatched interconnections.

By using local states of isolated subsystem and substituted reference states of coupled

subsystems, the unknown interconnection is approximated by a NN. Then, the improved

local performance index function which reflects the substitution error is constructed with

the help of the estimated term. Hereafter, the PI algorithm is developed to solve the HJB

equation via the constructed critic NN, and the approximated decentralized control policy

can be directly obtained. It is proven that the closed-loop large-scale nonlinear system can

be guaranteed to be ultimately uniformly bounded (UUB) based on Lyapunov stability

theorem. Two numerical simulation examples are provided to ensure the effectiveness of

the proposed scheme.

The main contributions of this approach include the following two aspects:

(1) Unlike the literature previously mentioned, this paper extends the ADP algorithm

to deal with the decentralized control problem with an improved local performance index

function for large-scale nonlinear systems with unknown mismatched interconnections.

(2) The unknown mismatched interconnection is estimated by local observer, which

utilizes the local states and the substituted reference states of the coupled subsystems.

As a result, the proposed scheme avoids the common assumptions on satisfying matching

condition and upper boundedness of interconnections of large-scale nonlinear systems in

previous ADP-based approaches.

2.2 Problem statement

In this paper, we consider a large-scale nonlinear system composed of N subsystems

with unknown mismatched interconnections as

ẋ1(t) = f1(x1(t)) + g1(x1(t))u1(x1(t)) + h1(x(t))
...

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(xi(t)) + hi(x(t))
...

ẋN(t) = fN(xN(t)) + gN(xN(t))uN(xi(t)) + hN(x(t)).

(2.1)
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The ith (i = 1, 2, . . . , N) interconnected subsystem is described by

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(xi(t)) + hi(x(t)), (2.2)

where xi(t) ∈ Rni and ui(xi(t)) ∈ Rmi are the state vector and input vector of the

ith subsystem, respectively. x = [x1, x2, . . . , xN ]
T ∈ Rn with n =

∑N
i=1 ni denotes the

entire system state, and u1(x1), u2(x2), . . . , uN(xN) are local control inputs. For the ith

subsystem, fi(·) and gi(·) are known, locally Lipschitz and differentiable in their augments

with fi(0) = 0. hi(x(t)) is the unknown mismatched interconnection term.

As is well known, fuzzy logic systems, NNs, etc. are excellent approximators for

unknown nonlinearities. Furthermore, since the radial basis function neural network

(RBFNN) has simple structure and excellent approximation capability, RBFNN is em-

ployed in a given compact set Ω ∈ Rn to approximate the unknown interconnection

hi(x(t)), i.e.,

hi(x(t)) = WT
ihσih(x(t)) + εi(x(t)), (2.3)

where σih(x(t)) is called the basis function that is commonly selected as a Gaussian

function

σih(x) = exp

(
−(x− ci)

T(x− ci)

b2i

)
,

where the constant vector ci is the center of the basis function, and bi > 0 is a real

number which is the width of the basis function. The optimal weight vector Wih =

[wi1, wi2, . . . , wik]
T is defined as

Wih = arg min
Ŵih∈Rk

{
sup
x∈Ω

∣∣∣hi(x)− ŴT
ihσih(x(t))

∣∣∣}
and εi(x) is the NN approximation error, which can be decreased by increasing the NN

hidden node number k.

Assumption 2.1 The NN approximation error εi is upper bounded, i.e., |εi(x)| ≤ ϕi1,

where ϕi1 is an unknown positive constant.

To relax the upper boundedness assumption of interconnections, we approximate the

interconnection term in the ith subsystem by RBFNN using the states of local subsystem

and the reference states of the coupled subsystems, i.e.,

hi(x) =W
T
ihσih(xiD) + ∆i(x, xiD) + εi(xi)

=hid(xiD) + ∆i(x, xiD) + εi(xi), (2.4)
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where xiD = [x1d, x2d, . . . , xi, . . . , xNd]
T, xid indicates the reference states of the coupled

subsystems, hid(xiD) = WT
ihσih(xiD), ∆i(x, xiD) = WT

ihσih(x)−WT
ihσih(xiD) is the substi-

tution error since it arises from the substitution of NN inputs.

Similar to [116], the Gaussian function σih(xi) satisfies the global Lipschitz condition,

which implies

∥∆i∥ ≤
N∑

j=1,j ̸=i

dijEj,

where Ej = ∥xj − xjd∥, and dij > 0 is an unknown global Lipschitz constant.

Remark 2.1 We can observe that (2.4) can be obtained only by adding and subtracting

the term hid(xiD), which can be approximated by RBFNN. So it can avoid the common

upper boundedness assumption of the interconnection term in the ith subsystem. In

other words, the function hi(x) depends only on the corresponding local states and the

reference states, which are shared with each subsystem before the system runs.

For the ith isolated subsystem

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(xi(t)) + hid(xiD), (2.5)

since fi(·) and gi(·) are locally Lipschitz continuous on a set Ωi ∈ Rni , the subsystem (2.5)

is controllable. Different from the interconnected subsystem (2.2), the isolated subsystem

(2.5) depends only on its local states.

Remark 2.2 To eliminate confusions, it is necessary to distinguish the concepts of

interconnected subsystems, isolated subsystems and coupled subsystems. In this paper,

we call all the subsystems interconnected with the ith one as coupled subsystems. On

the other hand, we call (2.2) interconnected subsystem, since hi(x(t)) contains the actual

states of all the subsystems. Different from it, hid(xiD) in the isolated subsystem (2.5)

depends only on the local states and the substituted reference states of the coupled

subsystems. That is to say, hid(xiD) is independent from interconnection hi(x(t)). So it

can be called isolated subsystem.

The main objective of this work is to find a set of local control policies u1(x1), u2(x2),

. . . , uN(xN) as the decentralized control law to stabilize the system (2.1). To handle the

optimal control problem, we need to obtain the optimal control policy u∗i (xi) for the ith

subsystem. Thus, it is desired to find the feedback control policy ui(xi) to minimize the

improved local infinite horizon performance index function as

Ji(xi0) =

∫ ∞

0

(
δ̂i
∥∥∇JT

i (xi(τ))
∥∥Ei + Ui(xi(τ), ui(τ))

)
dτ, (2.6)
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where Ui(xi, ui) = xTi Qixi+u
T
i Riui is the utility function, Ui(0, 0) = 0, and Ui(xi, ui) ≥ 0

for all xi and ui, in which Qi ∈ Rni×ni and Ri ∈ Rmi×mi are positive definite matrices. δ̂i

is a positive function which will be defined later. ∇Ji(xi) denotes the partial derivative

of local performance index function Ji(xi) with respect to local state xi, i.e., ∇Ji(xi) =
∂Ji(xi)
∂xi

.

2.3 Decentralized controller design and stability analysis

In this section, we present the optimal decentralized controller design and stability

analysis in detail.

2.3.1 Optimal control

Based on the optimal control theory, the designed feedback control policy must be

admissible. Therefore, before the optimal control is presented, the definition of admissible

control is introduced.

Definition 2.1 For the ith isolated subsystem (2.5), a control policy ui(xi) is defined

to be admissible with respect to (2.6) if ui(xi) is continuous on a set Ωi ∈ Rni , ui(0) = 0,

ui(xi) stabilizes the isolated subsystem (2.5), and Ji(xi0) in (2.6), where xi0 is the initial

state of xi, is finite for all xi ∈ Ωi.

Consider the ith isolated subsystem (2.5), for any admissible control policy ui(xi) ∈
ψi(Ωi), where ψi(Ωi) denotes the set of admissible control, if the improved local value

function

Vi(xi) =

∫ ∞

0

(
δ̂i
∥∥∇V T

i (xi)
∥∥Ei + Ui(xi(τ), ui(τ))

)
dτ (2.7)

is continuously differentiable, then the infinitesimal version of (2.7) is the so-called local

nonlinear Lyapunov equation

0 = δ̂i
∥∥∇V T

i (xi)
∥∥Ei + Ui(xi, ui) +∇V T

i (xi) (fi(xi) + gi(xi)ui(xi) + hid(xiD)) (2.8)

with Vi(0) = 0.

Define the local Hamiltonian as

Hi (xi, ui,∇Vi(xi)) = δ̂i
∥∥∇V T

i (xi)
∥∥Ei + Ui(xi, ui)

+∇V T
i (xi) (fi(xi) + gi(xi)ui(xi) +hid(xiD)) ,

and the local value function as

V ∗
i (xi) = min

ui∈Ψi(Ωi)

∫ ∞

0

(
δ̂i
∥∥∇V ∗T

i (xi)
∥∥Ei + Ui(xi(τ), ui(τ))

)
dτ . (2.9)
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According to optimal control theory, V ∗
i (xi) satisfies HJB equation

0 = min
ui∈Ψi(Ω)

Hi (xi, ui,∇V ∗
i (xi)) , (2.10)

where ∇V ∗
i (xi) =

∂V ∗
i (xi)

∂xi
. Assume the solution V ∗

i (xi) exists and is continuously differ-

entiable, the local optimal control policy can be described as

u∗i (xi) = −1

2
R−1
i gTi (xi)∇V ∗

i (xi). (2.11)

For considered large-scale nonlinear system (2.1), the local feedback control policies

u1(x1), u2(x2), . . . , uN(xN) should be presented to guarantee the entire closed-loop system

stable. To achieve this goal, we will transform the stabilization problem into designing a

set of local optimal controllers with proper local value functions.

Theorem 2.1 For the ith interconnected subsystem (2.2) with the improved local value

function (2.7), V ∗
i (xi) is the optimal solution of the HJB equation (2.10), and u∗i (xi) is the

optimal control policy by (2.11). It implies that the control policies u∗1(x1), u
∗
2(x2), . . . , u

∗
N

(xN) are the decentralized control law of large-scale nonlinear system (2.1).

Proof The theorem can be proved by showing that V ∗
i (xi) is a Lyapunov function.

From the definition of each term in (2.9), we can observe that V ∗
i (xi) > 0 for any xi ̸= 0,

and V ∗
i (xi) = 0 for xi = 0, which implies that V ∗

i (xi) is a positive definite function.

Therefore, the time derivative of V ∗
i (xi) along the corresponding state of the closed-loop

interconnected subsystem is described by

V̇ ∗
i (xi) = (∇V ∗

i (xi))
T ẋi

= (∇V ∗
i (xi))

T (fi(xi) + gi(xi)ui(xi) +hiD(xiD) + ∆i + εi) . (2.12)

Denoting (∇V ∗
i (xi))

T as ∇V ∗T
i for simplicity, and substituting (2.8) into (2.12), we have

V̇ ∗
i (xi) =− δ̂i

∥∥∇V ∗T
i

∥∥Ei − Ui(xi, ui) +∇V ∗T
i (∆i + εi)

≤− δ̂i
∥∥∇V ∗T

i

∥∥Ei − Ui(xi, ui) +
∥∥∇V ∗T

i

∥∥ ∥∆i∥+
∥∥∇V ∗T

i

∥∥ ∥εi∥ .
Considering Assumption 2.1, we have

V̇ ∗
i (xi) ≤− δ̂i

∥∥∇V ∗T
i

∥∥Ei − Ui(xi, ui) +
∥∥∇V ∗T

i

∥∥ N∑
j=1,j ̸=i

dijEj +
∥∥∇V ∗T

i

∥∥ϕi1
≤− δ̂i

∥∥∇V ∗T
i

∥∥Ei − Ui(xi, ui) + max
ij

{dij}
∥∥∇V ∗T

i

∥∥ N∑
j=1,j ̸=i

Ej +
∥∥∇V ∗T

i

∥∥ϕi1.
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Therefore,

V̇ ∗ =
N∑
i=1

V ∗
i

≤
N∑
i=1

(
−δ̂i

∥∥∇V ∗T
i

∥∥Ei − Ui(xi, ui) +
∥∥∇V ∗T

i

∥∥ϕi1)
+

N∑
i=1

max
ij

{dij}
∥∥∇V ∗T

i

∥∥ N∑
j=1,j ̸=i

Ej

≤
N∑
i=1

(
−δ̂i

∥∥∇V ∗T
i

∥∥Ei − Ui(xi, ui) +
∥∥∇V ∗T

i

∥∥ϕi1)
+max

ij
{dij}

N∑
i=1

∥∥∇V ∗T
i

∥∥ N∑
j=1,j ̸=i

Ej. (2.13)

Since Ei = ∥xi − xid∥ ≥ 0, (2.13) becomes

V̇ ∗ ≤
N∑
i=1

(
−δ̂i

∥∥∇V ∗T
i

∥∥Ei − Ui(xi, ui) +
∥∥∇V ∗T

i

∥∥ϕi1)
+max

ij
{dij}

N∑
i=1

∥∥∇V ∗T
i

∥∥ N∑
j=1

Ej

=
N∑
i=1

(
−δ̂i

∥∥∇V ∗T
i

∥∥Ei − Ui(xi, ui) +
∥∥∇V ∗T

i

∥∥ϕi1)
+N ·max

ij
{dij}

N∑
i=1

∥∥∇V ∗T
i

∥∥Ei −max
ij

{dij}
N∑
i=1

∥∥∇V ∗T
i

∥∥ N∑
j=1

(Ei − Ej).

Let δi = N ·max
ij

{dij}. We have

V̇ ∗ =
N∑
i=1

(
δ̃i
∥∥∇V ∗T

i

∥∥Ei − Ui(xi, ui) +
∥∥∇V ∗T

i

∥∥ϕi1)
−max

ij
{dij}

N∑
i=1

∥∥∇V ∗T
i

∥∥ N∑
j=1

(Ei − Ej), (2.14)

where δ̃i = δi − δ̂i.

Denoting ηi1 = δ̃i
∥∥∇V ∗T

i

∥∥Ei + ∥∥∇V ∗T
i

∥∥ϕi1 − max
ij

{dij}
N∑
i=1

∥∥∇V ∗T
i

∥∥ N∑
j=1

(Ei − Ej),
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which is assumed to be bounded, i.e., |ηi1| ≤ Φi, we have

V̇ ∗ ≤
N∑
i=1

(
Φi − xTi Qixi − uTi Riui

)
≤

N∑
i=1

(
Φi − xTi Qixi

)
≤

N∑
i=1

(
Φi − λmin(Qi) ∥xi∥2

)
,

where λi(·) denotes the minimum eigenvalue of the matrix. Hence, we can conclude that

V̇ ∗ < 0 when xi lies outside of the compact set

Ωxi =

{
xi : ∥xi∥ ≤

√
Φi

λmin(Qi)

}
.

It implies that V ∗(x) is a Lyapunov function. This indicates that xi(t) will converge to a

small neighborhood wherever the initial position is. This completes the proof.

Remark 2.3 In [13], the interconnection term is required to satisfy the assumed match-

ing condition, which plays an important role in guaranteeing the closed-loop isolated sub-

system to be stable. Unlike the method in [13], in this paper, we can see from the detailed

proof that the strong assumption is relaxed by moving the substituted interconnection

into the isolated subsystem, and leaving the bounded term ∥∇V ∗
i (xi)∥ϕi1 to be handled.

Furthermore, the UUB stability is guaranteed for the large-scale nonlinear system (2.1),

rather than the isolated subsystem (2.5). Therefore, the assumption on the matched

interconnection can be removed.

2.3.2 Neural network implementation

In this subsection, two NNs are employed to approximate the unknown mismatched

interconnection and the assumed differentiable local performance index function.

1) Approximation of the interconnection

In this part, a state observer is employed to estimate the state of interconnected

subsystem (2.2) as

˙̂xi(t) = fi(x̂i) + gi(x̂i)ui + ĥid(x̂iD) + liei, (2.15)

where ei = xi − x̂i is the observation error, and li = diag[li1, li2, . . . , lin] ∈ Rni∗ni is the

observer gain matrix with all positive elements. Noticing that the approximated unknown
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mismatched interconnection hi is shown as (2.3), it can be approximated by ĥid, which is

expressed as

ĥid = ŴT
ihσih(x̂iD), (2.16)

whose weight vector is updated by

˙̂
Wih = Γihe

T
i σih(x̂iD) (2.17)

with Γih > 0 a constant.

Combining (2.2), (2.4) with (2.15), we have

ėi = (fi(xi)− fi(x̂i)) + (gi(xi)− gi(x̂i))ui

+ hid(xiD) + ∆i(x, xiD) + εi − ĥid(x̂iD)− liei.

Since fi(·) and gi(·) are locally Lipschitz, we have

ėi ≤ Dif ∥ei∥+Dig ∥ei∥ui + hid(xiD) + ∆i(x, xiD) + εi − ĥid(x̂iD)− liei

= Dif ∥ei∥+Dig ∥ei∥ui + W̃T
ihσih(x̂iD) + ∆i(x, xiD) + εi − liei,

where Dif and Dig are positive constants.

Theorem 2.2 Consider the interconnected subsystem (2.2), as well as the approxima-

tion of the unknown mismatched interconnection (2.16) and with the updated law as

(2.17), the observation error ei which is derived by combining (2.2) with the developed

state observer (2.15) is guaranteed to be UUB.

Proof Select the Lyapunov function candidate as

Li1 =
1

2
eTi ei +

1

2
W̃T

ihΓ
−1
ih W̃ih, (2.18)

where W̃ih = Wih − Ŵih is the weight approximation error.

Denoting ηi2 = Dig ∥ei∥ui +∆i(x, xiD) + εi, the time derivative of (2.18) is

L̇i1 = eTi ėi − W̃T
ihΓ

−1
ih

˙̂
Wih

≤ eTi

(
Dif ∥ei∥+ W̃T

ihσih(xiD) + ηi2 − liei

)
− W̃T

ihΓ
−1
ih

˙̂
Wih.

Suppose that the norm of the entire error is bounded as ∥ηi2∥ ≤ ϕi2 with ϕi2 > 0 as an

unknown constant, we have

L̇i1 ≤ −(λmin(li)−Dif ) ∥ei∥2 + ∥ei∥ϕi2 + W̃T
ih

(
eTi σih(xiD)− Γ−1

ih
˙̂
Wih

)
. (2.19)
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Substituting (2.17) into (2.19), we have

L̇i1 ≤−
(
λmin(li)−Dif

)
∥ei∥2 + ∥ei∥ϕi2

= ∥ei∥
(
(−λmin(li) +Dif) ∥ei∥+ ϕi2

)
.

Therefore, we can conclude that L̇i1 ≤ 0 when ei lies outside of the compact set

Ωei =

{
ei : ∥ei∥ <

ϕi2
λmin(li)−Dif

}
,

where λmin(li) > Dif . According to the Lyapunov’s direct method, the observation error

is UUB with the approximation and substitution of the unknown mismatched intercon-

nection. This completes the proof.

Remark 2.4 It is reasonable to assume ηi1 and ηi2 in Theorems 2.1 and 2.2 to be

bounded. Take ηi1 in Theorem 1 as an example, the bounded ηi1 is necessary to guarantee

the closed-loop system to be UUB, since we cannot promise ηi1 is a positive or negative

function. It means that xi(t) will converge to a small neighborhood, which may be smaller

than the given Ωxi , but never larger than it.

Remark 2.5 From Theorems 2.1 and 2.2, we can see that the summaries are obtained by

the boundedness assumptions of ηi1 and ηi2. It indicates that the stability verifications are

based on the boundedness of the states, rather than the boundedness on interconnections.

Thus, it removes the assumption on available upper boundedness of interconnections in

[13].

2) The critic neural network

Since the term δ̂i ∥∇Vi(xi)∥Ei in (2.7) is not completely known, we need to use

parametric structures, such as NNs, to approximate it. We can observe that the unknown

part ∇Vi(xi) is the gradient along the corresponding state xi of the critic NN, and it can

be indirectly obtained by approximating Vi(xi) with a single layer NN on the compact

set Ωi as

Vi(xi) = WT
icσic(xi) + εic(xi), (2.20)

where Wic ∈ Rli is the ideal weight vector, σi(xi) ∈ Rli is the activation function, li is the

number of neurons in the hidden-layer, and εic(xi) is the approximation error. Then, its

gradient along corresponding state xi is

∇Vi(xi) = (∇σic(xi))TWic +∇εTic(xi), (2.21)
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where∇σic(xi) = ∂σic(xi)
∂xi

∈ Rli×ni and∇εic(xi) are the gradients of the activation function

and the approximation error, respectively.

From (2.20), the approximate critic NN can be expressed by

V̂i(xi) = ŴT
icσic(xi).

Then, the gradient of V̂i(xi) along the corresponding state is

∇V̂i(xi) = (∇σic(xi))T Ŵic.

For the isolated subsystem (2.5), substituting (2.21) into the nonlinear Lyapunov

function (2.8), we have

0 = δ̂i∥∇V T
i (xi)∥Ei + Ui(xi, ui)

+
(
WT

ic∇σic(xi) +∇εic(xi)
)T

(fi(xi) + gi(xi)ui(xi) + hid(xiD)) .

Let υi = ∥∇V T
i (xi)∥ − ∥∇V̂ T

i (xi)∥, for the interconnected subsystem (2.2), the Hamilto-

nian can be expressed as

Hi (xi, ui,Wic) = δ̂i∥∇V̂ T
i (xi)∥Ei + Ui(xi, ui) +WT

ic∇σic(xi)ẋi
=− δ̂iυiEi −∇εTic(xi)ẋi
= eicH , (2.22)

where eicH is the approximation error of the critic NN.

Thus, the approximate local Hamiltonian can be obtained by

Hi

(
xi, ui, Ŵic

)
= δ̂i∥∇V̂ T

i (xi)∥Ei + Ui(xi, ui) + ŴT
ic∇σic(xi)ẋi = eic.

Let θi = ∇σic(xi)ẋi. By the steepest descent algorithm, the objective function

Eic =
1
2
eTiceic can be minimized in order to adjust the weight vector of the critic NN Ŵic,

which should be updated by

˙̂
Wic = −liceicθi, (2.23)

where lic > 0 is the learning rate.

Define the weight approximation error as W̃ic = Wic − Ŵic, according to (2.22) and

(2.23), one has

eic = eicH − W̃T
icθi.
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The critic NN weight approximation error can be updated by

˙̃Wic = − ˙̂
Wic = lic

(
eicH − W̃T

icθi

)
θi. (2.24)

Therefore, according to (2.11) and (2.20), the ideal local control policy can be expressed

as

ui(xi) = −1

2
R−1
i gTi (xi)

(
(∇σic(xi))TWic +∇εTic(xi)

)
.

And it can be approximated as

ûi(xi) = −1

2
R−1
i gTi (xi) (∇σic(xi))

T Ŵic. (2.25)

From the above equation, we can observe that the local control policy is derived by the

critic NN, and the training of the action NN is no longer required.

Theorem 2.3 Consider the interconnected subsystem (2.2), the weight of the critic

NN is updated by (2.24), the dynamics of the weight approximation error vector can be

guaranteed to be UUB.

Proof Select the Lyapunov function candidate as

Li2 =
1

2lic
W̃T

icW̃ic.

Its time derivative is

L̇i2 =
1

lic
W̃T

ic
˙̃Wic

= W̃T
ic

(
eicH − W̃T

icθi

)
θi

= W̃T
iceicHθi − ∥W̃T

icθi∥2

≤ 1

2
e2icH − 1

2
∥W̃T

icθi∥2.

Hence, L̇i2 < 0 when W̃ic lies outside the compact set

ΩW̃ic
=

{
W̃ic : ∥W̃ic∥ ≤

∥∥∥∥eicHθiM
∥∥∥∥}

where ∥θi∥ ≤ θiM , and θiM is a positive constant. Based on the Lyapunov stability

theorem, the dynamics of the weight approximation error vector is UUB. This completes

the proof.

Remark 2.6 Since the convergence rate of RBFNN is higher than that of back propa-

gation NN (BPNN), the RBFNN is employed by the developed local state observer (2.15).

However, the local control policy (2.25) requires the partial derivative of local critic NN,

which has heavy computational burden if RBFNN is employed. To tradeoff between the

convergence rate and computational burden, BPNN is selected for local critic NN. Thus,

different structures are chosen for these two NNs.
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2.3.3 Stability analysis

Theorem 2.4 Consider the interconnected subsystem (2.2), together with the improved

local value function (2.7), where δ̂i is updated by

˙̂
δi = Γiδ∥(∇V ∗

i (xi))
T∥Ei (2.26)

and Γiδ > 0 a constant, the N approximated decentralized control policies developed by

(2.25) guarantee the closed-loop large-scale nonlinear system (2.1) to be UUB. In other

words, the control policies u1(x1), u2(x2), . . . , uN(xN) are the decentralized control law

for the large-scale nonlinear system composed of N subsystems as (2.2).

Proof Select the Lyapunov function candidate for the ith interconnected subsystem as

Li3 =
N∑
i=1

(
V ∗
i +

1

2
δ̃Ti Γ

−1
iδ δ̃i

)
.

Its time derivative is

L̇i3 =
N∑
i=1

(
∇V ∗T

i ẋi − δ̃Ti Γ
−1
iδ

˙̂
δi

)
.

According to (2.8) and (2.14), we can obtain

L̇i3 ≤
N∑
i=1

(
δ̃Ti
∥∥∇V ∗T

i

∥∥Ei − Ui(xi, ui)

+
∥∥∇V ∗T

i

∥∥ϕi − δ̃Ti Γ
−1
iδ

˙̂
δi

)
. (2.27)

Substituting (2.26) into (2.27), we have

L̇i3 ≤
N∑
i=1

(
−Ui(xi, ui) +

∥∥∇V ∗T
i

∥∥ϕi)
≤

N∑
i=1

(
−λmin(Qi) ∥xi∥2 +

∥∥∇V ∗T
i

∥∥ϕi).
We can conclude that Σ̇ ≤ 0 when xi lies outside the compact set

Ωxi =

xi : ∥xi∥ <

√∥∥∇V ∗T
i

∥∥ϕi
λmin(Qi)

 .

From Lyapunov stability theorem, the closed-loop large-scale nonlinear system (2.1) is

UUB with the control policies u1(x1), u2(x2), . . . , uN(xN). This completes the proof.
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Remark 2.7 The positive function δ̂i defined in (2.6) can be updated by (2.26). It

cannot guarantee δ̂i to be positive at the very beginning of updating. Noticing that the

right hand side of (2.26) is positive when t > 0, δ̂i will be guaranteed to be positive all

the time as long as its initial value δ̂i0 ≥ 0 for updating. Thus, (2.7) can be guaranteed

to be a Lyapunov equation with a proper initial value.

2.3.4 Local online PI algorithm

Here, a local online PI algorithm is introduced to solve HJB equations. The local

online PI algorithm consists of the local policy evaluation based on (2.8) and the local pol-

icy improvement based on (2.11), and its iteration process can be described as Algorithm

2.1.

Algorithm 2.1 Local online PI algorithm

Step 1 For i = 1, 2, . . . , N , select a set of small positive constants ξi, let p = 0 and

V
(0)
i (xi) = 0, and begin with admissible control policies u

(0)
i (xi).

Step 2 (Local policy evaluation) Let p > 0, based on the local control policy u
(p)
i (xi),

solve the following local nonlinear Lyapunov equation for u
(p)
i (xi):

0 = δ̂i

∥∥∥∇V (p)T
i (xi)

∥∥∥Ei + Ui(xi, u
(p)
i )

+∇V (p)T
i (xi) (fi(xi) + gi(xi)ui(xi) + hid(xiD)) . (2.28)

Step 3 (Local policy improvement) Update the local control policy u
(p)
i (xi) by

u
(p+1)
i (xi) = −1

2
R−1
i gTi (xi)∇V

(p)
i (xi). (2.29)

Step 4 If
∥∥∥V (p+1)

i (xi)− V
(p)
i (xi)

∥∥∥ ≤ ξi, stop and obtain the approximated optimal con-

trol; else, let p = p+ 1 and return to Step 2.

From Algorithm 2.1, we can see that V
(0)
i (xi) = 0 is required. It is required to prove

the convergence of Algorithm 1, e.g., V
(p)
i (xi) → J∗

i (xi) and u
(p)
i (xi) → u∗i (xi) as p→ ∞.

Theorem 2.5 For the ith isolated subsystem (2.5), given N initial admissible control

policies u
(0)
i (xi), where i = 1, 2, . . . , N . Then, using the local PI algorithm described by

(2.28) and (2.29), the improved local value functions and control policies converge to the

optimal ones as p→ ∞, i.e., V
(p)
i (xi) → J∗

i (xi), u
(p)
i (xi) → u∗i (xi).
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Proof For the ith subsystem, we have u
(p)
i (xi) ∈ Ψ(Ωi) for any p ≥ 0 with a given initial

admissible control policy u
(0)
i (xi). Furthermore, there exists an integer p0i for any ζi such

that for any p ≥ p0i, the following formulas

sup
xi∈Ωi

∣∣∣V (p)
i (xi)− J∗

i (xi)
∣∣∣ < ζi (2.30)

and

sup
xi∈Ωi

∣∣∣u(p)i (xi)− u∗i (xi)
∣∣∣ < ζi (2.31)

hold simultaneously.

Similarly, this conclusion can be extended to the case of N isolated subsystems.

Additionally, we denote p0 = max {p0i}. Therefore, there exists any integer p0 for any ζ,

where ζ = max {ζi}, such that for any p ≥ p0, (2.30) and (2.31) are true for i = 1, 2, . . . , N .

That is to say, the algorithm will converge to the improved local optimal value functions

and local optimal controls of the the N isolated subsystems. This completes the proof.

2.4 Simulation studies

For large-scale nonlinear systems with unknown mismatched interconnections, two

simulation examples are given in order to show the effectiveness of the proposed decen-

tralized control scheme in this section.

Example 2.1 Consider the following large-scale nonlinear system:

ẋ1 =

[
x12 − x11

−0.5(x11 + x12)− 0.5x12 (cos(2x11) + 2)2

]
+

[
0

cos(2x1) + 2

]
u1(x1)

+

[
0

4(x11 + x22) sin(x
3
12) cos(0.5x21)

]

ẋ2 =

[
x22

−x21 − 0.5x22 + 0.5x221x22

]
+

[
0

x21

]
u2(x2) +

[
0

0.5(x12 + x22) cos(e
x221)

]

where xi = [xi1, xi2]
T ∈ R2 and ui(xi) ∈ R are the state and control input of ith subsystem,

respectively. It is assumed that the interconnections are unknown and mismatched.

Let the initial states of the system be x10 = x20 = [1,−1]T, and the initial states of the

observer be x̂10 = [2,−2]T and x̂20 = [1.5,−1.5]T, respectively. Because it is a regulation

problem, the reference states of the coupled subsystems can be chosen as xid = 0. In this

simulation, the RBFNN in the local observer is chosen as 2–7–1 with 2 input neurons, 7

hidden neurons and 1 output neuron. Meanwhile, the improved local value function (2.6)
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Fig. 2.1 State estimation errors

is approximated by a critic NN, whose structure is chosen as 2–3–1 with 2 input neurons,

3 hidden neurons and 1 output neuron, and the weight vector as Ŵic = [Ŵic1, Ŵic2, Ŵic3]
T

with the initial values W1c0 = [1.6, 0.4, 0.6]T and W2c0 = [0.3, 0.4, 1.3]T. The activation

function of the critic NN is selected as σic(xi) = [x2i1, xi1xi2, x
2
i2]. Let Qi = 20I2, Ri =

20I, the weight learning rates of the approximated interconnection and the critic NN be

Γih = 10 and lic = 0.05, the updated rate of δ̂i in improved local value function (2.7) be

Γiδ = 0.0001, the state observer gain matrix be li = 10I2, where In denotes the identity

matrix with n dimensions, respectively.

The simulation results are shown in Figs. 2.1–2.3. Fig. 2.1 illustrates the state estima-

tion error by using the local state observer (2.15). It implies that the unknown intercon-

nection can be approximated precisely online. We can see in Fig. 2.2, the weights of two

critic NNs converge to [2.297408,−0.339473, 1.384527]T and [2.838536,−1.982101, 3.2674

96]T. From Fig. 2.3, the system states can converge to zero by using the improved local

value function (2.7) and the developed local PI algorithm. Therefore, the simulation

results verify the effectiveness of the proposed decentralized control scheme.

Remark 2.8 In the considered large-scale nonlinear systems, the known dynamic fi(xi)

and gi(xi) are estimated well when the estimation error is guaranteed to be UUB. Thus,

in this case, the unknown mismatched interconnection can be approximated successfully.

Example 2.2 In order to further show the effectiveness of the proposed decentralized

control scheme based on local PI algorithm, a hard spring connected parallel inverted
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Fig. 2.2 The weights of critic neural networks

pendulum system [117, 118] is employed in our simulation. The model of the parallel

inverted pendulum system shown in Fig. 2.4 can be expressed by

m1l
2
1θ̈1−m1gl1 sin θ1 + b1θ̇1 − Fa1 cos(θ1 − β) = δ1u1

m2l
2
2θ̈2−m2gl2 sin θ2 + b2θ̇2 − Fa2 cos(θ2 − β) = δ2u2 (2.32)

where b1 and b2 are damping coefficients, and

F = k
{
1 + A2 (lk − l0)

2} (lk − l0) ,

|A (lk − l0)| < 1,

β = arctan

(
a1 cos θ1 − a2 cos θ2

l0 − a1 sin θ1 + a2 sin θ2

)
,
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Fig. 2.3 System states

lk =
{
(l0−a1 sin θ1+a2 sin θ2)2 +(a1 cos θ1+a2 cos θ2)

2}2 .
In this simulation, parameters of the coupled inverted pendulums are chosen as:

δ1 = δ2 = 1, m1 = m2 = 1kg, l1 = l2 = 0.5m, l0 = 1m, g = 9.8m/s2, b1 = b2 = 0.009,

k = 30, A = 0.1, and the spring position a1 = a2 = 0.1.

Let xi = [xi1, xi2]
T = [θi, θ̇i]

T ∈ R2, the model (2.32) can be expressed as

ẋ11 = x12

ẋ12 = δ1u1 + f1(x1) + h1(x)

ẋ21 = x22

ẋ22 = δ2u2 + f2(x2) + h2(x)

where f1(x1) = 5.88 sin x11−0.036x12, f2(x2) = 5.88 sinx21−0.036x22, h1(x) = 4Fa1 cos(x11−
β), h2(x) = 4Fa2 cos(x21 − β).

Let the initial states of the parallel inverted pendulum, the structure of critic NN be

the same as those of Example 2.1. Let initial values of the weight vectors respectively be

W1c0 = [1, 1.8, 1.6]T and W2c0 = [1.6, 1, 1.2]T, Qi = 0.1I2, Ri = 0.01I, the weight learning

rates of the approximated interconnection and the critic NN be Γih = 100 and lic = 0.2,

the updated rate of δ̂i in value function (2.7) be Γiδ = 0.001, and the state observer gain

matrix be li = 10I2, respectively.

The simulation results are illustrated in Figs. 2.5–2.7. Fig. 2.5 illustrates the unknown

interconnection can be estimated successful online. We can see in Fig. 2.6, the weights of t-
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wo critic NNs converge to [0.896337, 1.932218, 1.369870]T and [0.621462, 1.340702, 1.1132

69]T, respectively. Fig. 2.7 shows that the system states can converge to zero by using

the presented decentralized control policy. The simulation results reveal that the pro-

posed decentralized control scheme can be applied to large-scale nonlinear systems with

unknown mismatched interconnections.

2.5 Conclusion

In this chapter, we proposed a decentralized control scheme based on local PI algo-

rithm for large-scale nonlinear systems with unknown mismatched interconnections. To

relax the common boundedness assumption of the interconnection, the local states of iso-

lated subsystem and the substituted reference states of coupled subsystems are employed

to approximate interconnection terms. Then, an improved local performance index func-

tion is established to reflect the NN substitution error. At last, by the Lyapunov stability
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theorem, the closed-loop large-scale nonlinear system is guaranteed to be UUB via the

developed decentralized control scheme. The simulation results ensure that the proposed

decentralized control scheme is effective.



Chapter 3 Observer-critic Structure Based ADP for

Decentralized Tracking Control of Unknown Large-scale

Nonlinear Systems

3.1 Introduction

Motivated by [13], [24] and [119], in this chapter, a DTC scheme via observer-critic

structure based ADP is proposed for unknown large-scale nonlinear systems. The devel-

oped decentralized control consists of local desired control, local tracking error control and

an adaptive robustifying compensator. In order to remove the assumptions on bound-

edness and matched condition of interconnections, the desired trajectories of coupled

subsystems are shared to substitute their actual ones. Then, the substituted subsystem

dynamics is identified by establishing a local NN observer. It helps to derive the local

desired control, as well as the control input matrix of the local tracking error control.

Together with the solution to HJB equation based on the critic NN approximated value

function, the local tracking error control can be obtained directly. The overall error,

which contains the substitution error, observation error and approximation error of local

tracking error control, is compensated by an adaptive robustifying term. The proposed

DTC can guarantee the tracking error of the closed-loop system to be asymptotically sta-

ble via Lyapunov’s direct method. Two simulation examples are provided to demonstrate

the effectiveness of the proposed scheme.

The main contributions of this work have the following four aspects:

(1) To the best of our knowledge, it is the first time to extend the ADP approach

to solve the DTC problem for unknown large-scale nonlinear systems. This method

establishes the local NN observer to identify the unknown subsystem dynamics, which

helps to derive not only the local desired control, but also the local tracking error control.

The controllers have the similar structures, which are different from existing methods

[1, 24, 32].

(2) Unlike existing methods [13, 39, 58], the states of coupled subsystems are sub-

stituted by their desired states. Thus, the assumptions on the boundedness and matched

condition of interconnections can be relaxed.

(3) The local tracking error control is derived by combining the identified control

input matrix with the critic NN approximated value function. Therefore, the action NN,

which is commonly adopted in existing methods, is not required anymore.
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(4) The substitution error, observation error and approximation error can be com-

pensated simultaneously by employing an adaptive robustifying term, and the tracking

error of the closed-loop system can be guaranteed to be asymptotically stable.

3.2 Problem statement

Consider unknown large-scale nonlinear systems that are composed of N intercon-

nected subsystems, whose ith (i = 1, 2, . . . , N) subsystem can be described by

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(xi(t)) + hi(x(t)), (3.1)

where xi(t) = [xi1(t), xi2(t), . . . , xi(ni)(t)]
T ∈ Rni , i = 1, . . . , N and ui(xi(t)) ∈ Rmi are the

state vector and control input of the ith subsystem, respectively; x(t) = [xT1 (t), . . . , x
T
N(t)]

T

∈ Rn is the overall system state vector with n =
∑N

i=1 ni; fi(xi(t)), gi(xi(t)) and hi(x(t))

are unknown nonlinear internal dynamics, input gain matrix and interconnection term,

respectively.

Assumption 3.1 The nonlinear functions fi(xi(t)), gi(xi(t)) and hi(x(t)) are Lipschitz

and continuous in their arguments with fi(0) = 0, and the subsystem (3.1) is controllable.

Unlike assuming hi(x) to be bounded and satisfying the matching conditions [13, 58],

the desired trajectories of the coupled subsystems are employed to substitute their actual

states, so the interconnection term can be expressed as

hi(x) = hi(xi, xjd) + ∆hi(x, xjd), (3.2)

where xjd denotes the desired trajectories of the coupled subsystems with j = 1, . . . , i−
1, i+1, . . . N . ∆hi(x, xjd) = hi(x)−hi(xi, xjd) denotes the substitution error. Thus, (3.1)

becomes

ẋi = Fi(xi, xjd) + gi(xi)ui(xi) + ∆hi(x, xjd), (3.3)

where Fi(xi, xjd) = fi(xi)+hi(xi, xjd), which is still Lipschitz continuous on a set Ωi ∈ Rni

according to Assumption 3.1. Since the interconnection satisfies the global Lipschitz

condition, which implies

∥∆hi(x, xjd)∥ ≤
n∑

j=1,j ̸=i

dijEj, (3.4)

where Ej = ∥xj − xjd∥, and dij ≥ 0 is an unknown global Lipschitz constant.

The objective of this chapter is to find a set of decentralized tracking control policies

u1(x1), . . . , ui(xi), . . . , uN(xN) such that the states of the overall unknown large-scale

nonlinear system track the desired trajectories.
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Remark 3.1 We notice that the interconnection term is approximated by signals from

the local subsystem and the desired signals from coupled subsystems. It is worthy pointing

out that the desired signals, which are decided according to the control objective, are

shared to each subsystem before the system runs.

For ith subsystem, define the tracking error as

ei = xi − xid, (3.5)

where xid is the predefined desired trajectory.

Combining (3.5) with (3.2), the tracking error dynamics can be expressed as

ėi = ẋi − ẋid. (3.6)

Thus, associated with the tracking error dynamics (3.6), the local tracking error control

policy should minimize the following local infinite horizon value function

Vi(ei(t)) =

∫ ∞

t

Ui (ei(τ), uie(τ)) dτ , (3.7)

where Ui(ei(t), uie(ei)) = eTi (t)Qiei(t)+u
T
ie(ei)Riuie(ei) is the local utility function, Ui(0, 0) =

0, and Ui(ei, uie) ≥ 0 for all ei and uie, in which Qi ∈ Rni×ni and Ri ∈ Rmi are positive

definite matrices, uie = ui(xi) − uid(xid) is the local control input error, and uid(xid) is

the local desired control input.

3.3 Decentralized tracking controller design

The detailed design procedure of DTC in the optimal manner for unknown large-scale

nonlinear system is given in this section.

3.3.1 Decentralized controller design of systems with known dynamics

In order to achieve the control objective, the controller design procedure for unknown

systems follows the strategy for systems with known dynamics. In this subsection, the

DTC for systems with known dynamics is introduced.

The optimal tracking control problem should be solved for N isolated subsystems.

For systems with known dynamics, the local desired control input can be obtained by

(3.3) as

uid(xid) = g+i (xid) (ẋid − Fi(xd)−∆hi(xd)) , (3.8)

where xd = [xT1d, . . . , x
T
Nd]

T, and g+i (·) is the Moore-Penrose pseudo-inverse of gi(·).
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According to the optimal control theory, the designed tracking error control policy

must not only ensure the tracking error converge to a small neighborhood on Ωi, but also

guarantee the local value function (3.7) to be finite. In other words, the tracking error

control policy should be admissible.

Definition 3.1 For local tracking error dynamics (3.6), a tracking error control policy

µie(ei) is said to be admissible if µie(ei) is continuous on a set Ωi with µie(0) = 0, µie(ei)

ensures the convergence of the ith subsystem (3.1) on Ωi, and Ji(ei(t)) is finite for all

ei ∈ Ωi.

For any admissible control policy µi(ei) ∈ ψi(Ωi) of subsystem (3.1), where ψi(Ωi) is

the set of admissible control, if the local value function

Vi(ei(t)) =

∫ ∞

t

Ui (ei(τ), µie(τ)) dτ (3.9)

is continuously differentiable, then the infinitesimal version of (3.9) is the so-called Lya-

punov equation

0 = Ui (ei, µie) + (∇Vi(ei))T ėi (3.10)

with Vi(0) = 0, and the term ∇Vi(ei) denotes the partial derivative of Vi(ei) with respect

to the local tracking error ei, i.e., ∇Vi(ei) = ∂Vi(ei)/∂ei.

The Hamiltonian of the optimal control problem and the optimal value function can

be formulated as

Hi (ei, µie,∇Vi(ei)) = Ui (ei, µie) + (∇Vi(ei))T ėi,

and

V ∗
i (ei) = min

µie∈ψi(ei)

∫ ∞

t

Ui (ei(τ), µie(τ)) dτ .

Thus,

0 = min
µie∈ψi(ei)

Hi (ei, µie,∇V ∗
i (ei)) ,

where ∇J∗
i (ei) = ∂J∗

i (ei)/∂ei. If the solution V ∗
i (ei) exists and is continuously differen-

tiable, the local desired optimal tracking error control can be described as

u∗ie(ei) = −1

2
R−1
i gTi (xi)∇V ∗

i (ei). (3.11)

Therefore, the desired DTC can be expressed as

ui(xi) = u∗ie(ei) + uid(xid). (3.12)



Chapter 3 Observer-critic Structure Based ADP for Decentralized Tracking Control of Unknown
Large-scale Nonlinear Systems 33

Remark 3.2 In existing results on dealing with trajectory tracking problems, ADP

based controllers as in (3.12) commonly contain two parts, namely desired control and

desired tracking error control. Inspired by that, in this chapter, we concern the DTC

scheme in similar way. That is, the DTC for systems with available dynamics in subsection

3.3.1 provides a design strategy for that of large-scale system with unknown dynamics.

The design of DTC for such systems will be detailed in the following subsections.

3.3.2 Neural network observer based unknown subsystem identification

The purpose of designing a local NN observer is to identify dynamics of the un-

known subsystems. With the help of identified subsystems, the DTC can be designed for

unknown large-scale nonlinear systems in a similar control structure as in subsection 3.1.

For the ith subsystem of the unknown large-scale nonlinear system (3.1), it can be

identified by a local NN observer, which can be established as

˙̂xi = F̂i(x̂i, xjd) + ĝi(x̂i)ui(xi) +Kio(xi − x̂i), (3.13)

where x̂i = [x̂i1, . . . , x̂i(ni)]
T ∈ Rni is the state vector of the developed observer, F̂i(x̂i, xjd)

and ĝi(x̂i) are the observation of nonlinear dynamics Fi(xi, xjd) and gi(xi), respectively;

Kio = diag[ki1o, ki2o] is a positive definite observation gain matrix.

Define the observation error vector eio = xi − x̂i, combining (3.3) with (3.13), the

observation error dynamics can be described as

ėio = Fi(xi, xjd)− F̂i(x̂i, xjd) + (gi(xi)− ĝi(x̂i))ui(xi) + ∆hi(x, xjd)−Kioeio.

The nonlinear unknown terms Fi(xi, xjd) and gi(xi) are approximated by two ideal radial

basis function (RBF) NNs as

Fi(xi, xjd) = WT
ifσif(xi, xjd) + εif , ∥εif∥ ≤ εi1, (3.14)

gi(xi) = WT
igσig(xi) + εig, ∥εig∥ ≤ εi2, (3.15)

where Wif and Wig are ideal weight vectors from the hidden layer to the output layer,

σif (xi, xjd) and σig(xi) are basis functions, εif and εig are approximation errors, and εi1

and εi2 are unknown positive constants.

Let Ŵif and Ŵig be the estimations of Wif and Wig, respectively. We have

F̂i(x̂i, xjd) = ŴT
ifσif (x̂i, xjd), (3.16)

ĝi(x̂i) = ŴT
igσig(x̂i), (3.17)
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where Ŵif and Ŵig can be updated by the adaptive laws as

˙̂
Wif = Γifeioσif (x̂i, xjd), (3.18)

˙̂
Wig = Γigeioσig(x̂i)ui, (3.19)

where Γif and Γig are positive constants.

Combining (3.14) and (3.16), (3.15) and (3.17), we have

Fi(xi, xjd)− F̂i(x̂i, xjd) = WT
if σ̃if (xi, x̂i, xjd) + W̃T

ifσif(x̂i, xjd) + εif , (3.20)

gi(xi)− ĝi(x̂i) = WT
igσ̃ig(xi, x̂i) + W̃T

igσig(x̂i) + εig, (3.21)

where W̃if = Wif−Ŵif and W̃ig = Wig−Ŵig are the weight estimation errors, σ̃if(xi, x̂i, xjd) =

σif (xi, xjd) − σ̂if(x̂i, xjd) and σ̃ig(xi, x̂i) = σig(xi) − σig(x̂i) are the estimation errors of

RBFs, respectively.

Theorem 3.1 For interconnected subsystem (3.1), the developed local NN observer can

guarantee the observation error eio to be uniformly ultimately bounded (UUB) with the

updating laws (3.18)–(3.19).

Proof Select a Lyapunov function candidate as

Li1 =
1

2
eTioeio +

1

2
W̃T

ifΓ
−1
if W̃if +

1

2
W̃T

igΓ
−1
ig W̃ig. (3.22)

The time derivative of (3.22) is

L̇i1 = eTioėio − W̃T
ifΓ

−1
if

˙̂
Wif − W̃T

igΓ
−1
ig

˙̂
Wig

= eTio(Fi(xi, xjd)− F̂i(x̂i, xjd) + (gi(xi)− ĝi(x̂i))ui(xi) + ∆hi(x, xjd)−Kioeio)

− W̃T
ifΓ

−1
if

˙̂
Wif − W̃T

igΓ
−1
ig

˙̂
Wig. (3.23)

Combining (3.23) with (3.20) and (3.21), we have

L̇i1 = eTio

(
W̃T

ifσif(x̂i, xjd) + W̃T
igσig(x̂i)ui(xi) + wi1 +∆hi(x, xjd)

)
− eTioKioeio − W̃T

ifΓ
−1
if

˙̂
Wif − W̃T

igΓ
−1
ig

˙̂
Wig, (3.24)

where wi1 = WT
if σ̃if (xi, x̂i, xjd) + εif +

(
WT

ig σ̃ig(xi, x̂i) + εig
)
ui denotes the overall NN

approximation error.

Substituting (3.18) and (3.19) into (3.24), we have

L̇i1 = eTio (wi1 +∆hi(x, xjd))− eTioKioeio. (3.25)



Chapter 3 Observer-critic Structure Based ADP for Decentralized Tracking Control of Unknown
Large-scale Nonlinear Systems 35

Assumption 3.2 The defined approximation wi1 is norm-bounded, i.e., ∥wi1∥ ≤ ηi1,

where ηi1 is an unknown positive constant.

Letting ηi2 =
N∑

j=1,j ̸=i
dijEj, according to (3.4), (3.25) becomes

L̇i1 ≤∥eio∥ (ηi1 + ηi2)− λmin(Kio) ∥eio∥2

=− ∥eio∥ (λmin(Kio) ∥eio∥ − (ηi1 + ηi2)) ,

where λmin(Kio) denotes the minimum eigenvalue of Kio. We can observe that L̇i1 ≤ 0

when eio lies outside of the compact set

Ωeio =

{
eio : ∥eio∥ ≤ ηi1 + ηi2

λmin(Kio)

}
.

Therefore, according to Lyapunov’s direct method, the observation error eio is UUB. This

completes the proof.

Remark 3.3 It should be pointed out that controllers of unknown nonlinear systems

were commonly designed by introducing an action NN in many previous works [13, 58].

Different from these, in our approach, the control law is designed in a similar control

structure to model-based controller by using the identified input gain matrix via local NN

observer. On the other hand, the key point for obtaining the desired trajectory tracking

control for unknown systems is to find the system dynamics, which can be identified by

the present local NN observer.

3.3.3 Decentralized tracking controller design for unknown large-scale

nonlinear systems

From the present observer (3.7), the identifier of the ith subsystem should be ex-

pressed as

˙̂xi = F̂i(x̂i, xjd) + ĝi(x̂i)ui(x̂i), (3.26)

where uio(x̂i) is the control input of the identifier. Thus, the desired control input of

identifier uid(xid) can be obtained by

uid(xid) = ĝ+i (xid)
(
ẋid − F̂i(xd)

)
. (3.27)

Since the value function is highly nonlinear and nonanalytic, it can be approximated

by NNs, which are powerful tools for approximating nonlinear functions. For the ith
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subsystem, a critic NN is employed to approximate the corresponding assumed continuous

local value function on the compact set Ωi as

Vi(ei) = WT
icσic(ei) + εic(ei), (3.28)

where Wic ∈ Rli×ni is the ideal weight vector, σic(ei) ∈ Rli is the activation function, li is

the number of neurons in the hidden layer, and εic(ei) is the approximation error of NN.

Then, the gradient of Vi(ei) with respect to ei is

∇Vi(ei) = (∇σic(ei))TWic +∇εic(ei), (3.29)

where ∇σic(ei) = ∂σic(ei)
/
∂ei ∈ Rli and ∇εic(ei) are the gradients of the activation func-

tion and the approximation error, respectively.

Combining (3.10) with (3.29), we have

0 = Ui (ei, µie) +
(
(∇σic(ei))TWic +∇εic(ei)

)T
ėi.

Therefore, the local Hamiltonian can be expressed as

Hi (ei, µie,Wic) = Ui (ei, µie) +WT
ic∇σi(ei)ėi = −∇εic(xi)ėi = eicH , (3.30)

where eicH is the residual error caused by NN approximation.

The critic NN (3.28) can be approximated as

V̂i(ei) = ŴT
icσic(ei), (3.31)

where Ŵic ∈ Rli×ni is the weight estimation.

Then, the gradient of (3.31) with respect to ei is

∇V̂i(ei) = (∇σic(ei))T Ŵic.

Therefore, the approximate local Hamiltonian can be expressed as

Hi

(
ei, µie, Ŵic

)
= Ui (ei, µie) + ŴT

ic∇σi(ei)ėi = eic. (3.32)

Let θi = ∇σi(ei)ėi. From (3.30) and (3.32), we have

eic = eicH − W̃T
icθi,

where W̃ic = Wic − Ŵic, and it can be updated as

˙̃Wic = − ˙̂
Wic = li1(eicH − W̃T

icHθi)θi, (3.33)
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where λi1 > 0 is the learning rate of the critic NN.

To obtain the updating rule of the critic NN weight vector Ŵic, with the steepest

decent algorithm, the local objective function Eic =
1
2
eTiceic should be minimized as

˙̂
Wic = − ˙̃Wic = −li1eicθi. (3.34)

Therefore, the ideal local optimal tracking error control can be derived as

µie(ei) = −1

2
R−1
i gTi (xi)

(
(∇σic(ei))TWic +∇εic(ei)

)
.

Since the nonlinear system is unknown, consider the identified control input matrix (3.17)

and the approximate critic NN (3.31), the local optimal tracking error control can be

expressed as

µ̂ie(ei) = −1

2
R−1
i ĝTi (xi) (∇σic(ei))

T Ŵic. (3.35)

Theorem 3.2 For ith interconnected subsystem (3.1), the weight approximation error

W̃ic can be guaranteed to be UUB as long as the weights of the critic NN are updated by

(3.34).

Proof Select the Lyapunov function candidate as

Li2 =
1

2li1
W̃T

icW̃ic. (3.36)

Along the solutions of (3.33), the time derivative of (3.36) is

L̇i2 =
1

li1
W̃T

ic
˙̃Wic

= W̃T
iceicHθi −

∥∥∥W̃icθi

∥∥∥2
≤ 1

2
e2icH − 1

2

∥∥∥W̃icθi

∥∥∥2 .
Assume ∥θi∥ ≤ θiM . Hence, L̇i2 < 0 whenever the approximation error of the critic NN

W̃ic lies outside of the compact set

ΩW̃ic
=

{
W̃ic :

∥∥∥W̃ic

∥∥∥ ≤
∥∥∥∥eicHθiM

∥∥∥∥} .
According to Lyapunov’s direct method, the weight approximation error is UUB. This

completes the proof.

Taking the difference between (3.8) and (3.27) as well as the approximation error

between (3.11) and (3.35) into account, they may cause the system performance degra-

dation or even destroy the system stability. Thus, they should be compensated by an

adaptive robustifying term as

uic = −ĝ+i (xid)sgn(ei)ŵi, (3.37)
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Fig. 3.1 The control architecture of the proposed DTC

where sgn(ei) = [sgn(ei1), . . . , sgn(ei(ni))]
T, ŵi is the estimation of overall error wi, which

will be defined later. It can be updated by the following adaptive law

˙̂wi = Γiw

ni∑
k=1

|eik| , (3.38)

where Γiw is a positive constant.

In summary, the overall DTC can be developed as

ui = uid + µ̂ie + uic. (3.39)

The control architecture of the proposed DTC for unknown large-scale nonlinear

systems via observer-critic structure based ADP is shown in Figure 3.1.

Remark 3.4 In local identifier design, RBFNN is employed to construct local NN

observers, since the convergence rate is higher than that of back propagation (BP) NN.

On the other hand, the local tracking error controller requires the partial derivative

of local critic NN, which has heavy computational burden. To trade off between the

convergence rate and computational burden, BPNN is selected for local critic NN. Thus,

different structures are chosen for these two NNs.
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Remark 3.5 Actually, the proposed DTC scheme is an online algorithm. On one hand,

the unknown dynamics of large-scale nonlinear systems can be identified by the developed

local NN observer (3.13) in real-time, which helps to obtain the subsystem dynamics as

in (3.26). Therefore, the local desired control can be derived in real-time. On the other

hand, the local tracking error control is obtained by employing local critic NN, which is

also trained online. Therefore, the strategy of the proposed DTC is online.

3.3.4 Stability analysis

Theorem 3.3 Consider the unknown large-scale nonlinear systems which are composed

of N subsystems as in (3.1) with the local value function (3.7). The developed observer-

critic structure based DTC (3.39) can guarantee the tracking error of closed-loop system

to converge to zero asymptotically.

Proof Select the Lyapunov function candidate as

Li3 =
1

2
eTi ei + Vi(ei) + Γ−1

iw w̃
2
i . (3.40)

As Fi(·) is locally Lipschitz, ∥Fi(xi, xjd)− Fi(xd)∥ ≤ ηif ∥ei∥, where ηif is a positive

constant. Assuming that ∥ĝi(xid)∥ ≤ ηig and denoting µ̂ie = µie− µ̃ie, the time derivative

of (3.40) becomes

L̇i3 = eTi ėi +∇Vi(ei)ėi − Γ−1
iw

˙̂wiw̃i

= eTi

(
Fi(xi, xjd)− Fi(xd) + Fi(xd)− F̂i(xd) + ∆hi(x, xjd)

)
− Ui(ei, µie)− Γ−1

iw
˙̂wiw̃i

+ eTi ((gi(xi)− ĝi(xid) + ĝi(xid))ui(xi)− ĝi(xid)uid(xid))

≤ ηif ∥ei∥2 + eTi

(
F̃i(xd) + g̃i(xid)ui(xi) + ∆hi(x, xjd)− ĝi(xid)µ̃ie

)
+ ηig ∥ei∥ ∥µie∥+ eTi ĝi(xid)uic − Ui(ei, µie)− Γ−1

iw
˙̂wiw̃i

= ηif ∥ei∥2 + eTi

(
F̃i(xd) + g̃i(xid)ui(xi) + ∆hi(x, xjd)− ĝi(xid)µ̃ie

)
+

1

2
∥ei∥2

+ eTi ĝi(xid)uic − λmin(Qi) ∥ei∥2 −
(
λmin(Ri)− η2ig

)
∥µie∥2 − Γ−1

iw w̃i
˙̂wi. (3.41)

Denoting δi = F̃i(xd)+ g̃i(xi, xid)ui(xi)+∆hi(x, xjd)− ĝi(xid)µ̃ie as the overall error, where
g̃i(xi, xid) = gi(xi) − ĝi(xid) and δi is assumed to be the upper bounded, i.e., ∥δi∥ ≤ wi,

we have

L̇i3 = ηif ∥ei∥2 + |ei|wi +
1

2
∥ei∥2 + eTi ĝi(xid)uic

− λmin(Qi) ∥ei∥2 −
(
λmin(Ri)− η2ig

)
∥µie∥2 − Γ−1

iw
˙̂wiw̃i

≤ ηif ∥ei∥2 +
ni∑
k=1

|eik|wi +
1

2
∥ei∥2 + eTi ĝi(xid)uic

− λmin(Qi) ∥ei∥2 −
(
λmin(Ri)− η2ig

)
∥µie∥2 − Γ−1

iw
˙̂wiw̃i. (3.42)



40 Some Optimal Control Problems of Nonlinear Systems Based on ADP

Substituting (3.37) into (3.42), and combining with (3.38), we have

L̇i3 = ηif ∥ei∥2 +
ni∑
k=1

|eik| w̃i +
1

2
∥ei∥2 − λmin(Qi) ∥ei∥2 −

(
λmin(Ri)− η2if

)
∥µie∥2 − Γ−1

iw
˙̂wiw̃i

=−
(
λmin(Qi)− ηif −

1

2

)
∥ei∥2 −

(
λmin(Ri)− η2ig

)
∥µie∥2 .

We can observe that L̇i3 ≤ 0 whenever the following conditions hold
λmin(Qi) ≥ ηif +

1

2
,

λmin(Ri) ≥ η2ig.

It implies that the developed observer-critic structure ADP based DTC (3.39) ensures the

tracking errors of the unknown large-scale closed-loop system converge to zero asymptot-

ically. This completes the proof.

Remark 3.6 We can see that δi includes the substitution error, observation error and

approximation error of the local tracking error control. They can be considered as overall

error, which is compensated simultaneously by (3.37). Therefore, the tracking errors of

the unknown large-scale nonlinear system can converge to zero asymptotically.

Remark 3.7 Some observer based ADP methods have been studied for optimal control

[34, 103], but action NNs are always employed to approximate the control law. Different

from them, the proposed DTC scheme is obtained by the critic NN only, the training

of action NN is no longer required. It implies that the computational burden can be

reduced.

3.4 Simulation studies

To show the effectiveness of the developed DTC scheme, two examples are given in

this section.

Example 3.1 Consider a hard spring connected parallel inverted pendulum system

[118], whose model can be expressed asm1l
2
1θ̈1 −m1gl1 sin θ1 + b1θ̇1 − Fa1 cos(θ1 − β) = δ1u1,

m2l
2
2θ̈2 −m2gl2 sin θ2 + b2θ̇2 − Fa2 cos(θ2 − β) = δ2u2,

(3.43)

where b1 and b2 are damping coefficients, and

F = k
{
1 + A2 (lk − l0)

2} (lk − l0) ,
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Fig. 3.2 The observation errors by using the neural network observer of Example 3.1

|A (lk − l0)| < 1,

β = arctan

(
a1 cos θ1 − a2 cos θ2

l0 − a1 sin θ1 + a2 sin θ2

)
,

lk =
{
(l0 − a1 sin θ1 + a2 sin θ2)

2 + (a1 cos θ1 − a2 cos θ2)
2}2 .

In this simulation, the parameters of the coupled inverted pendulums are chosen as:

δ1 = δ2 = 1, m1 = m2 = 1kg, l1 = l2 = 0.5m, l0 = 1m, g = 9.8m/s2, b1 = b2 = 0.009,

k = 30, A = 0.1, and the spring position a1 = a2 = 0.1.

Let xi = [xi1, xi2]
T =

[
θi1, θ̇i1

]T
∈ R2. The modified model (3.43) can be expressed

as

ẋi = fi(xi) + gi(xi)ui + hi(x),

where fi(xi) =

[
xi2

5.88 sin xi1 − 0.036xi2

]
, gi(xi) =

[
0

δi

]
, hi(x) =

[
0

4Fai cos(xi1 − β)

]
.

In this simulation, the desired trajectories of the two subsystems can be given asx11d = 0.5 cos(0.5t),

x21d = 0.8 sin(0.3t+ π/6).

Denote Xi = [xi, xjd]
T. The basis functions of RBFNNs in the observers are chosen as

Gaussian style as

σif (Xi) = exp

(
−(Xi − cif )

T(Xi − cif )

b2if

)
,
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Fig. 3.3 The trajectories tracking performance of Example 3.1

σig(xi) = exp

(
−(xi − cig)

T(xi − cig)

b2ig

)
,

where the centers of the basis functions are

cif =


−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

 ,

cig =

[
−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

]
,

and the widths of the basis functions are bif = big = 0.5.

Let the initial states of the subsystems be x10 = x20 = [1, 0]T, the initial states of

the observers be x̂10 = [2,−1]T, x̂20 = [1.5,−0.5]T, the observer gain matrix be Kio =

diag[ki1o, ki2o] = diag[400, 1200], and the RBFNN weights learning rate of the observer
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Fig. 3.4 The tracking errors of Example 3.1

be Γif = Γig = 0.002. The local value function (3.7) is approximated by critic NN, whose

structure is chosen as 2–3–1 with 2 input neurons, 3 hidden neurons and 1 output neuron,

and the weight vector as Ŵic =
[
Ŵic1, Ŵic2, Ŵic3

]T
with initial values Ŵ1c = [0.4, 1.8, 1.2]T

and Ŵ2c = [0.2, 0.4, 0.2]T. The activation function of the critic NN is chosen as σic(ei) =

[e2i1, ei1ei2, e
2
i2]. Let the weight learning rates of the critic NN be li1 = 0.1, the gain of the

compensator (3.38) be Γiw = 15, and Qi = 2I2, R1 = 0.001I, R2 = 0.0001I, where In

denotes the identity matrix with appropriate dimensions.

The simulation results are shown as Figs. 3.2–3.5. Fig. 3.2 describes that the obser-

vation errors converge to a small region by using the local NN observers, which ensure

the observation errors to be UUB. It implies that the unknown subsystems are identified

online successfully. The trajectories tracking curves are illustrated as Fig. 3.3, we can see

that the actual trajectories can follow their desired ones after the system runs for a short

time by using the developed DTC (3.39). Fig. 3.4 shows the tracking errors between the

desired trajectories and actual trajectories, which give the same conclusion more intu-

itively. Fig. 3.5 gives the curves of control inputs. From these figures, the closed-loop

system can be guaranteed to be asymptotically stable. Therefore, the simulation results

demonstrate the effectiveness of the proposed DTC scheme.

Example 3.2 In order to further test the effectiveness of the present observer-critic

based ADP for DTC method, a reconfigurable manipulator with 2-DOF (degree of free-

dom) is employed in our simulation [120].
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Fig. 3.5 The control inputs of Example 3.1

Reconfigurable manipulators that consist of standard links and joint modules can be

considered as a set of subsystems interconnected by coupling torques. In this simulation,

the entire dynamics of reconfigurable manipulator can be expressed as

M(q)q̈ + C(q, q̇)q̇ +G(q) = u,

where q ∈ R2 is the vector of joint displacements, M(q) ∈ R2×2 is the inertia matrix,

C(q, q̇) ∈ R2 is the Coriolis and centripetal force, G(q) ∈ R2 is the gravity term, and

u ∈ R2 is the applied joint torque. The system matrices are

M(q) =

[
0.36 cos(q2) + 0.6066 0.18 cos(q2) + 0.1233

0.18 cos(q2) + 0.1233 0.1233

]
,

C(q, q̇) =

[
−0.36 sin(q2)q̇2 −0.18 sin(q2)q̇2

0.18 sin(q2)(q̇1 − q̇2) 0.18 sin(q2)q̇1

]
,

G(q) =

[
−5.88 sin(q1 + q2)− 17.64 sin (q1)

−5.88 sin(q1 + q2)

]
.

For the development of DTC, each joint is considered as a subsystem of the entire manip-

ulator system interconnected by coupling torque. By separating terms only depending

on local variables (qi, q̇i, q̈i) from those terms of other joint variables, each subsystem

dynamic model can be formulated in joint space as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) + Zi(q, q̇, q̈) = ui (3.44)
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with

Zi(q, q̇, q̈) =

{
n∑

j=1,j ̸=i

Mij(q)q̈j + [Mii(q)−Mi(qi)]q̈i

}

+

{
n∑

j=1,j ̸=i

Cij(q, q̇)q̇j + [Cii(q, q̇)− Ci(qi, q̇i)]q̇i

}
+
[
Ḡi(q)−Gi(qi)

]
,

where qi, q̇i, q̈i, Gi(q) and ūi are the ith element of the vectors q, q̇, q̈, G(q) and u, Mij(q)

and Cij(q, q̇) are the ij th element of the matrices M(q) and C(q, q̇), respectively.

Let xi = [xi1, xi2]
T = [qi, q̇i]

T, (3.44) can be expressed as ẋi1 = xi2,

ẋi2 = fi(qi, q̇i) + gi(qi)ui + hi(q, q̇, q̈),
(3.45)

where xi is the state of the ith subsystem, and

fi(qi, q̇i) =M−1
i (qi) [−Ci(qi, q̇i)q̇i −Gi(qi)] ,

gi(qi) =M−1
i (qi),

hi(q, q̇, q̈) = −M−1
i (qi)Zi(q, q̇, q̈).

The desired trajectories of two subsystems are

qd =

[
q1d

q2d

]
=

[
0.5 cos(t) + 0.2 sin(3t)

0.3 cos(3t)− 0.5 sin(2t)

]
.

The structure of RBFNNs, the initial states of subsystems, as well as the initial states

of observers are the same as those of Example 3.1. Let the observer gain matrix be

Kio = diag[200, 400], the RBFNN weights learning rate of the observer be Γif = 500

and Γig = 1. Let the critic NN be the same structure as Example 1 with initial values

Ŵ1c = [0.2, 1.5, 1.1]T and Ŵ2c = [1.2, 0.8, 0.9]T, the weight learning rates of the critic NN

be ηi1 = 0.0001, the gain of the compensator (3.38) be Γiw = 5, Qi = 10I2, Ri = 0.001I.

We can see from Fig. 3.6 that the observation errors of each subsystem are verified

to be UUB by using the developed local NN observer. Figs. 3.7 and 3.8 show that the

trajectory tracking and tracking errors satisfy the control performance when using the

present DTC (3.39). The tracking control inputs in Fig. 3.9 demonstrate the closed-loop

system of the reconfigurable manipulator asymptotically stable.

In summary, the simulation results of the two examples verify the effectiveness of

the proposed scheme.
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Fig. 3.6 The observation errors by using the neural network observer of Example 3.2
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Fig. 3.7 The trajectories tracking performance of Example 3.2
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Fig. 3.8 The tracking errors of Example 3.2
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Fig. 3.9 The control inputs of Example 3.2
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3.5 Conclusion

In this paper, we develop a DTC scheme for unknown large-scale nonlinear systems

via observer-critic structure based ADP. A local NN observer is established to identify

the unknown subsystem. Hereafter, the local desired control can be derived directly.

For error dynamic system, the local value function is approximated by constructing a

critic NN, and the local tracking error control can be obtained. Then, the overall error

caused by the substitution, observation and approximation of the local tracking error

control can be compensated by an adaptive robustifying term. Therefore, the overall

DTC can guarantee the closed-loop system to be asymptotically stable by Lyapunov’s

direct method. Two examples are employed to verify the effectiveness of the proposed

DTC scheme.



Chapter 4 Online Fault Compensation Control Based on PI

algorithm for Affine Nonlinear Systems with Actuator

Failures

4.1 Introduction

In this chapter, an online fault compensation control scheme based PI algorithm

is established to obtain the optimal control of affine nonlinear systems with actuator

failures. Due to the occurrence of actuator failures, the PI algorithm may be biased

or fail to achieve the optimal control. In order to reduce the degradation caused by

faults, a redesigned fault compensation based policy iteration controller is provided. The

weight errors of the critic neural network are proved to be uniformly ultimately bounded

(UUB), and the stability of the closed-loop system with actuator failures is guaranteed via

Lyapunov’s approach. Different from classic ADP algorithms, the action neural network is

no longer required in this algorithm, which reduces the computational burden effectively.

Meanwhile, the proposed FTC strategy consists of two parts, namely the PI based optimal

control part and the online fault compensation part. In this sense, it can be conveniently

implemented to handle fault tolerant problems.

4.2 Problem statement

Consider the following affine nonlinear system with actuator failures:

ẋ(t) = f(x(t)) + g(x(t))(u(x(t))− fa(t)) (4.1)

where x ∈ Rn is the system state vector, u ∈ Rm is the control input vector, f(·) and g(·)
are locally Lipchitz and differentiable in their arguments with f(0) = 0, and fa(t) ∈ Rm

is an unknown additive actuator failure. Here, let x(0) = x0 be the initial state.

For the system (4.1) with fa(t) = 0 (i.e., the system is fault-free), the performance

index function can be defined as

J(x0) =

∫ ∞

0

U(x(τ), u(τ))dτ (4.2)

where U(x, u) = xTQx + uTRu is the utility function, U(0, 0) = 0, and U(x, u) ≥ 0 for

all x and u, in which Q ∈ Rn×n and R ∈ Rm×m are positive definite matrices.

Remark 4.1 Possible failures that occur on actuators may present many scenarios, such

as partial loss of effectiveness, locked in place, saturation and free-swing. They affect the
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efficiency of actuators, i.e., execution capability of the actuators will change. Thus, the

term u(x) in (4.1) should be changed directly to affect the considered system. In this

case, actuator failures can be seen as matched disturbances. However, there exist different

physical meanings between them. Generally speaking, disturbances are assumed to be

known norm-bounded and inevitable in real applications. On the other hand, actuator

failures occur stochastically, and are assumed to be unknown bounded functions. Indeed,

disturbances will lead the system performance to impreciseness, rather than badly destroy

the system which may suffer from actuator faults.

To handle the optimal control problem, the designed feedback control must be admis-

sible. Before the algorithm is presented, the definition of admissible control is introduced.

Definition 4.1 For system (4.1) with fa = 0, a control policy u(x) is said to be ad-

missible, if u(x) is continuous on a set Ω ∈ Rn, u(0) = 0, u(x) stabilizes the system, and

J(x0) in (4.2) is finite for all x ∈ Ω.

For any admissible control policy µ ∈ Ψ(Ω), where Ψ(Ω) denotes the set of admissible

control, if the performance index function

V (x0) =

∫ ∞

0

U(x(τ), µ(τ))dτ (4.3)

is continuously differentiable, then the infinitesimal version of (4.3) is the Lyapunov

equation

0 = U(x, µ) + (∇V (x))T (f(x) + g(x)µ) (4.4)

with V (0) = 0, and the term ∇V (x) denotes the partial derivative of V (x) with respect

to x, i.e., ∇V (x) = ∂V (x)
∂x

.

Define the Hamiltonian function of the problem and the optimal performance index

function as

H (x, µ,∇V (x)) = U(x, µ) + (∇V (x))T (f(x) + g(x)µ)

and

J∗(x0) = min
µ∈Ψ(Ω)

∫ ∞

0

U(x(τ), µ(τ))dτ . (4.5)

Let J∗(x) be the optimal performance index function, then

0 = min
µ∈Ψ(Ω)

H (x, µ,∇J∗(x)) (4.6)
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where ∇J∗(x) = ∂J∗(x)
∂x

. If the solution J∗(x) exists and is continuously differentiable, the

optimal control can be expressed as

u∗(x) = −1

2
R−1gT(x)∇J∗(x). (4.7)

In general, if the system is fault-free (i.e., fa = 0), the solution of (4.6) can be approxi-

mated by using the PI technique (See Algorithm 4.1).

By simple transformation, (4.7) implies

(∇J∗(x))T g(x) = −2 (u∗(x))TR. (4.8)

4.3 PI algorithm based on online fault compensation

4.3.1 Online PI algorithm

The PI algorithm consists of policy evaluation based on (4.4) and policy improvement

based on (4.7), and its iteration process can be described as in Algorithm 4.1 [121].

Algorithm 4.1 Online policy iteration

Step 1 Let i = 0, begin with an initial admissible control policy µ(0)(x), and select a

small positive constant ε;

Step 2 Based on the control policy µ(i)(x), solve V (i+1) from

0 = U(x, µ(i)) +
(
∇V (i+1)(x)

)T
(f(x) + g(x)µ(i))

with V (i+1)(0) = 0.

Step 3 Update the control policy by

µ(i+1) = −1

2
R−1gT(x)∇V (i+1)(x).

Step 4 If i > 0 and
∥∥V (i+1)(x)− V (i)(x)

∥∥ ≤ ε, stop and obtain the approximate optimal

control; else, let i = i+ 1 and return to Step 2.

4.3.2 Neural network implementation

As we know, neural networks are powerful tools for approximating nonlinear func-

tions. Since the performance index function is usually highly nonlinear and nonanalytic,
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in this subsection, we approximate it with a neural network. In this paper, a single-layer

neural network is employed to approximate the assumed differentiable performance index

function on the compact set Ω as

V (x) = WT
c σ(x) + εc(x) (4.9)

where Wc ∈ Rl is the ideal weight vector, σ(x) ∈ Rl is the activation function, l is the

number of neurons in the hidden layer, and εc(x) is the approximation error of the neural

network. Then the gradient of V (x) along with (4.9) is

∇V (x) = (∇σ(x))TWc +∇εc(x) (4.10)

where ∇σ(x) = ∂σ(x)
∂x

∈ Rl×n and ∇εc(x) are gradients of the activation function and the

approximation error, respectively.

Substituting (4.10) into (4.4), one has

0 = U(x, µ) +
(
(∇σ(x))TWc +∇εc(x)

)
ẋ.

Thus, the Hamiltonian function can be expressed as

H (x, µ,Wc) = U(x, µ) +WT
c ∇σ(x)ẋ = −∇εc(x)ẋ

∆
= ecH (4.11)

where ecH is the residual error caused by neural network approximation.

Since the ideal weight vector Wc is unknown, the critic neural network can be ap-

proximated by

V̂ (x) = ŴT
c σ(x).

Then, we have the gradient of V̂ (x) as

∇V̂ (x) = (∇σ(x))T Ŵc.

Thus, the approximate Hamiltonian function can be obtained as

H
(
x, µ, Ŵc

)
= U(x, µ) + ŴT

c ∇σ(x)ẋ
∆
= ec. (4.12)

Let θ = ∇σc(x)ẋ, and define the weight approximation error as W̃c = Wc − Ŵc. Then,

by (4.11) and (4.12), we have

ec = ecH − W̃T
c θ.

The weight approximation error can be updated as

˙̃Wc = l1

(
ecH − W̃T

c θ
)
θ. (4.13)
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In order to tune the critic neural network weight vector Ŵc, the objective function Ec =
1
2
eTc ec should be minimized with the steepest descent algorithm. Ŵc should be updated

as

˙̂
Wc = − ˙̃Wc = −l1ecθ

where l1 > 0 is the learning rate of the critic neural network.

Hence, by (4.7) and (4.9), the ideal control policy can be obtained as

µ(x) = −1

2
R−1gT(x)

(
(∇σ(x))TWc +∇εc(x)

)
.

And it can be approximated as

µ̂(x) = −1

2
R−1gT(x) (∇σ(x))T Ŵc. (4.14)

From (4.14), one can see that the control policy can be derived depending only on the

critic neural network, and the training of the action neural network is no longer required.

Theorem 4.1 For a fault-free system, if the weights of the critic neural network are

updated by (4.13), then the weight approximate error can be guaranteed to be UUB.

Proof Choose the Lyapunov function candidate as

Σ1 =
1

2l1
W̃T

c W̃c.

Its time derivative along the solution of (4.13) is

Σ̇1 =
1

l1
W̃T

c
˙̃Wc

= W̃T
c

(
ecH − W̃T

c θ
)
θ

= W̃T
c ecHθ −

∥∥∥W̃T
c θ
∥∥∥2

≤ 1

2
e2cH − 1

2

∥∥∥W̃T
c θ
∥∥∥2 .

Assume ∥θ∥ ≤ θM , where θM is a positive constant. Hence, Σ̇1 < 0 whenever W̃c lies

outside the compact set

ΩW̃c
=

{
W̃c :

∥∥∥W̃c

∥∥∥ ≤
∥∥∥∥ecHθM

∥∥∥∥}
Therefore, according to Lyapunov’s direct method, the weight approximation error is

UUB. This completes the proof.



54 Some Optimal Control Problems of Nonlinear Systems Based on ADP

Remark 4.2 This paper provides an FTC strategy consists of two parts, namely the

PI based control part for the fault-free system and the online fault compensation part

for handling the effects of actuator failure. For the PI based control part, it is developed

with the help of the performance index function (4.3), which is approximated by the critic

neural network (4.9), so Theorem 4.1 is provided for a fault-free system and it does not

need to prove the convergence of the weights of the critic neural network in case of fault.

4.3.3 Online fault compensation design

Based on subsection 4.3.1, we will analyze the system stability in the case of the

actuator failure fa ̸= 0.

Let u = µ(i), the system with an actuator failure should be rewritten as

ẋ = f(x) + g(x)(µ(i) − fa).

By using (4.5), J (i)(x) > 0 for any x ̸= 0 and J (i)(x) = 0 for x = 0, it implies that J (i)(x)

is a positive definite function. And its time derivative is

J̇ (i)(x) =
(
∇J (i)(x)

)T
ẋ.

Considering the dynamic model of the system with an actuator failure (4.1), one can

obtain

J̇ (i)(x) =
(
∇J (i)(x)

)T (
f(x) + g(x)(µ(i) − fa)

)
=
(
∇J (i)(x)

)T (
f(x) + g(x)µ(i)

)
−
(
∇J (i)(x)

)T
g(x)fa. (4.15)

From (4.6), we have (
∇J (i)(x)

)T (
f(x) + g(x)µ(i)

)
= −U(x, µ(i)). (4.16)

Substituting (4.8) and (4.16) into (4.15), one has

J̇ (i)(x) = −U(x, µ(i)) + 2(µ(i))TRfa

≤ −xTQx− (µ(i))TRµ(i) + (µ(i))TRµ(i) + fT
a Rfa

= −xTQx+ fT
a Rfa.

This implies that J̇ (i)(x) is biased by a term depending on the unknown actuator failure

fa. Therefore, the PI control µ
(i) cannot guarantee the stability of the closed-loop system

due to the unknown actuator failure fa. Next, a fault compensation based PI algorithm

will be established to keep the closed-loop system stable with an actuator failure.
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Design the fault compensation based control law as

u = µ+ f̂a (4.17)

where f̂a is the fault compensation term proposed to overcome the performance degrada-

tion, and it can be derived from the following adaptive law:

˙̂
fa = l2

(
2µTR− xTg(x)

)T
. (4.18)

Remark 4.3 As previously mentioned, the FTC approaches are classified into passive

approaches and active ones, according to whether an FDD mechanism exists. In the

designed fault compensation based FTC law (4.17), the fault estimation can be seen as

an FDD mechanism. So the proposed FTC scheme can be considered as an active FTC

approach.

4.3.4 Stability analysis

Theorem 4.2 Consider the affine nonlinear system with an actuator failure (4.1) and

the performance index function (4.2), and the adaptive law of the actuator failure (4.18).

The fault compensation based PI control law (4.17) can guarantee the closed-loop system

to be asymptotically stable.

Proof Choose the Lyapunov function candidate as

Σ2 =
1

2
xTx+ J (i)(x) +

1

2l2
f̃T
a f̃a.

Define the fault compensation error f̃a = fa − f̂a. Then, by (4.17), we have

Σ̇2 = xTẋ+
(
∇J (i)(x)

)T
ẋ− 1

l2

˙̂
fT
a f̃a

= xT
(
f(x) + g(x)(µ+ f̂a − fa)

)
+
(
∇J (i)(x)

)T (
f(x) + g(x)(µ+ f̂a − fa)

)
− 1

l2

˙̂
fT
a f̃a

= xTf(x) + xTg(x)µ+
(
xT +

(
∇J (i)(x)

)T)
g(x)(f̂a − fa)

+
(
∇J (i)(x)

)T
(f(x) + g(x)µ)− 1

l2

˙̂
fT
a f̃a. (4.19)

As f(x) is locally Lipchitz, a positive constant Df exists such that ∥f(x)∥ ≤ Df ∥x∥.
Assume that ∥g(x)∥ ≤ Dg. Thus, (4.19) becomes

Σ̇2 ≤ Df ∥x∥2 +
1

2
D2
g ∥µ∥

2 +
1

2
∥x∥2 +

(
xT +

(
∇J (i)(x)

)T)
g(x)(f̂a − fa)

+
(
∇J (i)(x)

)T
(f(x) + g(x)µ)− 1

l2

˙̂
fT
a f̃a. (4.20)
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Combining (4.8) and (4.16), (4.20) becomes

Σ̇2 = Df ∥x∥2 +
1

2
D2
g ∥µ∥

2 +
1

2
∥x∥2 − U(x, µ) +

(
2µTR− xTg(x)− 1

l2

˙̂
fT
a

)
f̃a. (4.21)

Substituting (4.18) into (4.21), one can obtain

Σ̇2 =

(
Df +

1

2

)
∥x∥2 + 1

2
D2
g ∥µ∥

2 − xTQx− µTRµ

≤−
(
λmin(Q)−Df −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g

)
∥µ∥2

where λmin(·) denotes the minimum eigenvalue of the matrix. We can see that Σ̇2 ≤ 0 if

the following conditions hold: {
λmin(Q) ≥ Df +

1
2

λmin(R) ≥ 1
2
D2
g .

This implies that Σ̇2 < 0 for any x ̸= 0. Therefore, based on the approximate optimal

control policy, the state trajectories of the closed-loop are asymptotically stable for any

possible actuator failures. The proof is completed.

4.4 Simulation studies
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Fig. 4.1 The weights of the critic neural network of Example 4.1
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Example 4.1 Consider the following affine nonlinear system:

ẋ =


x2 − x1

−0.5x1 − 0.5x2 + 0.5x2 (cos(2x1) + 2)2

x4 − x3

−x3 − 0.5x4 + 0.5x4x
2
3

+


0 0

cos(2x1) + 2 0

0 0

0 x3

 (u+ fa) (4.22)

where x = [x1, x2, x3, x4]
T ∈ R4 and u = [u1, u2]

T ∈ R2 are the state and control input

variables, respectively. The term fa = [fa1, fa2]
T ∈ R2 reflects an unknown additive

actuator failure. We choose

fa =

 [0, 0]T , 0 ≤ t ≤ 30s[
2 + 5 sin

(
t/2π

)
, 0
]T
, 30s < t ≤ 60s

for the purpose of simulation.
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Fig. 4.2 The system states under the input without the compensation of Example 4.1

Let the initial state be x0 = [1, 1,−1,−1]T, and the initial admissible control policy

be u = [−0.2,−0.4,−0.6,−0.8] x. We employ a critic neural network to approximate the

performance index function, and its weight vector is denoted as Ŵc =
[
Ŵc1, Ŵc2, . . . , Ŵc10

]T
.

The initial weight of critic neural network is Ŵc0 = [0.4, 0.5, 1.8, 0.2, 1.8, 0.3, 1.2, 1, 0.7,

1.5]T. The activation function of the critic network is chosen as σc(x) = [x21, x1x2, x1x3, x1

x4, x
2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4]. Let Q = 3× I4, R = 3× I2, and the learning rate of the

critic network and actuator failure be l1 = 0.0005 and l2 = 40, respectively. The initial

value of the actuator failure vector is chosen as fa0 = [0, 0]T.
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The simulation results are displayed in Figs. 4.1–4.4. From Fig. 4.1, we can find that

the weight vector of the critic neural network converges to [0.627751, 0.761803, 1.599625,

− 0.381745, 2.072987,−0.105430, 0.825454, 1.320895, 1.780736, 1.400185]T. To demon-

strate the effectiveness of the proposed fault compensation controller, the system states

under the input without the compensation are shown in Fig. 4.2. As the unknown ac-

tuator fault occurs, the PI control law µ(i) cannot guarantee the stability of the system

(4.22). In this sense, it fails to achieve satisfactory control performance. In order to

compensate the failure online, the failure should be estimated by (4.18) adaptively, as

shown in Fig. 4.3. While in Fig. 4.4, the system states under the online fault compensa-

tion based PI control (4.17) are illustrated. We can see that the system states converge

to the equilibrium a short time after the occurrence of the fault, which learns the failure

online.

0 10 20 30 40 50 60
−10

−8

−6

−4

−2

0

2

4

6

8

10
Fault estimation

Time (s)

Estimated failure
Actual failure

Fig. 4.3 The online fault estimation of Example 4.1

Example 4.2 Consider a 2-DOF (Degree of Freedom) industrial manipulator system

with an actuator failure in joint space coordination, whose dynamic model can be ex-

pressed as

M(q)q̈ + C(q, q̇)q̇ +G(q) = u− fa

where q ∈ R2 is the vector of joint displacements, M(q) ∈ R2×2 is the inertia matrix,

C(q, q̇) ∈ R2 is the Coriolis and centripetal force, G(q) ∈ R2 is the gravity term, u ∈ R2
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Fig. 4.4 The system states under the input with the compensation of Example 4.1

is the applied joint torque, fa is the additive actuator failure,

M(q) =

[
0.17− 0.1166 cos2(q2) −0.06 cos(q2)

−0.06 cos(q2) 0.1233

]
,

C(q, q̇) =

[
0.1166 sin(2q2)q̇2 0.06 sin(q2)q̇2

0.06 sin(q2)q̇2 − 0.0583 sin(2q2)q̇1 −0.06 sin(q2)q̇1

]
,

G(q) =

[
0

−5.88 cos(q2)

]
.

Let x = [x1, x2, x3, x4]
T = [q1, q2, q̇1, q̇2]

T ∈ R4. By simple transformation, the

system dynamic model can be expressed as (4.1) with f(x) = [0; 0; ξ(x)] and g(x) =

[0, 0; 0, 0; η(x)], in which ξ(x) = −M−1(q) (C(q, q̇)q̇ +G(q)) and η(x) =M−1(q). Choose

fa =

{
[0, 0]T , 0 ≤ t ≤ 30

[0, 8]T , 30 < t ≤ 60

and other parameters are selected the same as Example 4.1.

Let Q = 12 × I4, R = 25 × I2, and other control parameters are same as Example

1. We employ the similar critic neural network to approximate the performance index

function, and its initial weight vector is chosen as [0.4, 0.5, 1.2, 0.6, 1.8, 0.3, 1.1, 1, 0.7,

1.5]T. By using the proposed algorithm, the weights of the critic neural network converge

to [0.441090, 0.541566, 1.535788, 1.245143, 1.841842, 0.640492, 1.743332, 0.729727, 0.25
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Fig. 4.5 The weights of the critic neural network of Example 4.2
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Fig. 4.7 The online fault estimation of Example 4.2
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Fig. 4.8 The system states under the input with the compensation of Example 4.2
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9550, 0.930982]T. The simulation results are shown as Figs. 4.5– 4.8, and from these

figures, we can conclude the similar results as Example 4.1. Therefore, we can declare

the effectiveness of the online fault compensation based PI algorithm developed in this

chapter.

4.5 Conclusion

An online fault compensation control scheme based on PI is developed to solve the

FTC problem of a class of affine nonlinear systems with actuator failures. The critic neural

network, whose weights are updated adaptively, is employed to approximately obtain the

performance index function. Based on actuator failures estimated by the adaptive law, the

PI controller can be compensated to reduce the influence of the actuator failures. With

the Lyapunov’s direct method, the convergence of the closed-loop system with actuator

failures is guaranteed. Finally, two examples are given to demonstrate the effectiveness

of the developed algorithm.



Chapter 5 Observer Based ADP for Fault Tolerant Control

of a Class of Nonlinear Systems

5.1 Introduction

Motivated by the above ADP and observer techniques, in this chapter, a fault tolerant

controller based on fault observer and ADP algorithm is developed for nonlinear systems

with actuator failures. The estimated failure from a fault observer is utilized to construct

the performance index function, which reflects the actuator failure, regulation and control.

Hence, the FTC problem is transformed into an optimal control problem. A PI algorithm

is employed to solve the HJB equation by constructing a critic neural network. Based

on the Lyapunov stability theorem, the closed-loop system with actuator failures can be

guaranteed to be uniformly ultimately bounded (UUB).

The main contribution of this work can be summarized as follows. (i) By designing

a fault observer, the estimated unknown actuator failure can be employed to construct

the improved performance index function, which reflects the actuator failure, regulation

and control. Thus, the FTC problem is transformed into an optimal control problem. (ii)

The FTC can be derived depending only on the critic neural network. The training of

the action neural network which was commonly implemented is no longer required. (iii)

The well-known ADP method is extended to solve FTC problems. It implies that this is

a novel approach against actuator failures in operated systems.

5.2 Problem statement

Consider the following continuous-time nonlinear system with an actuator failure:

ẋ = f(x) + g(x)(u− ua) (5.1)

where x ∈ Rn is the system state vector, u ∈ Rm is the control input vector, f(·) and g(·)
are locally Lipchitz and differentiable in their arguments with f(0) = 0 and ua(t) ∈ Rm

is an additive actuator failure. Here, let x(0) = x0 be the initial state.

Assumption 5.1 The actuator failure ua is unknown but norm-bounded as ∥ua∥ ≤
δ1 < +∞, where δ1 is a positive constant.

Remark 5.1 In real applications, the occurrence of actuator failures is random, and it

is reasonable to assume that the unknown actuator failure ua is bounded.
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Since f(·) and g(·) are locally Lipchitz continuous on a set Ω ⊂ Rn, the system (5.1)

with ua = 0 is controllable. Thus, it is desired to find the feedback control policy u(x)

which minimizes the infinite horizon performance index function as

J(x0) =

∫ ∞

0

(
ρûTa (τ)ûa(τ) + U(x(τ), u(τ))

)
dτ , (5.2)

where ρ is a positive constant, U(x, u) = xTQx+ uTRu is the utility function, U(0, 0) =

0, and U(x, u) ≥ 0 for all x and u, Q ∈ Rn×n and R ∈ Rm×m are positive definite

matrices, and ûa ∈ Rm is the estimation of the actuator failure ua. We can see that (5.2)

appropriately reflects the actuator failure, regulation and control simultaneously.

To obtain an acceptable control performance after the actuator failure occurs, the de-

signed feedback control must be admissible. Therefore, before the algorithm is presented,

the definition of admissible control is introduced [10].

Definition 5.1 For system (5.1) with ua = 0, a control policy u(x) is said to be ad-

missible, if u(x) is continuous on a set Ω ⊂ Rn, u(0) = 0, u(x) stabilizes the system, and

J(x0) in (5.2) is finite for all x0 ∈ Ω.

For any admissible control policy µ ∈ Ψ(Ω), where Ψ(Ω) denotes the set of admissible

control, if the performance index function

V (x0) =

∫ ∞

0

(
ρûTa (τ)ûa(τ) + U(x(τ), µ(τ))

)
dτ (5.3)

is continuously differentiable, then the infinitesimal version of (5.3) is the so-called non-

linear Lyapunov equation

0 = ρûTa ûa + U(x, µ) + (∇V (x))T (f(x) + g(x)µ) (5.4)

with V (0) = 0, and the term ∇V (x) denotes the partial derivative of V (x) with respect

to x, i.e., ∇V (x) = ∂V (x)
∂x

.

Define the Hamiltonian of the problem and the optimal performance index function

as

H (x, µ,∇V (x)) = ρûTa ûa + U(x, µ) + (∇V (x))T (f(x) + g(x)µ)

and

J∗(x0) = min
µ∈Ψ(Ω)

∫ ∞

0

(
ρûTa ûa + U(x(τ), µ(τ))

)
dτ (5.5)

respectively. Let J∗(x) be the optimal performance index function, then

0 = min
µ∈Ψ(Ω)

H (x, µ,∇J∗(x)) , (5.6)
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where ∇J∗(x) = ∂J∗(x)
∂x

. If the solution J∗(x) exists and is continuously differentiable, the

optimal control can be expressed as

u∗(x) = −1

2
R−1gT(x)∇J∗(x). (5.7)

In general, if the system is fault-free (i.e., ua = 0), the solution of (5.6) can be approxi-

mated with the PI technique (see Algorithm 5.1).

By simple transformation, (5.7) implies

(∇J∗(x))T g(x) = −2 (u∗(x))TR. (5.8)

5.3 Fault tolerant controller design via observer based ADP

5.3.1 Problem transformation

For system (5.1), a feedback control policy u(x) should be presented to deal with

the FTC problem, such that the closed-loop system can be guaranteed to be UUB for

all possible actuator failures ua. In order to achieve this objective, we will transform the

FTC problem into designing an optimal controller for the fault-free system, i.e., ua = 0,

with a proper performance index function.

Assumption 5.2 The actuator fault estimation error ea = ua− ûa is norm-bounded as

∥ea∥ ≤ δ2, where δ2 is a positive constant.

Theorem 5.1 Consider system (5.1) with ua = 0, with Assumptions 5.1 and 5.2, and

the control policy (5.7), the continuously differentiable function J∗(x) is a Lyapunov

function with the conditions ρ ≥ λmin(R) and ∥x∥ ≥ δa
λmin(Q)

satisfied. Furthermore,

assume that J∗(x) is a solution to the HJB equation (5.6). Thus, the optimal control

policy (5.7) can guarantee the closed-loop nonlinear system with an actuator failure (5.1)

to be UUB, i.e., u∗(x) in (5.7) is a solution to the FTC problem.

Proof In order to prove that u∗(x) in (5.7) is a solution to the FTC problem, we prove

that J∗(x) is a Lyapunov function. According to (5.5), we can see that J∗(x) > 0 for all

x ̸= 0 and J∗(0) = 0. It means that J∗(x) is a positive definite function. Thus, its time

derivative is

J̇∗(x) = (∇J∗(x))T ẋ

= (∇J∗(x))T (f(x) + g(x)(u∗ − ua))

= (∇J∗(x))T (f(x) + g(x)u∗)− (∇J∗(x))T g(x)ua. (5.9)
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From (5.6), we have

(∇J∗(x))T (f(x) + g(x)u∗) = −ûTa ûa − U(x, u∗).

Hence, (5.9) becomes

J̇∗(x) = −ûTa ûa − U(x, u∗)− (∇J∗(x))T g(x)ua.

Noticing (5.8), we have

J̇∗(x) = −ρûTa ûa − U(x, u∗) + 2u∗TRua

= −ρûTa ûa − xTQx− u∗TRu∗ + 2u∗TRua

≤ −ρûTa ûa − xTQx− u∗TRu∗ + u∗TRu∗ + uTaRua

≤ −ρûTa ûa − xTQx+ λmin(R) ∥ua∥2

= −
(
ρ− λmin(R)

)
ûTa ûa − xTQx+ λmin(R)

(
∥ua∥2 − ∥ûa∥2

)
= −

(
ρ− λmin(R)

)
ûTa ûa − xTQx+ λmin(R)

(
∥ua∥+ ∥ûa∥

)(
∥ua∥ − ∥ûa∥

)
= −

(
ρ− λmin(R)

)
ûTa ûa − xTQx+ λmin(R)

(
∥ua∥+ ∥ûa − ua + ua∥

)(
∥ua − ûa∥

)
≤ −

(
ρ− λmin(R)

)
ûTa ûa − xTQx+ λmin(R)

(
2∥ua∥+ ∥ûa − ua∥

)(
∥ua − ûa∥

)
.

(5.10)

From Assumptions 1 and 2, we can obtain

J̇∗(x) ≤ −
(
ρ− λmin(R)

)
ûTa ûa − xTQx+ λmin(R)

(
2δ1 + δ2

)
δ2.

Let δa = λmin(R)
(
2δ1 + δ2

)
δ2. Thus

J̇∗(x) ≤ −
(
ρ− λmin(R)

)
ûTa ûa − λmin(Q) ∥x∥2 + δa.

Hence, we can conclude that J̇∗(x) ≤ 0, i.e., J∗(x) is a Lyapunov function, if the following

conditions hold: {
ρ ≥ λmin(R)

∥x∥ ≥ δa
λmin(Q)

.

This indicates that x(t) will converge to a small neighborhood surrounding the initial

position. This ensures the equivalence of problem transformation. This completes the

proof.

In light of Theorem 5.1, the optimal control policy (5.7) is derived to handle the FTC

problem for system (5.1), which suffers from the actuator failure. However, it is difficult

to find the solution to the HJB function and derive ûa to construct the performance index

function (5.3).
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5.3.2 Fault observer design

For the system with actuator failure (5.1), we can develop a fault observer as

˙̂x = f̂(x) + ĝ(x)(u− ûa) + L1(x− x̂) (5.11)

where x̂ is the observation of the system state x, L1 is the positive definite observer gain

matrix, and ûa is the estimated actuator failure which can be updated by the following

adaptive law:

˙̂ua = −L2ĝ
T(x)eo (5.12)

where L2 is a positive definite matrix, and eo = x − x̂ is the state observation error.

Combining (5.1) with (5.11), we have

ėo = ef + egu− g(x)ua + ĝ(x)ûa − L1eo

= ef + eg(u− ua)− ĝ(x)(ua − ûa)− L1eo (5.13)

where ef = f(x)− f̂(x) and eg = g(x)− ĝ(x) are the observation errors of nonlinear terms

f(x) and g(x), respectively. Define w = ef + eg(u− ua).

Assumption 5.3 w is norm-bounded as ∥w∥ ≤ δ3, where δ3 is a positive constant.

Theorem 5.2 For the system with actuator failure (5.1) with Assumptions 5.1 and 5.3,

the fault observation error can be guaranteed to be UUB through the developed fault

observer (5.11) with the adaptive law (5.12).

Proof Select the Lyapunov function candidate as

Σ1 =
1

2
eTo eo +

1

2
ũTaL

−1
2 ũa (5.14)

where ũa = ua − ûa is the estimation error of the actuator failure.

Substituting (5.13) into the time derivative of (5.14), one can obtain

Σ̇1 = eTo ėo − ˙̂uTaL
−1
2 ũa

= eTo (ef + eg(u− ua)− ĝ(x)(ua − ûa)− L1eo)− ˙̂uTaL
−1
2 ũa

≤ δ3 ∥eo∥ − eTo ĝ(x)ũa − λmin(L1) ∥eo∥2 − ˙̂uTaL
−1
2 ũa

= − (λmin(L1) ∥eo∥ − δ3) ∥eo∥ −
(
eTo ĝ(x) +

˙̂uTaL
−1
2

)
ũa. (5.15)

Substituting the adaptive law (5.12) into (5.15), it becomes

Σ̇1 = − (λmin(L1) ∥eo∥ − δ3) ∥eo∥ .

This indicates Σ̇1 < 0 as long as eo lies outside the compact set ∥eo∥ ≤ δ3
λmin(L1)

. According

to the Lyapunov stability theorem, the fault observation error is UUB. This completes

the proof.
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5.3.3 Online PI algorithm

In this subsection, we will introduce an online PI algorithm to overcome the difficulty

in solving the HJB equation. The PI algorithm consists of policy evaluation based on

(5.4) and policy improvement based on (5.7), and its iteration process can be described

as follows.

Algorithm 5.1 Online policy iteration

Step 1 Let i = 0, begin with an initial admissible control policy µ(0)(x), and select a

small positive constant ε;

Step 2 Let i > 0, based on the control policy µ(i)(x), solve V (i+1) from

0 = ρûTa ûa + U(x, µ(i)) +
(
∇V (i+1)(x)

)T
(f(x) + g(x)µ(i)).

Step 3 Update the control policy by

µ(i+1) = −1

2
R−1gT(x)∇V (i)(x).

Step 4 If i > 0 and
∥∥V (i+1)(x)− V (i)(x)

∥∥ ≤ ε, stop and obtain the approximate optimal

control; else, let i = i+ 1 and return to Step 2.

This algorithm will converge to the optimal performance index function and optimal

control policy, i.e., V (i)(x) → J∗(x) and µ(i)(x) → u∗(x) as i→ ∞ [122].

5.3.4 Neural network implementation

In this section, a single-layer neural network V (x) is employed to approximate the

assumed differentiable performance index function on the compact set Ω as

V (x) = WT
c σ(x) + εc(x) (5.16)

where Wc ∈ Rl is the ideal weight vector, σ(x) ∈ Rl is the activation function, l is the

number of neurons in the hidden layer, and εc(x) is the approximation error of the neural

network. Then, the gradient of (5.16) along with x is

∇V (x) = (∇σ(x))TWc +∇εc(x) (5.17)

where ∇σ(x) = ∂σ(x)
∂x

∈ Rl×n and ∇εc(x) are the gradients of the activation function and

the approximation error, respectively.
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Substituting (5.17) into (5.4), one can obtain

0 = ρûTa ûa + U(x, µ) +
(
(∇σ(x))TWc +∇εc(x)

)
ẋ.

Thus, the Hamiltonian can be expressed as

H (x, µ,Wc) = ρûTa ûa + U(x, µ) +WT
c ∇σ(x)ẋ = −∇εc(x)ẋ

∆
= ecH (5.18)

where ecH is the residual error due to the neural network approximation.

Since the ideal weight of vectorWc is unknown, the critic neural network is employed

to approximate V (x) as

V̂ (x) = ŴT
c σc(x).

Then, the gradient of V̂ (x) can be expressed as

∇V̂ (x) = (∇σ(x))T Ŵc.

Thus, the approximate Hamiltonian can be obtained as

H(x, µ, Ŵc) = ρûTa ûa + U(x, µ) + ŴT
c ∇σ(x)ẋ

∆
= ec.

Let θ = ∇σc(x)ẋ, and define the weight approximation error as W̃c = Wc−Ŵc. By (5.18)

and (5.20), one has

ec = ecH − W̃T
c θ.

The weight approximation error can be updated as

˙̃Wc = − ˙̂
Wc = l(ecH − W̃T

c θ)θ. (5.19)

In order to tune the critic neural network weight vector Ŵc, the objective function Ec =
1
2
eTc ec should be minimized by the normalized gradient algorithm. Ŵc should be updated

as

˙̂
Wc = −lecθ (5.20)

where l > 0 is the learning rate of the critic neural network.

Hence, according to (5.7) and (5.16), the ideal control policy can be described as

µ(x) = −1

2
R−1gT(x)

(
(∇σ(x))TWc +∇εc(x)

)
.

It can be approximated as

µ̂(x) = −1

2
R−1gT(x) (∇σ(x))T Ŵc. (5.21)

The structural diagram of the observer based ADP scheme for FTC is depicted in Fig.

5.1.
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Fig. 5.1 The structural diagram of observer based ADP scheme for FTC

Remark 5.2 From the approximate control policy (5.21), we can observe that it can be

derived depending only on the critic neural network, whose weight vector can be updated

by (5.20). Meanwhile, the training of the action neural network is no longer required.

Hence, it is feasible for the implementation and computation.

Theorem 5.3 Considering the nonlinear system (5.1) without an actuator failure, if the

weights of the critic neural network are updated by (5.19), then the weight approximation

error is UUB.

Proof Select the Lyapunov function candidate as

Σ2 =
1

2l
W̃T

c W̃c.

Its time derivative is

Σ̇2 =
1

l
W̃T

c
˙̃Wc

= W̃T
c

(
ecH − W̃T

c θ
)
θ

= W̃T
c ecHθ −

∥∥∥W̃T
c θ
∥∥∥2

≤ 1

2
e2cH − 1

2

∥∥∥W̃T
c θ
∥∥∥2 .

Hence, Σ̇2 < 0 if W̃c lies outside the compact set
∥∥∥W̃c

∥∥∥ ≤
∥∥∥ ecHθM ∥∥∥ with assumption ∥θ∥ ≤

θM , where θM is a positive constant. According to the Lyapunov stability theorem, the

weight approximation error is UUB. This completes the proof.
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5.3.5 Stability analysis

Theorem 5.4 Assume that the neural network based HJB solution to the optimal

control problem exists. For the considered system (5.1), the approximate FTC policy

(5.21) can guarantee the closed-loop system UUB with the performance index function

(5.2).

Proof Select the Lyapunov function candidate as

Σ3 =
1

2
xTx+ J∗(x).

Its time derivative is

Σ̇3 = xTẋ+ (∇J∗(x))T ẋ

= xT (f(x) + g(x)(µ− ua)) + (∇J∗(x))T (f(x) + g(x)(µ− ua))

= xTf(x) + xTg(x)µ− xTg(x)ua − (∇J∗(x))T g(x)ua + (∇J∗(x))T (f(x) + g(x)µ) .

(5.22)

According to (5.4), (5.22) becomes

Σ̇3 = xTf(x) + xTg(x)µ− xTg(x)ua − (∇J∗(x))T g(x)ua − ρûTa ûa − xTQx− µTRµ.

As f(x) is locally Lipchitz, there exists a positive constantDf such that ∥f(x)∥ ≤ Df ∥x∥.
Assume that ∥g(x)∥ ≤ Dg. By Young’s inequality, we can obtain

Σ̇3 ≤ Df ∥x∥2 +
1

2
∥x∥2 + 1

2
D2
g ∥µ∥

2 +
1

2
∥ua∥2 +

1

2
D2
g ∥x∥

2 − (∇J∗(x))T g(x)ua − ρûTa ûa

− λmin(Q) ∥x∥2 − λmin(R) ∥µ∥2

=−
(
λmin(Q)−Df −

1

2
D2
g −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g

)
∥µ∥2 + 1

2
∥ua∥2

− (∇J∗(x))T g(x)ua − ρûTa ûa. (5.23)

Substituting (5.8) into (5.23), it follows

Σ̇3 ≤−
(
λmin(Q)−Df −

1

2
D2
g −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g

)
∥µ∥2

+
1

2
∥ua∥2 + 2µTRua − ρûTa ûa

≤−
(
λmin(Q)−Df −

1

2
D2
g −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g −R2

)
∥µ∥2

+
3

2
∥ua∥2 − ρûTa ûa

=−
(
λmin(Q)−Df −

1

2
D2
g −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g −R2

)
∥µ∥2

−
(
ρ− 3

2

)
ûTa ûa +

3

2

(
∥ua∥2 − ûTa ûa

)
.
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Noticing (5.9), it follows

Σ̇3 ≤−
(
λmin(Q)−Df −

1

2
D2
g −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g −R2

)
∥µ∥2

−
(
ρ− 3

2

)
ûTa ûa +

3

2
(2δ1 + δ2)δ2

=−
(
λmin(Q)−Df −

1

2
D2
g −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g −R2

)
∥µ∥2

−
(
ρ− 3

2

)
ûTa ûa + δb

where δb =
3
2
(2δ1 + δ2)δ2. Hence, we can observe that Σ̇3 ≤ 0 when x(t) lies outside the

compact set ∥x∥ ≤ δb
λmin(Q)−Df−D2

g− 1
2

if the following conditions hold:
λmin(Q) ≥ Df +

1
2
D2
g +

1
2

λmin(R)−R2 ≥ 1
2
D2
g

ρ ≥ 3
2
.

Therefore, the state trajectories of the closed-loop system under the FTC input are UUB.

This completes the proof.

5.4 Simulation studies

In order to show the effectiveness of the proposed FTC based on ADP, two simulation

examples are given in this section.

Example 5.1 A torsional pendulum system is employed to examine the control per-

formance of the proposed FTC scheme [123]. The system dynamics of the torsional

pendulum with an actuator failure is as follows:
dθ

dt
= ω

J
dω

dt
= (u− ua)−Mgl sin θ − fd

dθ

dt
.

where M = 1
3
kg and l = 2

3
m are the mass and length of the pendulum bar, respectively.

The angle θ and the angular velocity ω are the system states. ua(t) ∈ R is an unknown

actuator failure, which we choose as

ua(t) =

{
0, 0 ≤ t ≤ 30sec

0.3 + 0.5 sin
(
3t
2π

)
, 30sec < t ≤ 60sec.

Let J = 4
3
Ml2 and fd = 0.2 be the rotary inertia and frictional factor, respectively. Let

g = 9.8m/s2 be the gravitational acceleration.
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Fig. 5.2 The weights of the critic neural network

Define x = [x1, x2]
T = [θ, ω]T ∈ R2. Let the initial state of the torsional pen-

dulum system and the observed state be x0 = [1,−1]T and x̂0 = [2,−2]T, and the

admissible control be u = [−0.4,−0.8]x. In this simulation, the performance index

function is approximated by a critic neural network, whose weight vector is denoted as

Ŵc =
[
Ŵc1, Ŵc2, Ŵc3

]T
, and its initial value is Ŵc0 = [5, 3, 7]T. The activation function of

the critic neural network is chosen as σc(x) = [x21, x1x2, x
2
2]. Let Q = I2 and R = 0.05I1,

where In denotes the n × n identity matrix, the fault observer gain be L1 = 20I2, the

learning rate of the critic neural network and actuator failure be l1 = 0.01 and L2 = 50I1,

and the gain in performance index function (5.3) be ρ = 8, respectively. The initial value

of the actuator failure is chosen as ua0 = 1.

The simulation results are illustrated in Figs. 5.2–5.5. We can see in Fig. 5.2,

the weights of the critic neural network converge to [5.091011, 3.802569, 4.409337]T with

the proposed algorithm. As the estimated value of actuator failure ûa is required in

the constructed performance index function (5.3), Fig. 5.3 shows the precise estimation

performance of the actuator failure, which is the key point in the proposed FTC method.

As shown in Fig. 5.4, the converged system states under the ADP based FTC are shown

for the system suffers from an actuator failure. Fig. 5.5 illustrates the control input. We

can observe that after the failure occurs at t = 30s, the control input presents a change

against the failure, so that an acceptable control performance can be derived. Therefore,

the simulation results demonstrate that the proposed FTC scheme is effective.
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Example 5.2 Consider the following nonlinear system with an actuator failure:

ẋ =


x2 − x1

−0.5x1 − 0.5x2 + 0.5x2 (cos(2x1) + 2)2

x4 − x3

−x3 − 0.5x4 + 0.5x4x
2
3

+


0 0

cos(2x1) + 2 0

0 0

0 x3

 (u− ua)

where x = [x1, x2, x3, x4]
T ∈ R4 and u = [u1, u2]

T ∈ R2 are the state and control input

variables, respectively. The term ua = [ua1, ua2]
T ∈ R2 reflects the unknown actuator

failure, which we choose as

ua(t) =

{
[0, 0]T , 0 ≤ t ≤ 10sec

[6, 0]T , 10sec < t ≤ 20sec

for the purpose of simulation.

Let the initial system state be x0 = [1,−1, 1,−1]T, the initial observed state be x̂0 =

[2,−2, 2,−2]T, and the initial admissible control policy be u = [−0.2,−0.4,−0.6,−0.8]x,

respectively. We employ a critic neural network to approximate the performance index

function, and its weight vector is denoted as Ŵc =
[
Ŵc1, Ŵc2, . . . , Ŵc10

]T
, whose initial

value is Ŵc0 = [20, 25, 80, 10, 90, 15, 60, 50, 35, 75]T. The activation function of the critic

neural network is chosen as σc(x) = [x21, x1x2, x1x3, x1x4, x
2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4].

Let Q = I4, R = 0.05I2, the fault observer gain be L1 = 20I4, the learning rate of the

critic neural network and actuator failure be l1 = 0.5 and L2 = 50I2, and the gain in
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performance index function be ρ = 5, respectively. The initial value of the actuator

failure vector is chosen as ua0 = [0, 0]T.

By using the proposed algorithm, the weights of the critic neural network converge to

[8.883293, 48.669910, 68.846855, 34.323722, 48.565825, 40.415194, 26.800737, 38.819658,

59.425341, 37.962929]T. The simulation results are shown as Figs. 5.6–5.9, and from these

figures, we can conclude similar results as in Example 5.1. Therefore, we can declare the

effectiveness of the developed ADP based FTC scheme.

5.5 Conclusions

An observer based ADP algorithm for the FTC problem of a class of nonlinear

systems with actuator failures is developed in this chapter. With the help of the estimated

failure from the fault observer, a novel performance index function is constructed to

account for the system failure. Thus, the FTC problem can be transformed into an

optimal control problem. A critic neural network is constructed to solve the improved

HJB equation online, and the approximated optimal controller can be directly derived.

Based on the Lyapunov stability theorem, the closed-loop system is guaranteed to be

UUB. Two numerical simulations are provided to reinforce the theoretical results.



Chapter 6 ADP based Stabilization of Nonlinear Systems

with Unknown Actuator Saturation

6.1 Introduction

In this chapter, an ADP based stabilizing scheme is developed for nonlinear systems

with unknown actuator saturation. The control method consists of the online nominal

optimal control for nominal system, and a NN based compensation for the unknown

actuator saturation. Based on Lyapunov’s direct method, the convergence of the closed-

loop system is proved. Simulation results demonstrate the effectiveness of the proposed

stabilizing method.

The main contributions of this work with respect to the existing literature are sum-

marized as follows:

1. This paper develops an online optimal nominal control scheme. Thus, the initial

stabilizing control and the persisting of excitation condition are not required, which

are always necessary in many existing works [29, 34, 124].

2. Unlike [22, 110, 112, 113], this paper considers the ADP based control method for

nonlinear systems with unknown actuator saturation. It implies that the proposed

scheme is derived without requiring the priori knowledge of the bound of actuator

saturation.

3. The optimal control is obtained by using only critic NN, rather than dual or three

NNs based structure. Thus, it reduces the computational burden of the traditional

adaptive critic designs [107, 112].

6.2 Problem statement

Consider the nominal continuous-time nonlinear systems described as

ẋ = f(x) + g(x)u, (6.1)

where x ∈ Rn is the system state vector, u ∈ Rm is the control input vector, f(·) and g(·)
are locally Lipschitz and differentiable in their arguments, such that the solution x(t) of

system (6.1) is unique for arbitrarily given initial state x(0) = x0 with f(0) = 0. System

(6.1) is stable in the sense that there exists a continuous control u that stabilizes the

system asymptotically.
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In order to better adapt practical control requirements, this chapter considers the

stabilization problem of continuous-time nonlinear systems with unknown actuator satu-

ration as

ẋ = f(x) + g(x)τ, (6.2)

where τ = [τ1, τ2, . . . , τm]
T ∈ Rm is the saturated actuator output vector, which is the

actual applied control input of (6.2). It slopes between its lower and upper limits, i.e.,

τi = sat(ui) =


uimax, if ui > uimax,

ui, if uimin ≤ ui ≤ uimax,

uimin, if ui < uimin,

(6.3)

where i = 1, 2, . . . ,m, uimax and uimin are the unknown upper and lower limit bounds, re-

spectively. That is to say, if the commanded input ui falls outside of the set [uimin, uimax],

actuator saturation occurs and the control input cannot be fully implemented by the

device.

The control objective of this work is to develop a NN compensation based ADP

stabilization scheme for nonlinear systems with unknown actuator saturation, and ensure

all the signals of the closed-loop system to be UUB in the presence of unknown actuator

saturation.

6.3 Online approximate optimal controller design and stability

analysis

This section is divided into three parts. In the first part, the online nominal optimal

control scheme is presented for nominal system (6.1). Then, in the second part, a feed-

forward NN compensator is developed to tackle the unknown actuator saturation for

nonlinear system (6.2). In the third part, the UUB stability of the closed-loop system is

analyzed.

6.3.1 Online nominal optimal control

For nominal nonlinear system (6.1), a feedback control un(x) ∈ Ψ(Ω) will be derived

to tackle its control problem, such that the closed-loop system is stable. The objective

of this general optimal control problem is to find the stabilizing nominal control un(x)

which minimizes the infinite-horizon cost function given by

V (x0) =

∫ ∞

0

U(x(s), un(s))ds, (6.4)
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where U(x, un) = xTQx + uTnRun is the utility function, U(0, 0) = 0, and U(x, un) ≥ 0

for all x and un, in which Q ∈ Rn×n and R ∈ Rm×m are positive definite matrices. If the

associated cost function (6.4) is continuously differentiable, then the infinitesimal versions

of (6.4) is the so-called nonlinear Lyapunov equation

0 = U(x, u) +∇V (x)ẋ.

Define the Hamiltonian for the nominal control policy un(x) and the cost function V (x)

as

H (x, un,∇V (x)) = U(x, un) + (∇V (x))T (f(x) + g(x)un). (6.5)

According to [2], the optimal cost V ∗(x) of (6.4) can be obtained by solving the HJB

equation

0 = min
un(x)∈Ψ(Ω)

H (x, un,∇V ∗(x)) (6.6)

with V ∗(0) = 0, and the term ∇V ∗(x) denotes the partial derivative of the cost function

V ∗(x) with respect to x, i.e., ∇V ∗(x) =
∂V ∗(x)

∂x
.

If the solution V ∗(x) of (6.6) exists, then the closed-loop description for optimal

control can be derived as

u∗n(x) = −1

2
R−1gT(x)∇V ∗(x). (6.7)

By simple transformation of (6.7), we have

(∇V ∗(x))T g(x) = −2 (u∗n(x))
TR. (6.8)

As we know, NNs have strong capability in approximating any nonlinear functions.

Since the differentiable cost function on the compact set Ω is usually highly nonlinear

and nonanalytic, in the following, we approximate it with a single-layer NN as

V (x) = WT
c σc(x) + εc(x), (6.9)

where Wc ∈ Rl1 is ideal weight vector, σc(x) ∈ Rl1 is the activation function, l1 is the

number of neurons in the hidden-layer, and εc(x) is the approximation error of the NN.

Then, the partial gradient of V (x) along with x is

∇V (x) = (∇σc(x))TWc +∇εc(x), (6.10)

where ∇σc(x) =
∂σc(x)

∂x
∈ Rl1×n and ∇εc(x) are gradients of the activation function and

the approximation error, respectively.
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Thus, the Hamiltonian can be expressed as

H (x, un,Wc) = U(x, un) +
(
WT

c ∇σc(x) +∇εc(x)
)
ẋ. (6.11)

Combining (6.6) with (6.11), we obtain

U(x, un) +WT
c ∇σc(x)ẋ = ecH , (6.12)

where ecH = −∇εc(x)ẋ is the residual error caused by the NN approximation.

Since the ideal weight vector Wc is unknown, the critic NN can be approximated by

V̂ (x) = ŴT
c σc(x), (6.13)

where Ŵc is the estimation of the ideal weight vector Wc. Then, we have the gradient of

V̂ (x) as

∇V̂ (x) = (∇σc(x))T Ŵc. (6.14)

Thus, the approximate Hamiltonian can be obtained as

H
(
x, un, Ŵc

)
= U(x, un) + ŴT

c ∇σc(x)ẋ = ec. (6.15)

Define the weight approximation error as W̃c = Wc − Ŵc. From (6.11) and (6.15), we

have

ec = ecH − W̃T
c ∇σc(x)ẋ. (6.16)

In order to tune the critic NN weight vector Ŵc, the objective function Ec =
1

2
eTc ec should

be minimized by the steepest descent algorithm. The weight approximation error can be

updated by

˙̃Wc = − ˙̂
Wc = lc

(
ecH − W̃T

c θ
)
θ, (6.17)

where θ = ∇σc(x)ẋ.

Thus, Ŵc can be updated as

˙̂
Wc = −lcecθ, (6.18)

where lc > 0 is the learning rate of the critic NN.

Hence, according to (6.7) and (6.9), the ideal nominal control policy can be expressed

as

un(x) = −1

2
R−1gT(x)

(
∇σT

c (x)Wc +∇εc(x)
)
. (6.19)
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Thus, it can be approximated as

ûn(x) = −1

2
R−1gT(x)∇σT

c (x)Ŵc. (6.20)

From (6.19), we can see that the nominal control policy can be derived depending only

on the critic NN, the training of the action NN is no longer required.

Theorem 6.1 For nonlinear system (6.1), if the weight vector of the critic NN is up-

dated by (6.18), then the approximation error of the weight vector can be guaranteed to

be UUB.

Proof Select the Lyapunov function candidate as

L1 =
1

2lc
W̃T

c W̃c. (6.21)

Its time derivative is

L̇1 =
1

lc
W̃T

c
˙̃Wc

= W̃T
c

(
ecH − W̃cθ

)
θ

= W̃T
c ecHθ −

∥∥∥W̃cθ
∥∥∥2

≤ 1

2
e2cH − 1

2

∥∥∥W̃cθ
∥∥∥2 . (6.22)

Assume ∥θ∥ ≤ θM , where θM > 0. Hence, L̇1 < 0 as long as W̃c lies outside of the

compact set

ΩW̃c
=

{
W̃c :

∥∥∥W̃c

∥∥∥ ≤
∥∥∥∥ecHθM

∥∥∥∥} .
Therefore, according to Lyapunov’s direct method, the approximation error of the weight

vector is UUB. This completes the proof.

6.3.2 Neural network based unknown saturation compensation

In this subsection, a NN based compensator is designed in detail as a feed-forward

control loop, which is used for compensating the unknown nonlinear saturation.

In order to tackle the unknown actuator saturation, the vector δ(x) = u − τ =

[δ1, δ2, . . . , δm]
T ∈ Rm, which is the so-called saturation nonlinearity, is introduced with

the definition as

δi(x) = ui − τi

=


ui − uimax, if ui > uimax,

0, if uimin ≤ ui ≤ uimax,

ui − uimin, if ui < uimin,

(6.23)
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where i = 1, 2, . . . ,m.

Noticing that in the case of no actuator saturation, δ(x) remains zero, and the control

law becomes the same as the nominal control law (6.19). However, δ(x) is nonzero in

the presence of actuator saturation. Thus, the saturated nonlinear system (6.2) can be

transformed into

ẋ = f(x) + g(x)(u− δ). (6.24)

Since δ(x) is unknown, a backpropagation NN is employed to approximate it. Thus, δ(x)

can be presented as

δ(x) = WT
δ σδ(x) + εδ(x), (6.25)

where Wδ ∈ Rl2 is the ideal weight vector, σδ(x) ∈ Rl2 is the activation function, l2 is the

number of neurons in the hidden-layer, and εδ(x) is the approximation error of NN.

Assumption 6.1 The NN approximation error is bounded, i.e., ∥εδ(x)∥ ≤ εδM , where

εδM is a positive constant.

In order to determine the unknown weight vector Wδ, (6.25) is approximated by

δ̂(x) = ŴT
δ σδ(x), (6.26)

where Ŵδ is the estimation of the ideal weight vector Wδ. It can be updated by

˙̂
Wδ =− ˙̃Wδ

= Γδσδ(x)
(
2uTnR− xTg(x)

)
+ kΓδ ∥x∥ Ŵδ, (6.27)

where Γδ > 0 and k > 0 are both NN learning rates.

Define δ̃ = δ − δ̂ as the overall NN approximation error. We have

δ̃ =WT
δ σδ(x)− ŴT

δ σδ(x) + εδ(x)

= W̃T
δ σδ(x) + εδ(x). (6.28)

Assumption 6.2 There exists positive constants δM and δm such that ∥Wδ∥ ≤ δM and∥∥∥W̃δ

∥∥∥ ≤ δm, respectively.

Therefore, based on the approximated δ(x), the unknown actuator saturation prob-

lem can be solved by designing a feed-forward compensation for the nominal optimal

control (6.19). From this point of view, the overall control law for nonlinear system (6.2)

is designed as

u = un + δ̂, (6.29)

where the NN based saturation compensator δ̂ is used to compensate for the saturation

nonlinearity. In summary, the proposed NN compensation based overall control architec-

ture can be illustrated in Fig. 1.
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Fig. 6.1 The presented NN compensation based control architecture

6.3.3 Stability analysis

Theorem 6.2 Consider the nonlinear system with unknown actuator saturation (6.2),

the transformed dynamics (6.24), as well as the Assumptions 6.1 and 6.2, all the signals of

the closed-loop system can be guaranteed to be UUB, if the overall control law is designed

as (6.29), which is composed of the online nominal optimal control (6.19) and saturation

compensation (6.26) with the update law (6.27).

Proof Select the Lyapunov function candidate as

L2 =
1

2
xTx+ V (x) + tr

(
1

2
W̃T

δ Γ
−1
δ W̃δ

)
, (6.30)

where tr(·) is the trace of the matrix.

The time derivative of (6.30) is

L̇2 = xTẋ+ V̇ (x) + tr
(
W̃T

δ Γ
−1
δ

˙̃Wδ

)
= xT (f(x) + g(x)(u− δ)) + V̇ (x) + tr

(
W̃T

δ Γ
−1
δ

˙̃Wδ

)
. (6.31)

In the existence of saturation nonlinearity, for the second item of (6.31), we have

V̇ (x) =∇V T(x)ẋ

=∇V T(x) (f(x) + g(x)u)−∇V T(x)g(x)δ. (6.32)
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Defining δ̃ = δ − δ̂. Then, introduce the presented overall control law (6.29), (6.32)

becomes

V̇ (x) = ∇V T(x) (f(x) + g(x)un)−∇V T(x)g(x)δ̃. (6.33)

According to (6.6), (6.8) and (6.29), we have

L̇2 = xT (f(x) + g(x)un)− xTQx− uTnRun

+
(
2uTnR− xTg(x)

)
δ̃ + tr

(
W̃T

δ Γ
−1
δ

˙̃Wδ

)
. (6.34)

Since f(x) is locally Lipschitz, there exists positive constants Df such that ∥f(x)∥ ≤
Df ∥x∥. Assume that ∥g(x)∥ ≤ Dg. Thus, (6.34) becomes

L̇2 ≤ Df ∥x∥2 +
1

2
∥x∥2 + 1

2
D2
g ∥un∥

2 − λmin(Q) ∥x∥2

− λmin(R) ∥un∥2 +
(
2uTnR− xTg(x)

)
δ̃ + tr

(
W̃T

δ Γ
−1
δ

˙̃Wδ

)
, (6.35)

where λmin(·) denotes the minimum eigenvalue of the matrix.

Combining (6.25), (6.26) and (6.27), we have

L̇2 ≤ Df ∥x∥2 +
1

2
∥x∥2 + 1

2
D2
g ∥un∥

2 − λmin(Q) ∥x∥2

− λmin(R) ∥un∥2 +
(
2uTnR− xTg(x)

)
δ̃

− tr
(
W̃T

δ (σδ(x)
(
2uTnR− xTg(x)

)
+ k ∥x∥ Ŵδ)

)
= −

(
λmin(Q)−Df −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g

)
∥un∥2

+
(
2uTnR− xTg(x)

) (
W̃T

δ σδ(x) + εδ(x)
)

− tr
(
W̃T

δ (σδ(x)
(
2uTnR− xTg(x)

)
+ k ∥x∥ Ŵδ)

)
= −

(
λmin(Q)−Df −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g

)
∥un∥2

+
(
2uTnR− xTg(x)

)
εδ(x)− k ∥x∥ tr

(
W̃T

δ Ŵδ

)
= −

(
λmin(Q)−Df −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g

)
∥un∥2

+
(
2uTnR− xTg(x)

)
εδ(x)− k ∥x∥ tr

(
W̃T

δ

(
Wδ − W̃δ

))
. (6.36)

According to Assumptions 6.1 and 6.2, and suppose that
∥∥2uTnR− xTg(x)

∥∥ ≤ υ,

(6.36) becomes

L̇2 ≤ −
(
λmin(Q)−Df −

1

2

)
∥x∥2 −

(
λmin(R)−

1

2
D2
g

)
∥un∥2

+ εδMυ − k ∥x∥
(
δMδm − δ2m

)
. (6.37)
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Let A = λmin(Q) − Df − 1

2
, B = k (δMδm − δ2m). From (6.37), we can conclude that

L̇2 ≤ 0 when the state x lies outside of the compact set

Ωx =

{
x : ∥x∥ ≤ −B +

√
B2 + 4AεδMυ

2A

}
with the following conditions hold:

λmin(Q) > Df +
1

2
,

λmin(R) ≥
1

2
D2
g .

It implies that all the signals of the closed-loop system with unknown actuator saturation

can be guaranteed to be UUB. This completes the proof.

6.4 Simulation studies

In this section, two examples are given to show the effectiveness of the developed

ADP based control scheme.

Example 6.1 Consider a torsional pendulum system [125] which is described as
dθ

dt
= ω,

J
dω

dt
= τ −Mgl sin θ − fd

dθ

dt
,

where M = 1
3
kg and l = 2

3
m are the mass and length of the pendulum bar, respectively.

The angle θ and the angular velocity ω are the system states. Let J = 4
3
Ml2 and

fd = 0.2 be the rotary inertia and frictional factor, respectively. Let g = 9.8m/s2 be

the gravitational acceleration. τ ∈ R is the actual applied control input with unknown

actuator saturation, in this simulation, it is chosen as

τ = sat(u) =


0.1, if u > 0.1,

u, if − 0.1 ≤ u ≤ 0.1,

−0.1, if u < −0.1.

Define x = [x1, x2]
T = [θ, ω]T ∈ R2 as the state vector of the torsional pendulum system,

whose initial state is x0 = [1,−1]T. In this simulation, the cost function is approximated

by a critic NN, whose weight vector is denoted as Ŵc = [Ŵc1, Ŵc2, Ŵc3]
T, and its initial

value is chosen as Ŵc0 = [0.6, 0.2, 0.9]T. The activation function of the critic NN is chosen

as σc(x) = [x21, x1x2, x
2
2]. Let Q = 10I2 and R = 10I1, where In denotes identity matrix

with n dimensions, the learning rate of the critic NN be lc = 0.0002, the learning rates

of the NN for saturation compensator be Γδ = 0.01 and k = 1, respectively.
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The simulation results are shown as Figs. 6.2–6.5. From Fig. 6.2, we can see

that the weights of the critic NN converge to [0.6108, 0.1764, 0.9576]T. As shown in Fig.

6.3, the NN based saturation compensator (6.26) is employed to overcome the negative

effect brings by the unknown actuator saturation. We can see that the actual control

input illustrated in Fig. 6.4 is limited within the bounded values. Fortunately, with the

proposed ADP based stabilizing control scheme, the system states are still convergence

as Fig. 6.5.

Example 6.2 In order to further show the effectiveness of the proposed control scheme,

consider the following nonlinear system [123]:

ẋ =


x2 − x1

−0.5x1 − 0.5x2 + 0.5x2 (cos(2x1) + 2)2

x4 − x3

−x3 − 0.5x4 + 0.5x4x
2
3

+


0 0

cos(2x1) + 2 0

0 0

0 x3

 τ, (6.38)

where x = [x1, x2, x3, x4]
T ∈ R4 and τ = [τ1, τ2]

T ∈ R2 are the state and actual control

input vectors, respectively. For the purpose of simulation, we define the unknown actuator

saturation as

τi = sat(ui) =


3, if ui > 3,

ui, if − 3 ≤ ui ≤ 3,

−3, if u < −3,

where i = 1, 2. Let the initial state vector be x0 = [1, −1, 2, −2]T. The critic NN

weight vector is denoted as Ŵc = [Ŵc1, Ŵc2, . . . , Ŵc10]
T, whose initial value is Ŵc0 =

[0.1, −0.2, 0.9, −0.3, 0.5, −0.1, 0.4, 0.3, 0.2, −0.7]T. The activation function of the

critic NN is chosen as σc(x) = [x21, x1x2, x1x3, x1x4, x
2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4]. Let

Q = I4, R = 0.1I2, the learning rate of the critic NN be lc = 0.0002, the learning rates of

the NN for saturation compensator be Γδ = 0.0001 and k = 1, respectively.

The simulation results are displayed in Figs. 6.6–6.9. Fig. 6.6 illustrates that the

weights of the critic NN converge to [0.0916, −0.1359, 0.8892, −0.3563, 0.4380, 0.0247,

0.2536, 0.2636, 0.0666, −0.2856]T. Fig. 6.7 shows the feed-forward compensation of the

unknown saturation nonlinearity via the NN. By using the proposed control scheme, the

actual control inputs illustrate as Fig. 6.8 drive the states of the nonlinear system (6.38) to

convergence, which are shown as Fig. 6.9. From these figures, we can see that the system

states converge to equilibrium point, though the actuator saturation exists. Hence, we

can declare that the proposed ADP based stabilizing control scheme is effectiveness for

nonlinear systems with unknown actuator saturation.
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6.5 Conclusion

In this chapter, the stabilizing control problem of nonlinear systems with unknown

actuator saturation was tackled by using NN compensation based ADP algorithm. The

online updated critic NN is employed to derive the cost function approximately. And

the nominal optimal control can be derived thereby. By constructing a NN based feed-

forward compensator, the overall ADP based stabilizing control is implemented to reduce

the influence of the unknown actuator saturation. Simulation results demonstrated that

the proposed control scheme was effective. This strategy is utilized to solve the stabilizing

problem without any priori knowledge of the bounds of actuator saturation, as well as

the initial stabilizing control and the persisting of excitation condition, which are always

required in traditional ADP methods.
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