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Image Piece Learning for Weakly Supervised
Semantic Segmentation
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Abstract—The task of semantic segmentation is to infer a
predefined category label for each pixel in the image. For most
cases, image segmentation is established as a fully supervised
task. These methods all built on the basis of having access to
sufficient pixel-wise annotated samples for training. However,
obtaining the satisfied ground truth is not only labor intensive
but also time-consuming, which severely hinders the generality
of these fully supervised methods. Instead of pixel-level ground
truth, weakly supervised approaches learn their models from
much less prior information, e.g., image-level annotation. In
this paper, we propose a novel conditional random field (CRF)
based framework for weakly supervised semantic segmentation.
Enlightened by jigsaw puzzles, we start the approach with merg-
ing superpixels from an image into larger pieces by a newly
designed strategy. Then pieces from all the training images are
gathered and associated with appropriate semantic labels by CRF.
Thus, the piece library is constructed, achieving remarkable uni-
versality and flexibility. In the case of testing, we compare the
superpixels with image pieces in the library and assign them
the labels that minimize the potential energy. In addition, the
proposed framework is fit for domain adaption and obtains
promising results, which is of great practical value. Extensive
experimental results on PASCAL VOC 2007, MSRC-21, and VOC
2012 databases demonstrate that our framework outperforms or
is comparable to state-of-the-art segmentation methods.

Index Terms—Conditional random field (CRF), image semantic
segmentation, piece learning, weakly supervised.
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I. INTRODUCTION

THE HUMAN visual system can rapidly understand an
image by recognizing objects and their background with

a subtle boundary. In the similar case for machines, seman-
tic segmentation manages to tackle the problem of assigning
a label from a predefined category set to every pixel in the
image. The task is fundamental in computer vision and benefits
a variety of applications, ranging from biometric identifi-
cation [1] to object recognition [2]. The problem is rather
challenging, since a natural object may generate innumerable
images with diverse appearances, poses, viewpoints, illumina-
tion as well as complicated background and the limited access
of ideal training data makes it even worse. As a consequence,
a promising solution is to explore segmentation methods with
less supervision.

Unlike pixel-level ground truth, which is time and labor con-
suming, image-level annotation is more convenient to obtain.
Recent developments in image classification and image anno-
tation have brought inspiring results. On the other hand, with
the boom of all kinds of social networks, even annotating
extremely large scale images manually on the image level
is more practical than on the pixel level. Thus it is appro-
priate for weakly supervised semantic segmentation. Fewer
priors would make the training rather challenging and would
make methods focus more on various structure information
among images. The conditional random field (CRF) is one
of the most widely used models in segmentation. Its intuitive
meaning can be explained as: image regions (pixels, superpix-
els, or segments) that are visually alike or spatially close tend
to share the same semantic label, while those regions disparate
or remote are prone to diverse labels. To fully utilize structure
priors, we propose a weakly supervised semantic segmentation
framework based on CRF. In particular, the structure informa-
tion includes spatial and visual characteristics of images as
well as correlation among semantic labels.

To our knowledge, the existing weakly supervised semantic
segmentation methods are mostly designed to train and test
on the same database to achieve excellent performance. But
if we train these methods on one database while test it on
the other one, the results are often far from satisfying, even
though the databases share some of the semantic categories.
This fact results in the lack of universality. The reason lies in
that these models are sensitive to parameters and depend much
on training. For different databases, the customized parameters
might differ a lot. To overcome the problem, we disassemble a
database into categories, instead of regarding it as a whole like
other methods and for a specific object category, capturing the
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Fig. 1. System overview. We first merge superpixels into larger pieces. Then the pieces in the pool are associated with appropriate semantic labels by CRF,
and thus the piece library is established. It is worth noticing that the library is easy to enrich and is able to be accessed by any data of the same form. Best
viewed in color.

most representative information for segmentation is the aim of
our framework. However, it does not mean that the categories
are independent of each other. On the contrary, we consider the
correlation between categories to be of significant importance
for weakly supervised segmentation.

In this paper, we propose a novel CRF-based framework for
weakly supervised semantic segmentation by learning image
pieces. Enlightened by the knack of playing jigsaw puzzles,
we first merge superpixels into larger pieces, since a superpixel
is too trivial to contain much semantic information. The piece
amount is expected to be as few as possible in one image, on
the premise of that each of them is corresponding to merely
one semantic category. Then pieces from all the images are
gathered together to form the piece pool. Finally, a resource
library for the categories is constructed by associating seman-
tic labels with pieces by CRF. There are two main advantages
of the piece library: 1) it could be accessed by any data of
the same form, which achieves universality and 2) it is quite
convenient to enrich, which achieves flexibility.

To the best of our knowledge, [3] and [4] are the works
most related to ours. We try to solve similar problem but
focus on different aspects, resulting in totally different frame-
works. To address the issue of noisy labels from social images,
Zhang et al. [3] formulated the problem as a joint CRF model
with various contexts. It is an innovative CRF aiming at a spe-
cific issue, whereas we employ CRF in our framework as the
resource to sufficiently utilize structural information. Hence,
the typical second-order CRF is adequate in our approach,
with no need for exclusive learning and inferring scheme.
Pourian et al. [4] constructed a graph-based system to deal
with the problem of partially provided labels. They directly
build graph on regions (similar with superpixels in this paper)
from all the images which need to find the nearest neighbors of
each region. Even by using an optimized structure, their com-
putational cost remains more expensive than ours. The reason
is that we first merge superpixels into pieces in our framework.

Note that in one image, the piece amount is set to be less
than two times of semantic label amount empirically. This
would significantly reduce the computational cost and make
our framework train faster. Besides, since we focus on sifting
out the representative pieces for each category and construct
the piece library, our framework also achieves fair compatibil-
ity across databases, which brings more practical significance.
An illustration of our model is exhibited in Fig. 1 and to ver-
ify the effectiveness of our framework, we conduct extensive
experiments on three widely used databases: 1) PASCAL VOC
2007; 2) MSRC-21; and 3) VOC 2012.

A. Paper Contributions

In this paper, we propose a novel CRF based frame-
work for weakly supervised semantic segmentation. Our main
contributions are summarized as follows.

1) Enlightened by jigsaw puzzles, we propose a novel
framework to incorporate various structure cues for
weakly supervised semantic segmentation. The frame-
work components are formulated as adapted CRFs which
can be efficiently solved by existing optimization algo-
rithms.

2) We design a strategy to merge superpixels into pieces
and further associate these pieces with semantic labels
by analyzing the relationship among training images.
The merging process is able to significantly reduce the
computational cost, which brings more practicability.

3) Our framework aims to construct an image piece library
by assigning appropriate semantic label to each piece.
The presented piece library is particularly suitable for
domain adaption (i.e., pieces from all the databases
are easy to share), achieving universality. Meanwhile,
for new categories, it is quite convenient to enlarge,
achieving flexibility.
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II. RELATED WORK

After years of development, the existing segmentation
methods can be divided into three slices by their learning
supervision, i.e., fully supervised, weakly supervised, and
unsupervised.

1) Fully Supervised Methods: In the past decades, image
semantic segmentation has been usually established as a
fully supervised task [5]–[17]. The work in [5] examines
the use of co-occurrence statistics in the likelihood model.
Carreira and Sminchisescu [7] proposed to generate hypothe-
ses by solving a sequence of constrained parametric min-cut
problems and rank plausible ones for the spatial extent of
objects. With the rise of the big data and deep learning,
tremendous progress has been made in semantic segmen-
tation. The problem becomes diverse and many additional
tasks are solved along with segmentation. Chen et al. [12]
tackled multi-instance object occlusions in segmentation. A
novel algorithm for semantic part segmentation for animals is
designed in [16]. In addition to these, there are methods that
focus on segmenting a specific object rather than deal with the
multiclass problem. The works in [6] and [9] concentrate on
human segmentation in images and video sequences, respec-
tively. And Yuan et al. [11] presented graph-based ranking and
segmentation algorithms for traffic sign detection. However,
the aforementioned methods are all built on the basis of hav-
ing sufficient pixel-wise annotated samples for training. As
the output of existing automatic systems is far from satis-
factory, the vast majority of these annotations are obtained
manually, which is tedious and time-consuming. Accordingly,
the fully supervised approaches are typically unadaptable to
general application in the reality.

2) Unsupervised Methods: On the other side, there are
unsupervised semantic segmentation methods that utilize
image data without any annotation for training [18], [19]. Note
that different from simple image segmentation (see [20]) and
unsupervised methods in other fields (see [21]), these works
care for the category of each image pixel but in a unsupervised
manner. Nevertheless, the importance of label correlation for
performance improvement in semantic segmentation is well
established [5], [22]. Without sufficient utilization of image-
level annotations, the unsupervised methods tend to suffer
from the under-constrained nature inherently and consequently
impair their robustness toward variation. Moreover, with the
development of social network service, acquisition of images
with tags as labels has become more convenient and efficient
than ever. For all these reasons, weakly supervised seman-
tic segmentation is considered to be more suitable for most
application scenario and has attracted more and more attention.

3) Weakly Supervised Methods: Instead of the ground
truth of each pixel, weakly supervised semantic segmen-
tation approaches [3], [4], [23]–[29] often require image-
level annotations for training. Among these methods, [29] is
an exceptional one since it utilizes object bounding boxes
as supervision. Similar as our framework, Dai et al. [29]
iteratively updated a pool of region proposals and assign
them labels by training convolutional networks. However,
their final target is the trained network while our aim is
to construct a piece library with even less supervision. As
for other methods, a graphical model called multi-image
model is designed for recovering the pixel labels of the

training images in [23]. Weakly-supervised dual clustering
approach [24] collaboratively adopts spectral clustering and
discriminative clustering to address the image segmentation
and the tag alignment simultaneously. Zhang et al. [25]
proposed probabilistic graphlet cut to efficiently exploit the
distribution of spatially structured superpixel sets from image-
level labels. And Zhang et al. [27] further augmented it by
focusing on learning the semantic associations between the
graphlets. The work in [26] develops a new way of evaluating
classification models using sparse reconstruction and obtain
the best parameters by iterative merging update algorithm.
Pinheiro and Collobert [28] built a model based on convolu-
tional neural network (CNN), with the constraint of putting
more weight on the helpful pixels for image classification
when training. Although the detailed location information is
no longer necessary, most of these methods have the assump-
tion that the exact labels for each image is available, which is
another barrier we make through.

III. PROPOSED FRAMEWORK

We propose a novel framework based on CRF that incor-
porates clues from clustering algorithm to accomplish the
segmentation task. As is described in Fig. 1, superpixels from
the same image are first merged into pieces, on the premise
that each piece corresponds to only one semantic label. And
the definition of image piece is enlightened by the concept
in jigsaw puzzles. Second, pieces from all images are gath-
ered into the piece pool. Finally, each piece is associated with
an appropriate semantic label by integrating priors from its
neighborhood and semantic label correlation. Thus, the piece
library is constructed and is ready for testing. The detailed
implementation is as follows.

A. Merging Superpixels Into Pieces

Suppose X = [x1, . . . , xn] ∈ R
m×n is an image with n

superpixels and xi is the m-dimensional feature descriptor of
the ith superpixel. The corresponding category labels of these
superpixels are denoted by y = [y1, . . . , yn] ∈ R

n where
yi ∈ {1, . . . , L} with L representing the total number of object
categories. However, for a training image in weakly super-
vised problem, the superpixel semantic labels y = [y1, . . . , yn]
are no longer available. Instead, we exploit the image-level
labels, denoted by l = [l1, . . . , lL] where li ∈ {0, 1}, and
li = 1 indicates the presence of category i in the image while
li = 0 indicates absence. Furthermore, l might be noisy or only
partially provided. To correctly infer the superpixel semantic
labels y for each image is the challenging task.

Although it is widely believed that superpixel has more
expressive ability than pixel, it is too trivial to capture the
high-level information of each category. Hence, we first merge
superpixels into pieces. Each piece is expected to correspond
to only one semantic label, while a semantic label can be
distributed to multiple pieces. To that end, we build a graph
G = {V, E} on the image and use the CRF model to merge
superpixels into pieces, where V refers to the set of nodes
and E the edges. Specifically, every superpixel is defined as a
node and two nodes (i, j) are connected if they are spatially
close and/or visually alike. In this paper, we first connect two
superpixels if their spacial distance is less than (1/10) of the
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Fig. 2. (a) Over-segmented image, and every region (red bordered) is a superpixel. (b) Outcome of superpixel clustering, each color indicating a cluster. In
(c), superpixels in the image are further polymerized into pieces by the CRF model, incorporating clues from (b). Then, pieces from the training set are to
mapped to semantic labels, in Section III-B.

larger side, and then attach each edge with a weight which is
positively related to the visual similarity of the two nodes.

Proposed by Lafferty et al. [30], the CRF model is first
applied to natural language processing and now is broadly uti-
lized to solve the problem of image segmentation. The essence
of the model is that it directly builds the posterior distribu-
tion of the label field conditioned on the observation field.
Given the observation, a CRF models the conditional posterior
distribution of labels as a Gibbs distribution

P(y|X, θ ) = 1

Z
exp(−E(y, X, θ)) (1)

where θ is the parameters, Z denotes the normalization term,
and E(·) is the energy function defined as the sum of potentials
of all cliques in the graph G. In a typical second-order CRF,
the energy function E can be further described as

E(y, X, θ) =
∑

i∈V

φu(yi, X, θ) +
∑

(i,j)∈E

φp(yi, yj, X, θ) (2)

where φu is the unary potential modeling the cost of assigning
label yi to node xi and φp is the pairwise potential modeling the
cost of assigning a pair of labels (yi, yj) to a pair of connected
nodes (xi, xj). Finally, the objective is to search for an optimal
label assignment that maximizes the condition probability as
is shown in (3), which is accordingly equivalent to minimizing
the energy function E

y∗ = arg max
y

P(y|X, θ) = arg min
y

E(y, X, θ). (3)

In this section, the unary potential for image pieces merg-
ing is indicated by φI

u. To formulate it, we cluster all the
superpixels in an image into K groups by existing algorithm,
e.g., K-means. The K here is determined by the image-level
labels: K ≥ ‖l‖0, and we set K = 2‖l‖0 empirically. Although
there are plenty of modern clustering algorithms, K-means
is still one of the most widely used one for its advantages
of simplicity and efficiency [31]. The unary potential (before
normalization) is formulated as follows:

φI
u(zi, xi) = ∥∥xi − czi

∥∥
2 (4)

where zi ∈ {1, . . . , K} is the label indicating which image
piece does xi belong to, and c denotes the corresponding
cluster center. And the pairwise potential is in the form of

φI
p

(
zi, zj, xi, xj

) = λ1I
(
zi �= zj

)
exp

(
−
∥∥xi − xj

∥∥2
2

δ

)
(5)

where λ1 weights the contribution of the pairwise potential,
I(·) is an indicator function that equals 1 if the input is true

and 0 otherwise, and δ is the parameter of Gaussian kernel. In
this paper, we set δ = 1 for all the employed Gaussian kernel,
without loss of generality. Note that the amount of pieces P in
an image might be less than that of clusters K. We accordingly
update the center feature as ck = (1/Nk)

∑
xiI(zi = k) and

skip the absent ones. A sample illustration of the process is
showed in Fig. 2. It is worth mentioning that if the pieces
of an image is less than ‖l‖0, even taking noisy labels into
consideration, it might still lead to semantic category missing,
which should be avoid by parameter setting.

B. Constructing Piece Library

After merging pieces on each image, we gather them
together to form a piece pool, where each piece is to be
associated with the most appropriate semantic label. Similar
with Section III-A, we still utilize CRF to accomplish the
task. In this section, each piece denoted by its center fea-
ture c in the pool is regarded as a node. Note that all the
superpixels in one piece would share the same semantic label
s ∈ {1, . . . , L}. Since the relative location of a piece in its
own image appears to be of little value when pieces are gather
together, we connect a pair of nodes if they are visually alike.

The CRF model contributes to assigning closely related
semantic labels to similar pieces while assigning diverse labels
to disparate pieces. At the same time, we initialize the seman-
tic label of each piece with its image-level label l, to control
the divergence between the assigned label and its priors. The
unary potential for label mapping is formulated as

φL
u (si, ci) = exp

⎛

⎝− li(si)

Z

∑

cj∈N (ci)

lj(si)

⎞

⎠ (6)

where li(si) indicates the sith element of li and Z is for nor-
malization. N (ci) represents the neighborhood of ci containing
similar pieces with ci. It can also be obtained by the K-means
algorithm. Note that li is binary and might be incorrect or
missing. To solve the problem, we can replace zeros in li with
ε (0 < ε < 1) and li becomes l′i. Here the ε is used to con-
trol the confidence of labels not corresponding to the piece ci.
Thus it enhances the robustness of the model.

The exploitation of label correlation that assists in label
mapping becomes vital, for the location of each label is
unknown. To take full advantage of semantic label corre-
lation, we integrate both co-occurrence statistics and label
similarity into the pairwise potential φL

p . The value of label
co-occurrence statistics for semantic segmentation has been
explored by many publications [3], [5], [13]. The weakly
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Algorithm 1 CRF-Based Image Piece Learning Framework

Input: N images over-segmented into superpixels {Xi}N
i=1 and

their image-level ground truth {li}N
i=1, piece number in each

image K
Output: piece library containing piece centers C = {ci}P

i=1
and their semantic labels {si}P

i=1
1) C0 = ∅

2) permute training data randomly
3) for i = 1 → N do
4) Merging superpixels in image Xi into K pieces {ci

j}K
j=1

by CRF using Eq.(4) and Eq.(5)
5) Update piece center set Ci = Ci−1 ∪ {ci

j}K
j=1

6) end for
7) Converging all the pieces to form piece pool
8) Calculating label co-occurrence statistics matrix A and

label similarity matrix B
9) Constructing piece library by associating ci with si by

CRF using Eq.(6) and Eq.(9)

supervised method in [3] propose to capture visual contex-
tual cues with the help of [32]. Let L = [l1, . . . , lN]T ∈ R

N×L

be the category labels of all the images in the training set
with N indicating the total number of images. The label co-
occurrence statistics matrix A is symmetric whose entry can
be formulated by

A(i, j) = count(i ∩ j)

count(i ∪ j)
(7)

where count(·) is the count of input, i ∩ j indicates the co-
occurrence of li and lj, and i ∪ j is the union set.

Inspired by Pourian et al. [4], we exploit the standard cosine
similarity to measure the label similarity. Suppose L〈i〉 is the
ith column of L, then L〈i〉 ∈ R

N can be regarded as a type
of feature vector of label li. Hence, the entry of the label
similarity matrix B is formulated as

B(i, j) = L〈i〉 · L〈 j〉
|L〈i〉|

∣∣L〈 j〉
∣∣ . (8)

The same as the co-occurrence matrix A, the similarity matrix
B is also symmetric. And then, the pairwise potential is
formulated as

φL
p

(
si, sj, ci, cj

) = λ2

A
(
si, sj

)
(
1 − B

(
si, sj

))

I
(
si �= sj

)
exp

(
−
∥∥ci − cj

∥∥2
2

δ

)
. (9)

By minimizing the energy function, we associate each piece
with a semantic label. These pieces and labels make up the
piece library, which is quite convenient to enlarge. With persis-
tent enrichment, the universality would become more and more
prominent. We summarize the proposed weakly supervised
learning framework in Algorithm 1.

C. Inference of Testing Image

As has been mentioned above, for a test image, the image-
level label remains unavailable. The same as the training
images, we first over-segment each test image into superpixels

Fig. 3. Illustration of the unary potential for testing. Dots with different
colors represent piece centers with different labels. The circle (red dashed) is
the neighborhood of xi. Note the blue dot (at the top left) might be mislabeled,
which should be excluded.

{xi} and build a graph GI upon them. The CRF we adopt for
testing borrows elements from the previously used model: the
graph structure of GI and the pairwise potential for the label
mapping. As for the unary potential, we formulate it based
on the piece library out of the training phase, which can be
written as

φT
u (yi, xi) =

1
Nyi

∑
cj∈N (xi)

∥∥xi − cj
∥∥

2 I
(
sj = yi

)

∑L
yi=1

1
Nyi

∑
cj∈N (xi)

∥∥xi − cj
∥∥

2 I
(
sj = yi

) .

(10)

Note that similar local structures as shown in (10) can also
be found in [33] and [34], but to address different problems.
Considering the existence of few mislabeled pieces in the train-
ing and to avoid harm from them, the neighborhood cj ∈ N (xi)

is obtained by setting an adapted threshold η to ‖xi − cj‖2. In
our experiments, we empirically set η = mean(‖xi − cj‖2).
And Nyi is the number of activated pieces with s = yi in the
neighborhood. A graphical illustration of the unary potential
for testing is given in Fig. 3

Eventually, the inference for a test image is to seek for the
optimal solution that satisfying

y∗ = arg min
y

∑

i∈V

φT
u (yi, xi) +

∑

(i,j)∈E

φL
p

(
yi, yj, xi, xj

)
. (11)

Therefore, y∗ is the semantic label result for the input test
image. Since our CRF model for testing is based on the image
piece centers and their corresponding labels, it is suitable for
cross-dataset testing.

IV. EXPERIMENTAL STUDIES

In this section, we evaluate the performance of our proposed
approach by conducting extensive experiments on two com-
monly used databases for semantic segmentation: PASCAL
VOC 2007 [38], MSRC-21 [35], and VOC 2012 [39]. Note
that the ground truth segmentation is only used for eval-
uation. First, we compare the result of our method with
state-of-the-art (both fully and weakly supervised) seman-
tic segmentation approaches. And second, the cross-dataset
performance of our model is exhibited. As for the measure-
ment, we employ the widely used per-class accuracy defined
as [#TP/(#TP + #FN)], and per-class intersection-over-union
(IoU) score defined as [#TP/(#TP + #FN + #FP)], both on
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TABLE I
ACCURACY (%) ON PASCAL VOC 2007. “FS” DENOTES THE FULLY SUPERVISED BASELINES, WHILE “WS” THE

STATE-OF-THE-ART WEAKLY SUPERVISED RESULTS. THE MEAN WITHOUT BACKGROUND IS MARKED WITH †

Fig. 4. Performance trend against different parameters on PASCAL VOC 2007.

pixel level. Here #TP, #FN, and #FP are the number of true
positives, false negatives, and false positives, respectively. The
metric mean over all classes is also calculated, for it effectively
avoids bias toward categories with relatively large area and
also penalizes the situation predicting few labels overall [4].

1) PASCAL VOC 2007: The database is a publicly available
database consisting of photographs collected from photo-
sharing website Flickr. There are all together 5011 images for
training and 4952 for testing. However, a subset of 632 images
are annotated at pixel level, including 422 images for training
and 210 for testing. The ground truth is labeled with 20 object
categories and a background class.

Although the database seems a little outdated and is rela-
tively obsoleted for having been solved around 90% by fully
supervised approaches, the conclusion is definitely inapplica-
ble to the weakly supervised circumstance. For the limitation
of much less priors, the database remains rather challeng-
ing for weakly supervised segmentation due to its complex
variation of background, illumination, and occlusion.

2) MSRC-21: This is a popular multiclass benchmark for
semantic segmentation and mainstream approaches for weakly
supervised semantic segmentation are evaluated on MSRC-21.
The database contains 591 images of size 320×213 with anno-
tations from 21 object categories. Different from PASCAL
VOC 2007, the ground truth label set includes not only object
(e.g., chair, table, and book) but also stuff (e.g., ground, grass,
and sky), both having their own characteristics. Contrary to the
object categories, the stuff does not have a fixed shape. In our
experiments, we follow the standard split dividing the database
into training/validation/test subsets for fair comparison. In the
ground truth images, pixels on the boundaries or in the back-
ground are labeled with void. Therefore, we add an extra
“background” class to overcome the partially labeled problem.

3) PASCAL VOC 2012: The same as VOC 2007, the 2012
version also have all together 21 categories, but its scale is
much larger than the former. PASCAL VOC 2012 is widely

regarded as one of the main semantic segmentation bench-
marks nowadays. For the segmentation task, there are 1464,
1449, and 1456 images for training, validation and test, respec-
tively. The augmented ground truth of additional 9118 images
provided by Hariharan et al. [40] are also generally used
for deep network training. But for our framework, the train-
ing phase is merely conducted on the standard segmentation
subset and it finally yields the competitive performance. The
database is usually used for, respectively, large scale examina-
tion, even with cluttering background, illumination variation
and occlusion.

A. Implementation Details

Many region-based segmentation approaches
(see [12], [41]) utilize the output of multiscale combi-
natorial grouping (MSG) [42] directly for convenience.
However, since MSG proposes overlapped regions which
disagrees the puzzle thought, we merge superpixels from
simple linear iterative clustering (SLIC) [43] to obtain image
pieces. Seeing that images from different databases have
different size, we over-segment images from MSRC-21 and
PASCAL VOC into about 100 and 200 superpixels (the exact
number varies for every image), respectively. Concretely, the
compactness of SLIC is set to 20. Then each superpixel is
represented by concatenating its CNN and LAB features.
For the CNN feature, we engage the publicly available
Caffe [44] and extract a 4096-dimensional feature vector,
using the AlexNet [45] pretrained on ImageNet without
fine tuning on the used databases. To remove redundancy
and alleviate computational burden, dimensionality reduction
by principal component analysis [46] is conducted on the
CNN feature, retaining about 80% of the original energy.
Finally, each superpixel is described by a 128 (CNN) +3
(LAB) = 131-dimension feature vector. As for how the key
parameters influence the performance, there are detailed
studies later in this paper.
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Fig. 5. Qualitative results on PASCAL VOC 2007.

Fig. 6. Comparison of training time(s) on MSRC-21.

The CRF model used in this paper is multiclass CRF which
can be converted to an energy minimization problem. Although
the global optimum of the problem has been turned out to be
NP-hard, with the form of summing unary and pairwise poten-
tials, the mentioned optimization can be efficiently solved by
existing approximate inference algorithms, e.g., α expansion
and α−β swap. In our implementation, we adopt α expansion
for inference, which can be efficiently solved by graph cuts
algorithm [47]–[49]. And it has been proved that the energy
obtained by α expansion is within a known factor of the global
optimum [47]. As for the weights of the pairwise potentials,
we empirically set λ1 = 0.05 in (5) and λ2 = 0.1 in (9).

B. Results and Analysis

1) PASCAL VOC 2007: The existing weakly supervised
segmentation approaches [3], [26] evaluate their models by

TABLE II
ACCURACY (%) ON VOC 07 WITH DIFFERENT FEATURES

per-class accuracy. For fair comparison, we also use accuracy
as the metric on VOC 07 dataset. In Table I, we compare the
performance of our method with other approaches, including
both fully and weakly supervised approaches. Particularly, the
compared fully supervised methods are baselines, while the
weakly supervised ones are state-of-the-art results. And the
best result of each item is shown in boldface. Since K-means
brings random factor to the results, we run the system with the
same parameters five times and calculate the mean of per-class
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Fig. 7. Sample results on MSRC-21.

accuracy. For average per-class accuracy, our approach
achieves 47.7%, outperforming both state-of-the-art weakly
supervised methods and baseline fully supervised methods. It

demonstrates that we take advantage of the limited priors effi-
ciently. However, our accuracy of the “background” is much
lower than that of [3]. This is understandable since our method
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TABLE III
AVERAGE PER-CLASS ACCURACY (%) ON MSRC-21

is designed to capture the most representative information of
each category. The clutter background leads to the dispersion
in the feature space. For the reasons above, our model tends
to assign nonbackground labels to image regions in the test.
This helps us recognize and segment more tangible objects.

To further inspect whether the performance benefit comes
from the novel framework or the state-of-the-art deep feature,
we conduct experiments of our framework with different fea-
tures. The acknowledged SIFT feature [53] is considered to be
one of the most powerful manually designed features in image
segmentation. For fair comparison, a same 128-dimension
SIFT vector is extracted to describe each superpixel. We com-
pare the mean accuracy in Table II. Although the CNN feature
brings higher accuracies to our framework than the SIFT fea-
ture, the “LAB+SIFT” combination achieves an accuracy of
45.2% which still outperforms state-of-the-art weakly super-
vised methods. We present performance variation curve in
Fig. 4, key parameters containing image piece number K in
every training image, the confidence ε in (6) and the neighbor-
hood threshold η in the testing. Note that norm0(l) = ‖l‖0 in
the figure. It is apparent that the change of K exerts the great-
est influence among the three parameters. The reason lies in
that all the following system steps are on the basis of image
pieces, which forces us to ensure its high quality by control-
ling the piece number in a proper range. In Fig. 5, qualitative
segmentation samples on partially labeled database PASCAL
VOC 2007 are presented, the last row showing the failing
cases. Analyzing the failures we can conclude that:

1) the strong illumination contrast would impact the
performance of our framework, mainly due to the scarce
priors for training;

2) the approximation between object and background
would fuzz up the boundary which is rather difficult
even for human eyes to tell apart, and thus deteriorate
the process of piece merging.

2) MSRC-21: The per-class accuracy of our method is
compared with fully supervised models and weakly super-
vised models on MSRC-21 in Table III. It can be concluded
that our result is better than or comparable to state-of-the-art
weakly supervised results. It is also worth noticing that the
performance of our model is comparable to the fully super-
vised approaches while much less information is required by
our system. The average accuracy achieves 89% in [4], which
is remarkable and surpass most fully supervised approaches.

TABLE IV
MEAN IOU SCORE ON VOC 12 Test SET

Fig. 8. Comparison of average accuracy between normal and cross-dataset
experiments.

However, since the training in [4] put all the images regions
together to learn the model, it is reported to take about 30 s
to train on MSRC-21, while ours only takes less than 15 s on
computers with similar computational capability, as is shown
in Fig. 6. The computational cost reduction benefits a lot
from the first step of our framework: merging superpixels
into larger pieces, greatly reducing node amount in the lat-
ter graph. We merge superpixels in a training image with ‖l‖0
labels into 2‖l‖0 pieces. And in MSRC-21, the label num-
ber of a training image ranges from 2 to 5, which is close
to the real scenario. The merging is conducted within each
image, leading the number of the piece centers in (4) to no
more than 10. Even for the larger set VOC 07, there are
in total 2902 pieces from 422 training images in the pool.
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TABLE V
ACCURACY (%) OF THE CROSS-DATASET EXPERIMENT

Fig. 9. Example segmentation results of the cross-dataset experiment.

Compared with the original superpixels, the merging process
brings remarkable data compression. Some visualized results
are exhibited in Fig. 7. Our results are compared with results
from fully supervised method in [15] with the last row exhibit-
ing a failing sample. For fair comparison, we use the same
superpixel setting as our method to rerun the algorithm in [15].
It can be observed that our model achieves qualitatively better
segmentation.

3) PASCAL VOC 2012: To examine the scalability of
the proposed framework, we also conduct experiments on
PASCAL VOC 2012. As has been mentioned above, this
database is much larger than the former two. In stead of accu-
racy, we adopt IoU score as the metric and the results are
compared in Table IV. Among these methods, O2P [54] is
a leading non-CNN-based approach, while the others are all
based on deep networks. Technically, our framework is also
nondeep since we establish it on the basis of CRF, though
we use the CNN feature in our experiments. The result of
our framework outperforms multiple instance learning fully
convolutional network (MIL-FCN) [55] by nearly 8% and is
also comparable with the scores of state-of-the-art methods.
For the reason that there are roughly millions of parame-
ters in a deep network, these deep learning methods require
extremely more data than the traditional ones for training. It
leads to the fact that they have to be trained for days even
on a powerful graphics processing unit, whereas our method

has the advantage of achieving more time efficiency. However,
the large training data scale results in the macro library, and
thus indeed hold back the system running speed. For every
superpixel in a test image, our system has to compare it with
every piece in the library to find its close neighbors. And
we put all the merged pieces in the library without valid
sieving. It would finally lead to the library data dispersity
especially in the face of large data. The designed testing
unary potential helps to alleviate the problem, but it remains
improvable. In the future, we will consider to integrate better
retrieval mechanism and piece eliminating strategy into our
framework.

C. Cross-Data Performance

After analyzing the labels in PASCAL VOC 2007 and
MSRC-21, we find that 11 out of 21 categories are shared by
the two databases. Among the shared 11 categories, the “per-
son” from MSRC-21 is the combination of “face” and “body.”
There are both indoor and outdoor images in PASCAL VOC
2007. Its label set emphasizes more on object categories, while
summarize the others as the “background.” Whereas the labels
in MSRC-21 divide the background into more detailed classes:
“grass,” “sky,” “water,” etc.

In this section, we conduct cross-dataset experiments by
training on one database while testing on the other one,
inspired by [58]. The parameters in this section remain the
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same as the mentioned experiments. It is unsurprising that
the cross-dataset test brings a drop to the accuracy, consider-
ing the great gap between the databases. The comparison of
average accuracy over the 11 classes is shown in Fig. 8. Our
framework succeeds in controlling the drop within a smaller
range than [15]. Table V presents the per-class accuracy of
the shared 11 categories. It is observed that the “bicycle”
in VOC 2007 achieves a higher accuracy when trained on
MSRC-21. The reason is that, the bicycles in MSRC-21 are
easier to recognize in the training phase than VOC 2007. In
other words, our framework is promising when trained on
naive data but tested on more complex ones, which is of great
practicality.

Another advantage of our framework is the ability of seg-
menting extra categories that are not defined in the original
database. There are some qualitative results of the cross-
dataset experiment in Fig. 9. The left column is the result
of our system trained on PASCAL VOC 2007 while tested
on MSRC-21, and the right column is the inverse case. The
horse on the left and the road, tree and building on the right
are all extra classes recognized and segmented by our system.
In the cross-dataset experiment, the different label character-
istics facilitate the segmentation of the classes that are not
defined in the original database, demonstrating the flexibility
and universality of our approach.

V. CONCLUSION

In this paper, we propose a novel weakly supervised seman-
tic segmentation framework based on CRF, to incorporate
cues from multiple structural priors. Our aim is to capture
the most representative information of each semantic category.
To that end, we first merge superpixels into larger pieces to
attach more semantic priors. It also contributes much to com-
putational cost reduction. Then all pieces are gathered and
associated with appropriate semantic labels by CRF, based
on their image-level annotation. In the associating process,
the framework effectively utilizes label correlation, including
co-occurrence statistics and label similarity. The piece library
constructed in our framework has the advantages of univer-
sality and flexibility. Extensive experiments are conducted on
PASCAL VOC 2007, MSRC-21, and VOC 2012 databases.
The results demonstrate that our approach outperforms or
is comparable to state-of-the-art segmentation methods, both
fully and weakly supervised. Furthermore, we conduct cross-
dataset experiment to verify the robustness of our method and
a promising performance is achieved.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and the
reviewers for their valuable comments and suggestions.

REFERENCES

[1] J. Lei, X. You, and M. Abdel-Mottaleb, “Automatic ear landmark local-
ization, segmentation, and pose classification in range images,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 46, no. 2, pp. 165–176, Feb. 2016.

[2] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns for
object segmentation and fine-grained localization,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Boston, MA, USA, 2015, pp. 447–456.

[3] W. Zhang, S. Zeng, D. Wang, and X. Xue, “Weakly supervised seman-
tic segmentation for social images,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Boston, MA, USA, 2015, pp. 2718–2726.

[4] N. Pourian, S. Karthikeyan, and B. S. Manjunath, “Weakly supervised
graph based semantic segmentation by learning communities of image-
parts,” in Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, 2015,
pp. 1359–1367.

[5] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, “Graph cut based
inference with co-occurrence statistics,” in Proc. Eur. Conf. Comput.
Vis., Heraklion, Greece, 2010, pp. 239–253.

[6] H. Lu, G. Fang, X. Shao, and X. Li, “Segmenting human from photo
images based on a coarse-to-fine scheme,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 3, pp. 889–899, Jun. 2012.

[7] J. Carreira and C. Sminchisescu, “CPMC: Automatic object segmenta-
tion using constrained parametric min-cuts,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 7, pp. 1312–1328, Jul. 2012.

[8] J. Yao, S. Fidler, and R. Urtasun, “Describing the scene as a whole:
Joint object detection, scene classification and semantic segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Providence, RI,
USA, 2012, pp. 702–709.

[9] Y.-L. Hou and G. K. H. Pang, “Multicue-based crowd segmentation
using appearance and motion,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 43, no. 2, pp. 356–369, Mar. 2013.

[10] D. Pei, Z. Li, R. Ji, and F. Sun, “Efficient semantic image segmenta-
tion with multi-class ranking prior,” Comput. Vis. Image Understand.,
vol. 120, pp. 81–90, Mar. 2014.

[11] X. Yuan, J. Guo, X. Hao, and H. Chen, “Traffic sign detection via graph-
based ranking and segmentation algorithms,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 45, no. 12, pp. 1509–1521, Dec. 2015.

[12] Y.-T. Chen, X. Liu, and M.-H. Yang, “Multi-instance object segmenta-
tion with occlusion handling,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Boston, MA, USA, 2015, pp. 3470–3478.

[13] F. Liu, G. Lin, and C. Shen, “CRF learning with CNN features for image
segmentation,” Pattern Recognit., vol. 48, no. 10, pp. 2983–2992, 2015.

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Boston, MA, USA, 2015, pp. 3431–3440.

[15] Y. Li, Y. Guo, J. Guo, M. Li, and X. Kong, “CRF with locality-
consistent dictionary learning for semantic segmentation,” in Proc. 3rd
IAPR Asian Conf. Pattern Recognit., Kuala Lumpur, Malaysia, 2015,
pp. 509–513.

[16] J. Wang and A. L. Yuille, “Semantic part segmentation using com-
positional model combining shape and appearance,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, 2015,
pp. 1788–1797.

[17] S. Zheng et al., “Conditional random fields as recurrent neural
networks,” in Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile,
2015, pp. 1529–1537.

[18] H. Zhang, J. E. Fritts, and S. A. Goldman, “Image segmentation
evaluation: A survey of unsupervised methods,” Comput. Vis. Image
Understand., vol. 110, no. 2, pp. 260–280, 2008.

[19] F. Wang, Q. Huang, M. Ovsjanikov, and L. J. Guibas, “Unsupervised
multi-class joint image segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Columbus, OH, USA, 2014, pp. 3142–3149.

[20] L. Khelifi and M. Mignotte, “A novel fusion approach based on the
global consistency criterion to fusing multiple segmentations,” IEEE
Trans. Syst., Man, Cybern., Syst., to be published.

[21] Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, “Clustering-guided sparse
structural learning for unsupervised feature selection,” IEEE Trans.
Knowl. Data Eng., vol. 26, no. 9, pp. 2138–2150, Sep. 2014.

[22] G. Csurka and F. Perronnin, “A simple high performance approach to
semantic segmentation,” in Proc. Brit. Mach. Vis. Conf., Leeds, U.K.,
2008, pp. 1–10.

[23] A. Vezhnevets, V. Ferrari, and J. M. Buhmann, “Weakly supervised
semantic segmentation with a multi-image model,” in Proc. IEEE Int.
Conf. Comput. Vis., Barcelona, Spain, 2011, pp. 643–650.

[24] Y. Liu, J. Liu, Z. Li, J. Tang, and H. Lu, “Weakly-supervised dual clus-
tering for image semantic segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Portland, OR, USA, 2013, pp. 2075–2082.

[25] L. Zhang et al., “Probabilistic graphlet cut: Exploiting spatial struc-
ture cue for weakly supervised image segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Portland, OR, USA, 2013,
pp. 1908–1915.

[26] K. Zhang, W. Zhang, Y. Zheng, and X. Xue, “Sparse reconstruction
for weakly supervised semantic segmentation,” in Proc. Int. Joint Conf.
Artif. Intell., Beijing, China, 2013, pp. 1889–1895.

[27] L. Zhang et al., “A probabilistic associative model for segmenting
weakly supervised images,” IEEE Trans. Image Process., vol. 23, no. 9,
pp. 4150–4159, Sep. 2014.



LI et al.: IMAGE PIECE LEARNING FOR WEAKLY SUPERVISED SEMANTIC SEGMENTATION 659

[28] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level label-
ing with convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Boston, MA, USA, 2015, pp. 1713–1721.

[29] J. Dai, K. He, and J. Sun, “Boxsup: Exploiting bounding boxes
to supervise convolutional networks for semantic segmentation,”
in Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, 2015,
pp. 1635–1643.

[30] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,”
in Proc. 18th Int. Conf. Mach. Learn., vol. 1. Williamstown, MA, USA,
2001, pp. 282–289.

[31] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010.

[32] L. Bazzani, A. Bergamo, D. Anguelov, and L. Torresani, “Self-taught
object localization with deep networks,” presented at the 2016 IEEE
Winter Conf. Applications of Computer Vision (WACV), Mar. 7–10,
2016. doi: 10.1109/WACV.2016.7477688

[33] Z. Li, J. Liu, J. Tang, and H. Lu, “Robust structured subspace learning
for data representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37,
no. 10, pp. 2085–2098, Oct. 2015.

[34] J. Tang, Z. Li, M. Wang, and R. Zhao, “Neighborhood discriminant
hashing for large-scale image retrieval,” IEEE Trans. Image Process.,
vol. 24, no. 9, pp. 2827–2840, Sep. 2015.

[35] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for
image categorization and segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Anchorage, AK, USA, 2008, pp. 1–8.

[36] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Beyond sliding
windows: Object localization by efficient subwindow search,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Anchorage, AK, USA, 2008,
pp. 1–8.

[37] V. Viitaniemi and J. Laaksonen, “Techniques for image classification,
object detection and object segmentation,” in Proc. Int. Conf. Adv. Vis.
Inf. Syst., Salerno, Italy, 2008, pp. 231–234.

[38] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.

[39] M. Everingham et al., “The Pascal visual object classes challenge: A
retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, 2015.

[40] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in Proc. Int. Conf. Comput. Vis.,
Barcelona, Spain, 2011, pp. 991–998.

[41] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous
detection and segmentation,” in Proc. Eur. Conf. Comput. Vis., Zürich,
Switzerland, 2014, pp. 297–312.

[42] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik,
“Multiscale combinatorial grouping,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Columbus, OH, USA, 2014, pp. 328–335.

[43] R. Achanta et al., “Slic superpixels,” School Comput. Commun. Sci.,
École Polytech. Fédrale de Lausanne, Lausanne, Switzerland, Tech.
Rep. 149300, 2010.

[44] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. ACM Int. Conf. Multimedia, Orlando, FL, USA, 2014,
pp. 675–678.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[46] I. T. Jolliffe, Principal Component Analysis. Hoboken, NJ, USA: Wiley,
2002.

[47] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[48] V. Kolmogorov and R. Zabin, “What energy functions can be minimized
via graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2,
pp. 147–159, Feb. 2004.

[49] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max- flow algorithms for energy minimization in vision,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–1137,
Sep. 2004.

[50] G. Csurka and F. Perronnin, “An efficient approach to semantic segmen-
tation,” Int. J. Comput. Vis., vol. 95, no. 2, pp. 198–212, 2011.

[51] X. Boix et al., “Harmony potentials,” Int. J. Comput. Vis., vol. 96, no. 1,
pp. 83–102, 2012.

[52] A. Vezhnevets and J. M. Buhmann, “Towards weakly supervised seman-
tic segmentation by means of multiple instance and multitask learning,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., San Francisco, CA,
USA, 2010, pp. 3249–3256.

[53] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[54] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, “Semantic
segmentation with second-order pooling,” in Proc. Eur. Conf. Comput.
Vis., Florence, Italy, 2012, pp. 430–443.

[55] D. Pathak, E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional
multi-class multiple instance learning,” in Proc. Int. Conf. Learning
Representations, San Diego, CA, USA, May 2015.

[56] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Semantic image segmentation with deep convolutional nets and
fully connected CRFs,” in Proc. Int. Conf. Learning Representations,
San Diego, CA, USA, May 2015.

[57] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille, “Weakly- and
semi-supervised learning of a DCNN for semantic image segmentation,”
in Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, Dec. 2015,
pp. 1742–1750.

[58] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Colorado Springs, CO, USA,
2011, pp. 1521–1528.

Yi Li received the B.E. degree in electronic and
information engineering from the Dalian University
of Technology, Dalian, China, in 2014, where she
is currently pursuing the postgraduate degree with
the School of Information and Communication
Engineering.

Her research interests include computer vision and
machine learning.

Yanqing Guo (M’13) received the B.S. and Ph.D.
degrees in electronic engineering from the Dalian
University of Technology of China, Dalian, China,
in 2002 and 2009, respectively.

He is currently an Associate Professor with the
Faculty of Electronic Information and Electrical
Engineering, Dalian University of Technology. His
research interests include machine learning, com-
puter vision, and multimedia security.

Yueying Kao received the B.E. degree from Xidian
University, Xi’an, China. She is currently pursu-
ing the Ph.D. degree with the National Laboratory
of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China.

Her research interests include computer vision and
machine learning.

Ran He (M’09–SM’15) received the B.E. and
M.S. degrees in computer science from the Dalian
University of Technology, Dalian, China, and the
Ph.D. degree in pattern recognition and intelligent
systems from the Institute of Automation, Chinese
Academy of Sciences, Beijing, China, in 2001, 2004,
and 2009, respectively.

Since 2010, he has been with the Institute
of Automation, Chinese Academy of Sciences,
where he is currently a Professor. His research
interests include information theoretic learning and
computer vision.


