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Abstract—In this paper, we present a novel depression dis-
order classification algorithm, named weighted discriminative
dictionary learning (WDDL), based on functional magnetic
resonance imaging (fMRI) data. The underlying relationship
between samples and dictionary atoms is exploited by introduc-
ing an adaptive weighting scheme. Tested on fMRI data of 29
patients with depression and 29 healthy controls, our algorithm
outperforms all other classification methods compared in this
work. Furthermore, we detect the discriminative brain regions
of patients which can reveal the pathogenesis of depression
disorder.

1. Introduction

Functional magnetic resonance imaging (fMRI), which
is based on blood-oxygen-level-dependent (BOLD) tech-
niques, has become an effective approach to study the
functional activities of the brain [21], [34]. There are ev-
idences for altered fMRI activation patterns in patients with
depression disorder [6], [9], [24]. Meanwhile, the diagnosis
of depression disorder is mainly dependent on clinical signs
and symptoms, which involves risks for misdiagnose [6], [7],
[14]. Therefore, developing automatic depression disorder
classification methods of fMRI data is of great importance
for diagnosis and treatment of depression disorders [2], [4],
[11].

In the past few years, sparse representation has emerged
as a powerful tool in image classification. Wright et al.
propose sparse representation based classification (SRC) to
deal with face recognition problem [30]. They first take all
the training samples of each class as dictionaries to represent
testing samples and then classify them to the class with
the minimal representation error. The dictionaries for each
class can represent the samples of an individual class well
in SRC, but they are pre-defined rather than learnt from
a training set. Recent work has shown that methods with
data adaptive and learned dictionaries outperform ones with
pre-defined dictionaries [10]. In particular, several class-
specific dictionary learning methods have been proposed
to further enhance classification performance [28], [29],

[32]. For instance, Yang et al. propose Fisher discrimination
dictionary learning (FDDL) method, which utilizes repre-
sentation coefficients and representation errors for image
classification [32]. Recently, a simple and effective image
classification method named discriminative feature-oriented
dictionary learning (DFDL) has been proposed [28]. This
method requires intra-class similarities and emphasizes the
inter-class differences.

Inspired by the success of dictionary learning and s-
parse representation (DLSR) in image classification, some
researchers apply DLSR to neuroimaging data classification
[18], [24], [26], [31], [35]. Liu et al. introduce SRC into
neuroimaging study and demonstrate its effectiveness for
discriminating Alzheimer’s disease or mild cognitive impair-
ment from healthy control with magnetic resonance imaging
(MRI) data [15]. FDDL is used to characterize the brain’s
functional status into task-free or task-performance states
[33]. Ramezani et al. utilize sparse representation of brain
cognitive patterns to classify individuals based on fMRI
data [22]. A method with two-stage sparse representations is
proposed to differentiate task-based and resting state fMRI
signals [34].

Although the above researches have obtained some
achievements of DLSR for neuroimaging classification, they
still have the following issues: these dictionary learning
methods treat all the samples indiscriminately and ignore
the valuable relationship between the samples and dictionary
atoms. To address the issue, we propose an automatic de-
pression disorder classification method based on fMRI data,
the weighted discriminative dictionary learning (WDDL)
method. WDDL codes each test sample using two class-
specific dictionaries respectively and classifies it to the class
with the smaller representation error. Compared with the
above DLAR classification methods, the proposed algorithm
has the following advantages: we introduce a weighting
scheme based on the similarity between the samples and
dictionary atoms, which make the representation model
more discriminative.

The contributions of this paper are as follows: (1) An
adaptive weighting scheme is introduced to improve the
classification performance. (2) Our method is interpretable,
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as it discovers the discriminative information in the brain of
patients with depression disorders. The revealed information
can provide guidance for diagnosis.

2. Materials and methods

2.1. Depression database

2.1.1. Participants. This study is approved by Department
of Radiology, Guang An Men Hospital of China Academy
of Traditional Chinese Medicine, Beijing, China. Written
informed consents are obtained from all participants. 29
patients with depression (14 females, 15 males) and 29 age-
, sex- and education-matched healthy controls (15 females,
14 males) are analyzed in this study. All subjects are right-
handed native Chinese speakers. They are recruited at the
Department of Radiology, Guang An Men Hospital of China
Academy of Traditional Chinese Medicine. The diagnosis of
depression disorder is made according to Structured Clinical
Interview for the DSM-IV, patient version (SCIDI/P) [8] by
experienced psychiatrists. All the patients have no history
of other neurological illness or head injury. None of the
patients have received treatment within at least 6 months
prior to screening. Healthy controls are interviewed using
the Structured Clinical Interview for DSM-IV, nonpatient
edition (SCIDI/NP). They have no current or history of
depression disorder or other psychiatric disorders.

2.1.2. Data acquisition. Experiments are performed on a
General Electric (GE) signa 1.5T echo speed superconduct-
ing MRI scanner. Subjects are asked to relax themselves
with their eyes closed, not to think of anything, but not to
fall asleep. Foam padding is used to minimize head motion
and reduce scanner noise. Functional images are acquired
using an echo-planar imaging (EPI) sequence with whole-
brain coverage (repetition time (TR) = 2000ms, echo time
(TE) = 30ms, flip angle = 90◦, field of view (FOV) = 24cm,
matrix = 64× 64, thickness = 3mm, slices= 41).

2.2. Data preprocessing

We use Statistical Parametric Mapping(SPM8,
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/),
Resting-State fMRI Data Analysis Toolkit (REST,
http://restfmri.net/forum/index.php/) and Data Processing
Assistant for Resting-State fMRI (DPARSF, http://www.rest
fmri.net/forum/taxonomy/term/36) for fMRI data
preprocessing. In consideration of subject’s adaptation
to the scanning and the scanner calibration, the first
10 time points are discarded. Further preprocessing
procedures include slice timing, realignment for head
motion correction. No subject of Depression database
is discarded as all the subjects have no excessive head
movement (translation< 2.0mm or rotation< 2.0◦). Next,
the functional images are spatially normalized to the
standard EPI template in SPM8 and resampled to a
voxel size of 3 × 3 × 3 mm3. After smoothing with an

isotropic Gaussian kernel (FWHW=4mm), temporal band-
pass filtering (0.01HZ-0.08HZ) is performed to remove
physiological high-frequency noises and low-frequency
drifts. What’s more, 6 head motion parameters, global
mean signal, white matter signal and cerebrospinal fluid
signal are regressed out as covariates. Finally, the fMRI
time series are segmented into 90 brain regions using the
Automated Anatomical Labeling (AAL) atlas [27]. We take
the mean of all voxels in a region as its fMRI time series.

2.3. Proposed weighted discriminative dictionary
learning

2.3.1. Objective function in WDDL. A subject can be
represented as a matrix Yt ∈ Rn×m, where n is the number
of brain regions and m is the number of time series. By
collecting all the samples from each class, we build the
sample matrix of healthy class (HC), Y ∈ Rn×mp, and the
sample matrix of patient class (PC), Ỹ ∈ Rn×mq, where p
and q are the numbers of subjects corresponding to each
class, respectively. The aim of training stage is to learn
dictionary D ∈ Rn×r of HC and dictionary D̃ ∈ Rn×r

of PC, where r is the number of atoms in each dictionary.
For simplicity, we only describe the model corresponding
to healthy class below. The model of patient class can be
solved in a similar way. The objective function related to
the healthy class of our WDDL method is formulated as:

J =arg min
D,S,S̃

(
1

K

K∑
i=1

wi∥yi −Dsi∥22

− ρ

K̃

K̃∑
j=1

w̃j∥ỹj −Ds̃j∥22)

s.t.∥dk∥22 = 1, ∥S∥0 < ϵ1, ∥S̃∥0 < ϵ2, k = 1, ..., r, (1)

where K = mp is the number of columns of HC matrix
Y, yi is the i-th column of Y, si and wi are the coding
coefficient and weight of yi, K̃ = mq is the number
of columns of PC matrix Ỹ, ỹj is the j-th column of
Ỹ, s̃j and w̃j are the coding coefficient and weight of
ỹj . ρ is a positive regularization parameter and k is the
index of dictionary atoms. The first term requires intra-class
differences to be small, while the second term emphasizes
inter-class differences. We set the weights to be inversely
proportional to the distances between the training samples
and the mean of dictionary atoms. The weight wi is defined
as

wi =
1

Z
exp(−∥yi − d∥22), (2)

where Z is the normalization constants, d is the mean
vector of dictionary atoms in D. The weight w̃j can be
solved similarly. Distance between a sample and the mean
of dictionary atoms can measure the similarity between the
sample and the dictionary atoms. If the distance between
a sample and dictionary atoms is small, the weight would
be large, making the representation error small enough to
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satisfy the convergence condition. In other words, the aim
of adding the weighting scheme is to learn a dictionary
which can better represent the samples similar to it. The
better representation can further enhance the classification
performance.

2.3.2. Optimization strategy. The optimization procedure
of WDDL can be divided into two sub-problems: updating
S and S̃ with D fixed, updating D with S and S̃ fixed.

Suppose that dictionary D is fixed, the objective function
in Eq. (1) is reduced to the solver of coding coefficients.
Since the samples from the two classes share the same
dictionary, they can be coded in the same way as follows:

s∗i = argmin
si

(wi∥yi −Dsi∥22 + λ∥si∥0), (3)

where λ is the regularization parameter. The coding coeffi-
cient s̃j can also be solved by the above equation.

When coding coefficients S and S̃ are fixed, dictionary
D can be updated class by class. The objective function in
Eq. (1) is reduced to:

D∗ =argmin
D

(
1

K

K∑
i=1

wi∥yi −Dsi∥22

− ρ

K̃

K̃∑
j=1

w̃j∥ỹj −Ds̃j∥22)

s.t.∥dk∥22 = 1, k = 1, ..., r. (4)

The above objective function can also be written as:

D∗ =argmin
D

(
1

K
∥diag(

√
W)(Y −DS)∥2F

− ρ

K̃
∥diag(

√
W̃)(Ỹ −DS̃)∥2F )

= argmin
D

(−2trace(GDT ) + trace(DHDT )). (5)

By using the equation ∥R∥2F = trace(RRT ) for any matrix
R, we can derive the first equation of Eq. (5) to the second
and denote:

G =
diag(W)

K
YST − ρdiag(W̃)

K̃
ỸS̃T

H =
diag(W)

K
SST − ρdiag(W̃)

K̃
S̃S̃T .

(6)

The object function in Eq. (5) is convex if and only
if H is positive semidefinite. To guarantee the matrix H in
Eq. (5) is positive semidefinite, we replace H with Ĥ = H−
λmin(H)Ik, where λmin(H) is the minimum eigenvalue of
H and Ik is the identity matrix. In addition, the replacement
will not change the optimal solution to Eq. (5) according to
[28]. The object function in Eq. (5) is equivalent to:

D∗ = argmin
D

(−2trace(GDT ) + trace(DĤDT ))

s.t.∥dk∥22 = 1, k = 1, ..., r.
(7)

The dictionary atoms dk can be updated one after an-
other by solving Eq. (7) via the algorithm like [28] or [19]:

uk ←
1

Ĥk,k

(gk −Dĥk) + dk

dk ←
1

∥uk∥2
uk,

(8)

where Ĥk,k is the value of Ĥ at (k, k), ĥk is the k-th column
of Ĥ and gk is the k-th column of G. The algorithm of
WDDL is summarized as follows. The algorithm of WDDL
is summarized as follows.

Algorithm 1 Weighted Discriminative Dictionary Learning
Input:

Y, Ỹ, dictionary size r, regularization parameter λ and
ρ.

Output:
Dictionary D.

1: Initialize D by randomly picking r columns of Y.
2: while not converged do
3: Update the weight W and W̃ by solving Eq. (2).
4: Fix D, update S and S̃ by solving Eq. (3).
5: Fix S and S̃, update D by solving Eq. (8).
6: end while
7: Return D.

2.4. Patient classification

For the purpose of verifying the proposed method, we
perform classification on the testing samples. Classification
is based on the representation error of each class. First, a
testing sample Yt is represented by the two class-specific
dictionaries learned in training step as St and S̃t, respec-
tively. Secondly, the testing sample is assigned to the class
with the smaller representation error: argminc∈1,2 rc(Y

t)
where

r1(Y
t) = ∥Yt −DSt∥2

r2(Y
t) = ∥Yt − D̃S̃t∥2.

(9)

The overall classification procedure of our algorithm is
shown in Fig. 1.

Fig. 1. The schematic diagram of WDDL method used for
depression disorder classification of fMRI data.
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2.5. Identification of the most discriminative brain
regions

To identify the discriminative brain regions of depression
disorder, we perform a two-sample t-test (p-value < 0.05)
on the two class-specific dictionaries. We compare each row
vector related to each brain region between the dictionary D
and D̃. The number of significant differences of each related
brain region is counted in leave-one-out cross-validation
(LOOCV). The more times a brain region is significantly
different, the more discriminative it is.

3. Results

In this section, we conduct detailed experiments to
demonstrate the effectiveness of our method on Depression
database.

3.1. Classification performance

Due to the limited number of subjects in Depression
database, we employ LOOCV to classifiers. Specifically,
each of the subjects is treated as testing sample in turn, and
the rest of subjects are treated as training samples. To assess
the classification performance of our method, we measure
accuracy, sensitivity and specificity which are commonly
used in patient classification problems. Table 1 summarizes
the classification performance of WDDL and the compared
methods. These methods include support vector machine
(SVM) [1], [20], naive Bayes classifier (NB) [23], single
dictionary based classification (SDC) [5], SRC [30] and
DFDL [28]. The parameters of these models are all opti-
mized by LOOCV. Experimental results show that WDDL
outperforms the compared methods, achieving 79.31% ac-
curacy, 75.86% sensitivity and 82.76% specificity.

TABLE 1. Classification performance of WDDL and the
compared methods on Depression database.

Algorithm Accuracy(%) Sensitivity(%) Specificity(%)

SVM 58.62 65.52 51.72
NB 56.90 48.28 65.52
SDC 58.62 68.97 48.28
SRC 63.79 55.17 72.41
DFDL 72.41 75.86 68.97
WDDL 79.31 75.86 82.76

3.2. Discriminative brain regions of patients with
depression

The ten most discriminative brain regions between pa-
tients with depression and healthy controls are shown in
Fig. 2.

4. Discussion

In this paper, we develop a new method named WD-
DL to classify fMRI data of patients with depression and

Fig. 2. The ten most discriminative brain regions in patients
with depression compared with healthy controls. The color
bar indicates the index of brain regions shown in this figure.

healthy controls. Experimental results in Table 1 show that
our method outperforms compared methods on Depression
database. The results of WDDL compared with SVM and
NB indicate that our algorithm performs better than tra-
ditional classifiers. Classification based on one dictionary
is used to compare the effect of one dictionary and two
class-specialfic dictionaries. The comparisons with SRC and
DFDL indicate that our algorithm outperforms the state-of-
the-art class-specific dictionary learning methods. The better
performance of WDDL over these methods verifies that the
weighting scheme do make a positive contribution to the
improvement of WDDL.

The discriminative brain regions of depression disorder
detected by our method, shown in Fig. 2, are consistent
with previous studies. We find that the discriminative brain
regions are mainly involved in the limbic-cortical networks,
such as hippocampus, parahippocampal gyrus, anterior cin-
gulate cortex, posterior cingulate cortex, middle frontal
gyrus and amygdala. The present study adds an additional
literature to the key role of limbic-cortical networks in
the pathogenesis of depression disorder [12]. Among these
brain regions, anterior cingulate cortex plays a key role in
the cognition and emotional regulation [17]. The fusiform
and inferior occipital gyrus, which are related to visual
recognition, are also discriminative between patients with
depression and healthy controls [13]. As all the participants
are scanned with eyes closed, this may imply the aberrant
visual recognition processing in depression disorder. In addi-
tion, the brain regions of default mode network (DMN) [3],
[16], [21], [36], such as posterior cingulate cortex, amygdala
are also significantly different in patients with depression,
which has been detected in previous works [25].
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5. Conclusions

In this paper, we proposed a depression disorder classi-
fication method named WDDL, which provided better clas-
sification performance than the compared methods. More
specifically, weighting scheme was introduced into the rep-
resentation model to improve classification performance. In
this method, two class-specific dictionaries were learned and
fMRI data of each sample was represented by the two dictio-
naries, respectively. One sample was classified to the class
with the smaller representation error. Experimental results
demonstrated the effectiveness and improved classification
performance of WDDL.
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