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Abstract. Hippocampal sclerosis (HS) is one of the most common histopathological abnormalities 
encountered in patients with temporal lobe epilepsy (TLE), which often serves as a diagnosis index 
of TLE. However, some patients with TLE have no pathologic characteristics of HS, which brings 
challenge to the diagnosis of TLE. Therefore, exploring effective methods to classify TLE patients 
with and without HS is meaningful to understanding the pathogenesis of TLE. In this paper, we 
propose a two-level feature selection method for classification. We select the categories of features 
as the first level and pick out the discriminating dimensions as the second level. Furthermore, we 
combine six regional brain characteristics as our features, including regional homogeneity (ReHo), 
amplitude of low-frequency fluctuation (ALFF), regional functional connectivity strength (RFCS) 
and three graph-based features. Results show that our method yields higher classification 
performance compared against the classifiers with single feature and without any level feature 
selection using functional magnetic resonance imaging (fMRI) data. Moreover, the discriminative 
brain regions selected by our method are consistent with previous studies. Thus, our method can 
accurately classify TLE patients with and without HS, which is interpretable from the perspective 
of physiology at the same time. 

Introduction 

Temporal lobe epilepsy (TLE) is the most common type of localization-related epilepsy which 
affects patients’ normal lives. Approximately 60-70% of TLE patients have magnetic resonance 
imaging (MRI) signs of hippocampal sclerosis (HS). However, there exists a small group of TLE 
patients who have no HS or other abnormalities in MRI scans, the so called “imaging-negative” 
patients [1]. Detecting the differences between TLE with and without HS can conduce to the 
diagnosis and treatment of TLE. 

Over the past decades, functional magnetic resonance imaging (fMRI), a non-invasive 
technology with high temporal and spatial resolution, has been largely used to study abnormalities 
of TLE patients. In addition, there are many features of fMRI data used to analyze the TLE patients. 
Zhang et al. [2] use amplitude of low-frequency fluctuation (ALFF) to analyze the differences 
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between left mesial temporal lobe epilepsy (mTLE) patients and right mTLE patients. In [3], 
Regional Homogeneity (ReHo) is used to identify abnormal areas of patients with mesial temporal 
lobe epilepsy and hippocampus sclerosis (mTLE-HS). Wei et al. [4] find alterations related to 
mTLE by studying functional connectivity and some topological properties in graph-theory 
analysis. In the large existing literature on analyzing abnormalities of TLE patients, there is a 
relative lack of studies that consider all the above features to study TLE patients. 

Once the features are extracted from fMRI data, feature selection is necessary for removing 
redundant information and improving classification performance. T-test is one of the most 
commonly used methods to select features of fMRI data. Qiao et al. [5] apply t-test to pick out 
useful features to classify mild cognitive impairment and healthy controls. In addition, principal 
component analysis (PCA) is also used to project high dimensional features onto a lower 
dimensional space for classification of fMRI data [6]. However, these methods to pick out the most 
discriminative dimensions are independent with classification performance. Recursive feature 
elimination (RFE) is a method which selects features based on classification accuracy, which can 
achieve better performance [7]. Chanel et al. [8] use RFE to select features for classification of 
autistic patients and healthy controls. However, the category used in this paper is single. When 
some categories are considered at the same time, selecting the suitable categories of features is 
important to improve classification performance. 

To address the above issues, we propose an effective classification method, named two-level 
feature selection method, for fMRI classification of TLE patients with and without HS. What’s 
more, we take ReHo, ALFF, regional functional connectivity strength (RFCS) and three 
graph-based features as our features. In particular, we first select three kinds of features from the 
six features by t-test as the first level feature selection, and pick out the most discriminative 
dimensions in the three selected features by RFE as the second level. Then, we build three MLDA 
classifiers and combine their results for TLE classification. Furthermore, the most discriminative 
brain regions selected through the weight of the corresponding features can reveal the 
abnormalities of TLE patients. In general, the classification performance can be improved by using 
the two-level feature selection method which picks out the most valuable information. 

Materials and Methods 

Subjects, Data Acquisition and Data Preprocessing 

Twenty TLE patients with HS (average age 35.3 years old, 10 females) and twenty TLE patients 
without HS (average age 34.4 years old, 10 females) were analyzed in this study. The subjects were 
recruited from Department of Radiology, Guang An Men Hospital of China Academy of 
Traditional Chinese Medicine, Beijing, China. Experiments were performed on a GE signa 1.5T 
echo speed superconducting MRI scanner. Subjects were asked to relax themselves but not to fall 
asleep. Functional images were acquired using an echo-planar imaging sequence with whole-brain 
coverage (TR=2000ms, TE=30ms, flip angle=90 , field of view (FOV)=24cm, matrix=64×64, 
thickness=5mm, slices=33). Statistical Parametric Mapping (SPM8) and Data Processing 
Assistant for Resting-State fMRI (DPARSF) were used for fMRI data preprocessing. The first 10 
time points were discarded for subject’s adaptation to the scanning and the scanner calibration. 
Further preprocessing procedures included slice timing, realignment, spatial normalization to the 



standard Montreal Neurological Institute EPI template and resampling to a voxel size of 3 × 3 × 3 
mm3，followed by removing the linear trend and temporal band-pass filtering (0.01 Hz–0.08 Hz). 

Feature Extraction 

In this study, six regional brain characteristics were used as our features. Every subject had six 
kinds of features, and the dimensions of each feature were 116 which was the number of brain 
regions divided by Automated Anatomical Labeling (AAL) atlas. 

The ReHo analysis and ALFF analysis were done by Resting-State fMRI Data Analysis Toolkit 
(REST) software [9]. The map of each subject was divided into 116 regions of interest (ROIs) 
using the AAL atlas. The Regional functional correlation strength (RFCS) [10] of one ROI was the 
average of the functional connectivity between it and all the other ROIs. 

Graph-based features. Before computing the graph-based features, we constructed a network 
of brain. First of all, we used the AAL atlas to partition the brain into 116 ROIs as nodes of the 
brain network. Edges were defined as functional connectivity of all pairs of the 116 regions using 
the Pearson’s correlation coefficient. We obtained a matrix that measured the network. After 
removing all self-connections and negative connections, we set the threshold at 15% which was 
optimal for our study. Finally, we obtained the binary adjacency matrices. 

Once the network was constructed, we calculated three graph-based features from the aspect of 
centrality, functional segregation and network resilience. They are degree, clustering coefficient 
and average neighbor degree [11]. The three graph-based features were computed at each of the 
116 nodes. 

Feature Selection 

As some features are redundant, employing a feature selection algorithm can not only discover 
useful information but also improve classification performance. We used two-level feature 
selection in this study.  

First level feature selection. As described in the previous section, we extracted six kinds of 
features. Although each of the six features measured the brain’s network from different 
perspectives, some of them didn’t fit our data. We utilized t-test to select the three most 
discriminating kinds of features from all the six features. To be specific, t-test was used to calculate 
the number of dimensionality of significant difference of each feature. The larger the number of the 
feature’s dimensionality of significant difference was, the more discriminating the feature was.  

Second level feature selection. After that, we used RFE to select feature’s dimensionality. RFE 
is an iterative feature selection algorithm, which consists of iteratively removing features with 
lowest score and selecting the feature subset according to the prediction accuracy [12]. Whether to 
select a voxel (a dimension of feature) in the current feature set or not was determined by the 
weight value of a voxel resulting from training a classifier.  

Classification 

In this study, we used maximum uncertainty LDA-based approach (MLDA) [13] as base 
classifier and built a multi-classifier based on the three MLDA classifiers corresponding to three 
selected features. We combined the three base classifiers through weighted voting and the weights 
was obtained by computing the classification accuracy using leave-one-out cross validation. At the 
same time, we used the coefficients of the feature in the classifier to evaluate the importance of this 



feature (ROIs). The weight of the ROIs in a classifier was the absolute value of coefficients of the 
feature, multiplied by the base classifier’s accuracy. The final ROI’s weight of the multi-classifier 
was the sum of all the three base classifiers. The framework of our algorithm was shown in Fig. 1. 

 
 
 

 
Fig. 1. A flowchart of classification with two-level feature selection 

 

Evaluation 

Due to the limited number of data, we used leave-one-out cross validation to estimate the 
performance of our algorithm. Each of the samples was treated as testing data in turn; the rest of the 
samples were treated as training data. Accuracy, sensitivity and specificity were used to test the 
performance of our algorithm. 

Results 

Our classification algorithm achieved 92.5% classification accuracy (95% sensitivity and 90% 
specificity). The results of our algorithm were better than the values obtained using the single 
feature or all the features without the first-level feature selection. To validate the efficacy of RFE 
as the second-level feature selection, we also designed classifier without second-level feature 
selection. The classification performance was listed in Table 1. 



  
 
 
 

Table 1.Classification performance between TLE patients with and without HS 
performance 

feature 
Accuracy 

(%) 
Sensitivity 
       (%) 

Specificity 
      (%) 

ReHo 75.0 85.0 65.0 
ALFF 77.5 80.0 75.0 
RFCS 82.5 90.0 75.0 
Degree 80.0 75.0 85.0 
Clustering coefficient 77.5 70.0 85.0 
Average neighbor degree 85.0 90.0 80.0 
no 1st-level FS 82.5 85.0 80.0 
no 2nd-level FS 87.5 90.0 85.0 
our algorithm 92.5 95.0 90.0 

 
The most discriminative brain regions were selected and the ROIs were drawn in Fig. 2. The 

discriminative ROIs included cerebelum, posterior cingulate gyrus, fusiform gyrus, 
parahippocampal gyrus, middle frontal gyrus and superior frontal gyrus.  
 

 
Fig. 2.The most discriminative brain regions between TLE patients with and without HS. The 

color bar indicates the index of displayed brain regions. 

Discussion 

The goal of the current study was to seek a general method to distinguish the TLE patients with 
HS from TLE patients without HS by high classification performance, and to increase our 
understanding of the different pathogenesis of TLE patients with and without HS.  



Results showed that using single feature can’t always achieve good classification performance 
as not all of the features fit for the dataset. If we simply combined all the features without the 
first-level feature selection, the results were not superior to some signal feature. What’s more, 
using RFE to select the dimensions of feature as the second-level feature selection improved the 
classification performance. In general, our algorithm took different features into consideration and 
used two-level feature selection, which could achieve promising performance. 

An important purpose of this study was to find the different pathogenesis of TLE patients with 
and without HS by selecting the most discriminative brain regions. Our results were consistent 
with previous studies. We found that the ROIs which could distinguish TLE patients with HS from 
TLE patients without HS mainly located at parahippocampal gyrus, frontal gyrus and posterior 
cingulate gyrus, which was consistent with the findings of previous studies [14, 15]. In addition, 
cerebellum is a key brain area to distinguish TLE patients with and without HS, which had been 
found in the previous studies [16, 17]. 

Conclusions 

In this study, we developed a two-level feature selection method to classify TLE patients with 
and without HS. The initial features were six regional brain characteristics, including ReHo, ALFF, 
RFCS, degree, clustering coefficient and average neighbor degree. In order to pick out the most 
discriminative features, we performed a two-level feature selection. The first-level used t-test to 
select three kinds of features and the second-level picked out the discriminative dimensions as the 
final features using RFE. Finally, we combined three MLDA classifiers based on the final features 
to predict the group of the subjects. At the same time, we found the different pathogenesis of TLE 
patients with and without HS by selecting the most discriminative brain regions. The classification 
results showed that our method could get stronger classification power after considering different 
kinds of features and selecting the most valuable features. In conclusion, we hope that our method 
could provide useful information to the diagnosis of temporal lobe epilepsy. 
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