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This review examines the relevance of parameter identifiability for sta-
tistical models used in machine learning. In addition to defining main
concepts, we address several issues of identifiability closely related to
machine learning, showing the advantages and disadvantages of state-
of-the-art research and demonstrating recent progress. First, we review
criteria for determining the parameter structure of models from the liter-
ature. This has three related issues: parameter identifiability, parameter
redundancy, and reparameterization. Second, we review the deep influ-
ence of identifiability on various aspects of machine learning from theo-
retical and application viewpoints. In addition to illustrating the utility
and influence of identifiability, we emphasize the interplay among iden-
tifiability theory, machine learning, mathematical statistics, information
theory, optimization theory, information geometry, Riemann geometry,
symbolic computation, Bayesian inference, algebraic geometry, and oth-
ers. Finally, we present a new perspective together with the associated
challenges.

1 Introduction

The main focus of this review is parameter identifiability in statistical ma-
chine learning in which the modeling approach is a statistical one. In addi-
tion to providing a formal description of basic concepts, key theories, typical
techniques relevant to machine learning and parameter identifiability, we
give a comprehensive review on the criteria for examining identifiability
and present a broad analysis of the influence of identifiability in various
aspects of machine learning. We also review some advanced topics and
ongoing research.
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Table 1: Variables, Meanings, and Equation Numbers.

Variable Meaning Equation Number

p(z) PDF of z = (x, y) 1.1
f(x, w), w ∈ W Functions implemented by learning machine 1.2
Dn Training set of size n 1.3
R(w) Risk functional 1.5
wopt Optimal parameter 1.6
Remp(w) Empirical risk functional 1.7
Rreg(w) Regularized risk functional 1.8
ŵn Minimizer of error function E(w) 1.9
[w] Equivalent class of w 1.14
Wc Constrained parameter space 2.1
FIM(w) Fisher information matrix of PDF p(z|w) 2.2
KL(w0, w) KLD between p(z|w0) and p(z|w) 2.9
H(w) Hessian matrix of KL(w0, w) 2.12
ϕ(w) Identifying function 2.17
C Critical set 3.1

This introduction has two parts: the statistical formulation of machine
learning, and the general description of parameter identifiability and its
major concerns.

Table 1 lists the important variables, meanings, and equation numbers
used throughout the review.

1.1 Machine Learning

1.1.1 Machine Learning: Learning from Data. The problem of searching
for regularities (or dependencies) in data is a fundamental one and has a
long and successful history. For instance, the extensive astronomical ob-
servations of Tycho Brahe in the 16th century allowed Johannes Kepler to
discover the empirical laws of planetary motion, which provided a spring-
board for the development of classical mechanics (Bishop, 2006). Similarly,
the discoveries of regularities in atomic spectra played a key role in the
development and verification of quantum physics in the early 20th century
(Bishop, 2006). With the advent of the era of big data, the deluge of data
calls for automatic and powerful methods of data analysis, which is what
machine learning provides.

The goal of machine learning is to build learning machines (see section
1.1.2) that are capable of employing learning algorithms to automatically
discover regularities in data and, with the uncovered regularities, predict
future data or perform other kinds of tasks. The predictive accuracy is
known as generalization capability: the capability of the learned model to
provide accurate estimation for further data (Murphy, 2012).
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Figure 1: Schematic illustration of statistical machine learning (Cherkassky &
Mulier, 2007).

1.1.2 Formulation of the Learning Problem. This review adopts the view-
point that the best way to solve the problems of machine learning is to use
the tools of statistical theory, as the statistical theory can be applied to any
problem involving uncertainty (Murphy, 2012).

The general formulation of a learning problem consists of three compo-
nents (see Figure 1) (Cherkassky & Mulier, 2007):

• Generator. The generator produces random inputs x ∈ X drawn from
a fixed but unknown probability density function (PDF) p(x), where
X is the input space.

• System. The system returns an output y ∈ Y to every input x, accord-
ing to the conditional PDF p(y|x), also fixed but unknown, where Y
is the output space. The probabilistic dependency between x and y is
summarized by p(y|x). Let z = (x, y); the PDF of z is

p(z) = p(x, y) = p(x)p(y|x). (1.1)

• Learning machine. The learning machine is capable of implementing a
set of functions

{f(x, w), w ∈ W} (1.2)

indexed by a parameter w ∈ W , and eventually yields an output
ŷ for each input x. Here W is the admissible parameter space.
For simplicity, we assume that w is a finite-dimensional vector
w = (w1, . . . , wk) ∈ R

k.

The problem of learning is that of choosing from {f(x, w), w ∈ W} the
one that best approximates the system’s response (Vapnik, 1996). The se-
lection of desired function is based on a training set of n independent and
identically distributed (i.i.d.) samples,

Dn = {(x j, y j), j = 1, . . . , n}, (1.3)
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drawn according to equation 1.1. Note that we use the same font, such as
x j, y j, to denote a random variable and its realization; their meaning is clear
from the context.

1.1.3 Types of Machine Learning. The spectrum of machine learning is
rather broad and can be roughly subdivided into two main types. In su-
pervised learning, the goal is to learn an unknown dependency (or map-
ping) from input x to output y, given a set of labeled input-output pairs,
equation 1.3.

In the simplest situation, the input x is a finite-dimensional real vector. In
general, however, x could be a complex structured object, such as an image, a
sentence, or a time series. Similarly, the form of the output y in principle can
be anything, but most methods assume that y is a real vector or a categorical
or nominal variable from a certain finite set. When y is real valued, the
problem is known as regression (Bishop, 2006; Cherkassky & Mulier, 2007),
and when it is categorical, the problem is known as classification or pattern
recognition (Bishop, 1995; Duda, Hart, & Stork, 2001).

In unsupervised learning, we have only input samples x j, j = 1, . . . , n, and
there is no output during learning. The goal of unsupervised learning may
be to detect interesting structures such as clusters in the data. This practice
is sometimes called knowledge discovery (Cherkassky & Mulier, 2007).

For simplicity, we consider only regression problems and assume that
the inputs and outputs dwell in the Euclidean spaces R

d, R
m, respectively.

1.1.4 Modeling Approach. Mathematical models have become another
sensing channel for humans to perceive, describe, and understand natural
and virtual worlds. Thus, a large number of models have been generated
for a vast variety of applications. Their modeling approaches are of course
different in various aspects. Typical modeling approaches include the
following:

• Knowledge-driven modeling. Traditional science and engineering are
based on using a first-principle modeling approach to describe phys-
ical, biological, and social phenomena. Such an approach starts with a
basic scientific model (e.g., Newton’s law of mechanics or Maxwell’s
theory of electromagnetism) and then builds various applications on
them. Under this approach, experimental data are used to verify the
underlying model or estimate its parameters that are difficult to mea-
sure directly. This modeling approach is called a knowledge-driven or
mechanistic-based manner. The associated inference methodology is a
deductive one, that is, progress from general (dependency) to partic-
ular (observational data).

• Data-driven modeling. In some applications, the underlying first prin-
ciples are unknown or the systems under study are too complex to be
mathematically described. Fortunately, the available data can be used
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Figure 2: Schematic diagram of the GC model including the KD and DD sub-
models. Two parameters, w(k) and w(d), are associated with the two submodels,
respectively (Ran & Hu, 2014a).

to derive useful relationships between a system’s input and output
variables. This modeling approach is a data-driven fashion. The asso-
ciated inference methodology is an inductive one, that is, a progress
from particular to general.

• Knowledge- and data-driven modeling. In order to take advantage of
the two previous approaches, a study of integrating two approaches
is reported (Todorovski & Dzeroski, 2006; Hu, Qu, & Yang, 2009).
Hence, Psichogios and Ungar (1992) call these hybrid models. For a
stress on a mathematical description, the term generalized constraint
(GC) (Zadeh, 2005) is used to refer to these models. Figure 2 schemat-
ically depicts a GC model, which basically consists of two modules:
knowledge driven (KD) submodel fk(x, w(k)) and data driven (DD)
submodel fd(x, w(d)). The complete GC model function is formulated
as

f(x, w) = fk(x, w(k)) ⊕ fd(x, w(d)), (1.4)

where w = (w(k), w(d)), and the symbol ⊕ represents a coupling op-
eration between the two submodels. Generally the KD submodel
contains physically interpretable parameter w(k) whose identifiabil-
ity is of particular importance to understanding the system. (For a
detailed description of GC models, see Hu, Wang, Yang, & Qu, 2007;
Hu et al., 2009; Qu & Hu, 2011; Ran & Hu, 2014a.)

1.1.5 Goal of Learning. In order to obtain the best approximation to the
system’s response, one measures the loss L(x, y, f(x, w)) between the output
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y of the system and the response f(x, w) provided by the learning machine.
The expectation of the loss is called the risk functional (Schölkopf & Smola,
2002; Cherkassky & Mulier, 2007):

R(w) =
∫

L(x, y, f(x, w))p(x, y)dxdy. (1.5)

The goal of learning is to find the optimal parameter wopt that minimizes
the risk functional. This gives rise to the following optimization problem:

wopt = arg min
w∈W

R(w). (1.6)

1.1.6 Inductive Principles. In a classical parametric setting, the statistical
model is specified first, and then its parameters are estimated from the
data. However, in the formulation of machine learning, the underlying
model is unknown, and it is estimated using a large (infinite) number of
candidate models to describe available data. The main issue is choosing
a model of the right complexity to describe the training data, as stated
qualitatively by Occam’s razor principle: “Entities are not to be multiplied
beyond necessity” (Duda et al., 2001). Several inductive principles, such
as the regularization (penalization) inductive principle, the early stopping
rule, structural risk minimization (SRM), Bayesian inference, and minimum
description length (MDL) (Cherkassky & Mulier, 2007), provide different
quantitative interpretations of Occam’s principle. (For more details, see
Cherkassky & Mulier, 2007.)

In the classical parametric setting, the commonly used empirical risk
minimization (ERM) principle (Vapnik, 1996, 1998) recommends that the
risk functional should be replaced by the empirical risk functional:

Remp(w) = 1
n

n∑
j=1

L(x j, y j, f(x j, w)). (1.7)

When n is sufficiently large, the law of large numbers ensures that it is a
good approximation to R(w). From a statistical viewpoint, this constitutes a
particular case of an M-estimator (Van der Vaart & Wellner, 1996). Estimators
of this type are studied in detail in the field of empirical processes (Van der
Vaart & Wellner, 1996).

The structural risk minimization (SRM) principle, an essential part of
statistical learning theory attributed to Vapnik (1996, 1998), shows that it
is imperative to restrict the parameter space W from which w is chosen,
that is, to restrict the complexity of the set of learning machines to avoid
overfitting. One popular way for implementing the SRM principle is to
minimize the regularized empirical risk,
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Rreg(w) = Remp(w) + γ ||w||, (1.8)

where ||w|| is a certain norm of w and the parameter γ > 0 controls the
trade-off between the goodness of fit Remp(w) and model complexity ||w||.

The regularization method expresses our prior belief that the type of
function we seek exhibits a certain smooth behavior and can usually be cast
in the Bayesian framework (Bishop, 2006; Murphy, 2012).

No matter what kind of inductive principle is used, we are eventually
led to minimizing an error function E(w). From a statistical viewpoint, the
process of learning from data is in fact the process of computing a particular
statistic.

In what follows, we use E(w) to denote an empirical risk Remp(w) or a
regularized empirical risk Rreg(w) and denote

ŵn = arg min
w∈W

E(w). (1.9)

Here, ŵn, shorthand for ŵ(z1, . . . , zn), can be understood as an estimator
of wopt.

1.1.7 Learning Algorithm. As noted, an inductive principle tells us what
to do with the finite data; this results in the problem of minimizing an error
function E(w). Nevertheless, a learning algorithm specifies how to solve
this minimization problem; that is, it concerns a constructive method to
obtain a good approximation ŵn for wopt. Such a mapping

Dn → ŵn (1.10)

is called a learning algorithm (Watanabe, 2009). In machine learning, the
parametric form of function (and hence the error function) is nonlinear in
parameters, giving rise to a nonlinear optimization problem whose global
closed-form solutions are generally unavailable. Hence, one needs to con-
sider numerical algorithms, which consist of a succession of steps,

wt+1 = wt + �wt, t = 1, 2, · · · (1.11)

where �wt is a general form of update at step t. Different algorithms in-
volve different choices for the increment �wt and the starting point w1.
Since a thorough discussion of nonlinear optimization theory and method
is beyond the scope of this review, we mainly consider the most basic tech-
niques, which make use of the gradient ∇E(w) of error function.

Geometrically, the E(w) can be viewed as a surface sitting above param-
eter space R

k, as shown in Figure 3 (Bishop, 1995). The learning process
takes place by successively modifying the parameters. These parameters
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Figure 3: Geometrical view of the error function E(w) as a surface sitting over
R

k. Point wA is a local minimum, and wB is the global minimum. At any point
wC, the gradient of the error surface is given by the vector ∇E (Bishop, 1995).

change during learning, forming a trajectory in R
k. It is therefore important

to study the learning trajectory to elucidate the dynamic process of learning.
To sum up, the final success of a learning task depends on appropriately

selecting a set of parametric functions, an appropriate risk functional, a the-
oretically sound inductive principle, and an effective optimization strategy.

1.2 Parameter Identifiability

1.2.1 Parameter Identifiability: A General Introduction. Parameter identi-
fiability in statistical learning is concerned with the theoretical unique-
ness of model parameters determined from an underlying statistical family
(Rothenberg, 1971; Paulino & Pereira, 1994; Dasgupta, Self, & Gupta, 2007).
In a general sense the identifiability study is just one aspect of a larger
problem, the inverse problem (Tikhonov & Arsenin, 1977), which basically
encompasses identifiability and identification (e.g., objective function, regu-
larization and algorithm). For a full treatment of the identifiability problem,
one should distinguish between the concepts of theoretical uniqueness and
numerical uniqueness. Roughly, in a theoretically unidentifiable model, a
subset of these parameters cannot be uniquely determined even if infinitely
many data are accessible. For example, this can occur if two parameters
are confounded and appear only as a product (Hu et al., 2009; Dimattina &
Zhang, 2010; Cole, Morgan, & Titterington, 2010). However, in a theoreti-
cally identifiable model, numerical nonuniqueness can occur due to a lack
of data or collinearity of data, which is discussed in classical linear regres-
sion analysis (Shao, 1999). In this review, identifiability means theoretical
uniqueness.

Identifiability analysis is important not only for models whose param-
eters have physically interpretable meaning, but also for models whose
parameters have no physical implications, because identifiability has a sig-
nificant influence on many aspects of a learning problem, such as estimation
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theory, hypothesis testing, model selection, learning algorithm, learning dy-
namic, and Bayesian inference (see section 3).

The problem of parameter identifiability arises in many scientific areas,
so the literature on identifiability analysis is found in journals in a large va-
riety of fields, including mathematical statistics (Rothenberg, 1971; Paulino
& Pereira, 1994; Shao, 1999; Dasgupta et al., 2007), machine learning (Amari,
Park, & Ozeki, 2006; Bishop, 2006; Watanabe, 2009), system identification
(Ljung, 1999), signal processing (Moore & Sadler, 2004; Yao & Giannakis,
2005; Fortunati et al., 2012), mathematical biosciences (Jacquez & Greif,
1985; Vajda, Godfrey, & Rabitz, 1989; Cole, Morgan, & Titterington, 2010),
carcinogenesis models (Little, Heidenreich, & Li, 2009, 2010), and dynamic
control (Xia & Moog, 2003; Miao, Xia, Perelson, & Wu, 2011). This diver-
sity justifies several formulations and meanings that have been given to
the term identifiability. Historically, the study of identifiability can be traced
back to Koopmans and Reierøsl (1950), where a specific statistical model, a
linear simultaneous equation system, is considered. As they emphasized,
the identifiability problem is “a general and fundamental problem arising,
in many fields of inquiry, as a concomitant of the scientific procedure that
postulates the existence of a structure.” Identifiability when perfect records
are assumed has been the subject of much research; this analysis was set
out by Bellman and Astrom (1970) in the context of a dynamic control
model, where the concept of identifiability is alternatively called structural
identifiability. At the same time, the term a priori identifiability has also been
quite widely used on the ground that identifiability analysis should be ad-
dressed before a proposed experiment is carried out (Saccomani, Audoly,
Bellu, & D’Angio, 2010). For clarity, we will use the term parameter identifi-
ability because we restrict ourselves to models completely determined by a
finite-dimensional parameter vector.

1.2.2 Parameter Identifiability: Basic Concepts. To put the above descrip-
tion into a formal mathematical framework, we consider a statistical space
{Z,A,P}, where Z is the sample space, A is the σ -algebra defined in Z,
P = {Pw : w ∈ W} is a family of probability measures on {Z,A} and Pw is
a probability measure indexed by w (Paulino & Pereira, 1994; Shao, 1999;
Dasgupta et al., 2007). Parameter identifiability is concerned with the the-
oretical uniqueness of model parameter w determined from the statistical
family P .

Definition 1. Let p(x) be the PDF of input x and p(y|x,w) be the PDF of output
y conditioned on x and a parameter w. Let z = (x, y), and p(z|w) = p(x, y|w) =
p(x)p(y|x,w) be the PDF of z; then parameter identifiability is defined as the
mapping w �→ p(z|w) being one-to-one.

For many application scenarios, the PDF p(z|w) can be replaced by
the characteristic function of z (the Fourier transformation of p(z|w)) since
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the correspondence between a PDF and its characteristic function is bijective
(Shao, 1999). Hereafter, the probability measure Pw will be interchangeably
used with its PDF p(z|w).

The relationship between the conditional PDF p(y|x, w) and the function
f(x, w) is context dependent. As an example, consider the regression model
y = f(x, w) + ε. Here ε ∼ N (ε|0,�); that is, ε is a gaussian PDF with mean
0 and covariance �. We have

p(y|x, w) = N (y|f(x, w),�). (1.12)

To proceed, we introduce the following definition (Rothenberg, 1971):

Definition 2. If two distinct parameters w1, w2 in W define the same probability
measure, we say w1 is observationally equivalent to w2, and denote w1 ∼ w2, that
is,

w1 ∼ w2 ⇔ Pw1
= Pw2

. (1.13)

For actual samples, the likelihood function takes a constant value on all
observationally equivalent parameters. It is clear that the relation ∼ is a
proper equivalent relation (reflectivity, symmetry and transitivity) (Paulino
& Pereira, 1994; Dasgupta et al., 2007), so it breaks R

k into disjoint subsets
called equivalent classes. For w ∈ R

k, we denote the corresponding equiva-
lence class by

[w] = {w′ ∈ R
k : w

′ ∼ w}. (1.14)

Then the mapping [w] → Pw is bijective. However, the quotient space
W/ ∼= {[w] : w ∈ W} is neither a Euclidean space nor a manifold (Amari
et al., 2006; Watanabe, 2009). Therefore, it is generally difficult to construct
statistical theory in W/ ∼.

Definition 3. Let w0 be a fixed parameter in W . If [w0] = {w0} (a singleton), we
say w0 is globally identifiable. If there exists a neighborhood N(w0) of w0 such that
[w0]

⋂
N(w0) = {w0}, we say w0 is locally identifiable.

In definition 3, parameter identifiability is checked with respect to a
specific point w0. In usual cases, this fixed w0 can be viewed as the real
value (or critical value) of the model parameter.

Definition 4. A statistical model Pw is globally identifiable if for any fixed w0 ∈
W , [w0] = {w0}. Pw is locally identifiable if for any fixed w0 ∈ W , there is an open
neighborhood N(w0) of w0 such that [w0]

⋂
N(w0) = {w0}.
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One readily obtains the following:

• Global identifiability implies local identifiability.
• A model is globally (locally) identifiable if and only if it is globally

(locally) identifiable at every fixed parameter.

In the context of GC models, identifiability is a critical issue since one
is interested in estimating physically meaningful parameters. More specif-
ically, the subvector w(k) in the KD submodel and the subvector w(d) in the
DD submodel are not equally important in the parameter vector w. We are
interested in the subvector w(k) rather than w(d) due to the consideration of
physical meaning. Hence, we are led to the following definition:

Definition 5. A subvector w(k) is globally identifiable if for any fixed w
(k)
0 , Pw =

Pw0
⇒ w(k) = w

(k)
0 ,∀w ∈ R

k , where w
(k)
0 and w(k) are the KD subvectors of w0 and

w, respectively. A subvector w(k) is locally identifiable if for any fixed w
(k)
0 , there

is a neighborhood N(w(k)
0 ) such that for any w with w(k) ∈ N(w(k)

0 ), Pw = Pw0
⇒

w(k) = w
(k)
0 , where N(w(k)

0 ) is the neighborhood with respect to w
(k)
0 .

From definitions 3 to 5, we can see that identifiability is a theoretical
or intrinsic property of the model and that the presence (or absence) of
identifiability is a feature of the model specification, and so is independent
of the experimental data or the numerical estimation procedures (Paulino &
Pereira, 1994). Yet the choice of learning algorithms as well as the learning
dynamic are strongly affected by the nonidentifiability, as we will see in
section 3.

Typically, if a model has the following features, it may be unidentifiable:

• Hierarchical structures (Sussmann, 1992; Chen, Lu, & Hecht-Nielsen,
1993; Bishop, 2006)

• Latent variables (Shapiro, 1986; Bishop, 2006; Henao & Winther, 2011)
• Unobservable state variables (Ljung, 1999; Miao et al., 2011)
• Nuisance parameters (Fortunati et al., 2012)
• Coupled submodels (Yang, Hu, & Cournde, 2008; Hu et al., 2009)
• Grammatical rules (Watanabe, 2007, 2009)

Generally nonidentifiability occurs if the model can be equivalently
rewritten in terms of a smaller set of parameters, which is termed parameter
redundancy (PR; Catchpole & Morgan, 1997). The concept that is intimately
related to nonidentifiability and redundancy is parameter dependence (PD) in
the sense that a certain subvector of a parameter can be expressed as the
function of the remaining one (Ran & Hu, 2015).

1.2.3 Importance of Identifiability in Machine Learning. The issue of pa-
rameter identifiability has a deep influence in almost all stages of the
learning procedure. Besides being an important way for enhancing model
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transparency and comprehensibility (Hu et al., 2007, 2009), identifiability is
also a necessary prerequisite for system modeling and parameter estimation
(Ljung, 1999). As a result, the identifiability problem should be addressed
before any experimental data have been collected, because the difficulties
associated with parameter estimation usually result from improper param-
eter structure rather than inappropriate experiment design or poor data. In
other words, in an unidentifiable model, no matter how carefully we design
the experiment or how good the observations are, one will definitely fail to
get a reasonable estimation (Yang et al., 2008). In the community of machine
learning, the identifiability issue has a close connection with a wide range
of subjects, such as variational Bayesian matrix factorization (Nakajima &
Sugiyama, 2010), low-rank matrix completion (Király & Tomioka, 2012),
latent factor model (Shapiro, 1986; Henao & Winther, 2011), probabilistic
PCA (Bishop, 2006), and Bayesian network (Whiley, 1999).

In theoretic neuroscience, an open problem is to determine when dif-
ferent ANNs having different synaptic weights implement identical input-
output transformation (Dimattina & Zhang, 2010). Such networks are called
functionally equivalent. Determining the exact conditions for structurally dis-
tinct yet functionally equivalent networks may shed light on the theoretical
constraints on how diverse neural circuits might develop and be maintained
to serve identical functions. Such consideration also imposes practical limits
on our ability to uniquely infer the structure of underlying neural circuits
from stimulus-response measurements (Dimattina & Zhang, 2010). Hence,
if the function implemented by a neural network does not require a unique
network structure, then when one synapse in a network is damaged, other
synapses can be used to compensate for the damage and restore the original
input-output function. Dimattina & Zhang (2010) introduced a biologically
inspired mathematical method for determining when the structure of a
neural network can be perturbed gradually while preserving functionality.

In a nutshell, the utility and importance of parameter identifiability for
machine learning can be recognized in at least the following aspects:

• Knowledge-based models. In these models, all parameters have phys-
ically interpretable meaning. Identifiability analysis is the first step
for estimating unknown parameters because a lack of identifiability
implies that the interpretability of the learned model will be severely
limited and the obtained parameter estimation is meaningless to un-
derstand the real system, which is a critical problem if decisions are
to be taken on the basis of their numeric values. Especially in the
situation of causal inference, one would not select a model if its pa-
rameters cannot be uniquely determined. For instance, Henao and
Winther (2011) considered a sparse and identifiable linear latent fac-
tor and linear Bayesian network for parsimonious analysis of mul-
tivariate data, showing that parameter identifiability is a necessary
prerequisite for capturing the correlations between the latent factors.
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• Partially knowledge-based models. Within the context of nonlinear sys-
tem identification, a common practice is to build a black box model
in order to achieve accurate prediction or control. However, the full
black box model may be too generic for some situations where there
is evidence to include a knowledge-based submodel in the complete
model. The practical rule of “do not estimate what you already know”
would require us to define an ad hoc model structure if we know that
the real system contains a prior known part (Espinoza, Suykens, &
Moor, 2005). Thus, a certain subvector of the model has physically
interpretable meaning. In the field of machine learning, knowledge-
and data-driven models are typical examples, and identifiability is
of special importance for the knowledge-based submodel. (For more
details about this type of model, see Espinoza et al., 2005; Yang et al.,
2008; Hu et al., 2009; Qu & Hu, 2011; Ran & Hu, 2014a; and Fan, Kang,
Reffye, Heuvelink, & Hu, 2015.)

• Singular learning theory. The concept of local identifiability is closely
related to singular learning theory (SLT; Watanabe, 2007, 2009). More
specifically, if a model is not locally identifiable, its Fisher informa-
tion matrix (FIM) degenerates (Rothenberg, 1971); then it is a singular
learning machine (Watanabe, 2007, 2009). Due to the universal exis-
tence of singularities in machine learning, Watanabe (2007) pointed
out that “almost all learning machines are singular.” Therefore, it is
imperative to check singularity for SLT. (For a systematic study on
SLT, see Watanabe, 2009. We review this aspect in section 3.7.)

• Statistical inference. Parameter identifiability is a fundamental as-
sumption in nearly all classical statistical models (Dasgupta et al.,
2007) because it is a necessary prerequisite for statistical inference.
In singular models, the likelihood function cannot be approximated
by any quadratic form (Watanabe, 2009), resulting in conventional
model selection criteria such as Akaike information criterioin (AIC;
Akaike, 1974), Bayesian information criterion (BIC) (Schwarz, 1978),
minimum description length (MDL; Rissanen, 1983), and hypothe-
sis testing methods cannot be properly applied (Amari et al., 2006;
Watanabe, 2007, 2009). In addition, singularity is closely related
to the convergence of a range of estimators, including maximum like-
lihood estimator (MLE) and Bayesian estimator (Watanabe, 2009).
For instance, in a singular model, the standard formulation of the
Cramér-Rao bound does not hold (Amari et al., 2006) and the
MLE and the Bayesian posterior distribution are no longer sub-
ject to gaussian distributions even asymptotically (Amari et al.,
2006).

• Learning algorithm and learning dynamics. In singular models, the tra-
jectories of dynamics of learning generated by a standard gradient
descent algorithm are strongly affected by the singularities, caus-
ing plateaus or slow manifolds (Amari et al., 2006). To overcome
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such slow convergence phenomenon, Amari (1998) proposed a natu-
ral gradient descent (NGD) algorithm, demonstrating that the NGD
method works more efficiently in such singular models. For example,
Amari et al. (2006), Cousseau, Ozeki, and Amari (2008), and Wei and
Amari (2008) studied the dynamical behaviors of learning in gaus-
sian mixture model (GMM), multilayer perceptron (MLP), and radial
basis function (RBF), respectively, and showed that once parameters
are attracted to singualr points, the learning trajectories are very slow
to move away from them.

Considering that the identifiability issue has not yet been fully recog-
nized, it is of great value to give a comprehensive review in machine learn-
ing. As noted before, in this review, we place a special focus on identifiability
problems with statistical models. (The study of identifiability for dynamic
ordinary differential equation models is beyond the scope of this review.
Interested readers are referred to Walter, 1982; Walter & Pronzato, 1997;
Audoly, D’Angio, Saccomani, & Cobelli, 1998; Xia & Moog, 2003; and Miao
et al., 2011.)

1.3 Parameter Identifiability: Main Issues. This review is intended for
readers with varying interests, including statistics, machine learning the-
ory/algorithm, and system identification. We aim at providing an overview
of the fundamental elements and recent advances on identifiability in ma-
chine learning. The main problems we address are:

• Parameter identifiability analysis:
Criteria for examining parameter identifiability
Criteria for examining parameter redundancy
Methods for reparameterizing a parameter-redundant model so as
to make it an identifiable one

• Influence of identifiability in machine learning:
Statistical analysis, which mainly includes estimation theory, hypoth-
esis testing, and model selection
The information geometry framework for singular learning, which
mainly involves learning algorithm and learning dynamics
The algebraic geometry framework for singular learning, which
mainly concerns Bayesian inference

1.4 Structure of This Review. The remainder of this review is organized
as follows. In section 2, we provide a review of various representative crite-
ria for examining identifiability and parameter redundancy, as well as some
results regarding reparameterization. Section 3 reviews the deep influence
of identifiability in various aspects of machine learning, and section 4 con-
cludes with a brief summary and perspective.
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2 Criteria for Examining Identifiability

This section reviews some well-established criteria for examining whether
a model is locally (or globally) identifiable. We mainly consider two types
of models: unconstrained and parameter-constrained models.

In unconstrained models, the admissible parameter space is the entire
Euclidean space R

k. In the field of machine learning, a vast majority of re-
search has been done in the context of MLPs. It has long been known that
the parameter space of hierarchical systems such as MLPs contains singu-
larities due to symmetry and the degeneration of hidden units (Amari et al.,
2006). Chen et al. (1993) proved that for a three-layer network with h hidden
units having tanh activation functions and full connectivity in both layers,
there will be an overall weight space symmetry factor of h!2h. Sussmann
(1992) proved that for feedforward networks with a single hidden layer, a
single output, and tanh activation functions, the net is uniquely determined
by its input-output, up to an obvious finite group of symmetries, provided
that the net is irreducible.

If the parameter in the unconstrained model is unidentifiable, one can
change the modeling approach to make it identifiable. Typically, there are
two approaches to achieve this purpose. The first is to introduce a priori
distribution on the unknown parameter and cast the estimation problem
into a Bayesian framework (Berger, 1985; Bishop, 2006; Murphy, 2012). The
second is to impose some deterministic constraints, such as functional con-
straints (Rothenberg, 1971; Stoica & Ng, 1998), sparsity constraints (Henao
& Winther, 2011), or monotonicity constraints (Qu & Hu, 2011) on the un-
known parameter, resulting in a parameter estimation problem with smaller
parameter space (Rothenberg, 1971; Stoica & Ng, 1998; Moore, 2010). In
these parameter-constrained models, we assume the admissible parameter
space

Wc = {w ∈ R
k : �(w) = (λ1(w), . . . , λc(w)) = 0}, (2.1)

is constrained by a set of c equation constraints.
In the following, we assume that Wc = ∅ which means the constraints

are consistent. We also assume that the rank of the Jacobian matrix J�(w) of
�(w) is c for all w. This implies the constraints are nonredundant; otherwise,
certain constraints are redundant and can be removed. Incorporating these
additional constraints into an original unconstrained model results in an
alteration of the PDF’s dependence on the unknown parameter.

The identifiability problem of linear models and mixture models is well
studied, and there are a number of methods to perform such a task (Tallis
& Chesson, 1982; Paulino & Pereira, 1994). However, there are only a few
methods for testing the identifiability of nonlinear models. In addition, most
previous work on identifiability problems focused mainly on the special
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features of particular model structures such as a linear model (Paulino &
Pereira, 1994; Shao, 1999), gaussian model (Hochwald & Nehorai, 1997),
or exponential family (Catchpole & Morgan, 1997). This tends to obscure
the fact that the identifiability problem is a general one arising in machine
learning. Despite extensive literature and a number of criteria that exist for
various specific models, the identifiability issue has not yet been resolved
completely.

In this section, we give a concise review of several representative ap-
proaches for dealing with identifiability problems and analyze the require-
ments, advantages, and disadvantages of those approaches.

2.1 An FIM Approach for Examining Identifiability. The FIM is a well-
established criterion in identifiability analysis. Before formally presenting
the result, we introduce the following concept:

Definition 6 (constant-rank matrix). Let M(w) = (Mi j (w)) be a matrix whose
elements Mi j (w) are functions of w. If M(w) has the same rank for all w ∈ U,
where U ⊆ R

k , we call M(w) a constant-rank matrix in U.

Rothenberg (1971) presented the following theorem:

Theorem 1. Under constant-rank condition, a PDF p(z|w) is locally identifiable
at w0 if and only if the k × k matrix FIM,

FIM(w) = Ez

[(
∂ log p(z|w)

∂w

) (
∂ log p(z|w)

∂wT

)]
, (2.2)

is positive definite at w0, where Ez denotes the expectation operation with respect
to z.

The important implication of this theorem is that it establishes the con-
nection between local identifiability and singularity (Watanabe, 2007, 2009).

Definition 7. A statistical model p(z|w) is called regular if its FIM FIM(w) is
positive definite for all w. Otherwise, it is called singular.

Therefore, it is evident that if a model is not locally identifiable, it is a
singular learning machine. Rothenberg (1971) proved that this criterion is a
global one in the case of exponential family. Hochwald and Nehorai (1997)
studied the connection between identifiability and regularity of the FIM for
gaussian PDF and established a tool to check regularity with the help of
holomorphic functions.

From classical statistics, the FIM is positive definite if and only if

∂ log p(z|w)

∂w1
, . . . ,

∂ log p(z|w)

∂wk
(2.3)
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are linearly independent as functions of z on the support of p(z|w) (Watan-
abe, 2009). Applying this result to the Multiple-input multiple-output
(MIMO) nonlinear regression model,

y = f(x, w) + ε, (2.4)

where f(x, w) = ( f1(x, w), . . . , fm(x, w)) is a vector-valued mapping, ε ∼
N (ε|0,�), one obtains the following result (Ran & Hu, 2014a):

Theorem 2. The MIMO nonlinear regression model, equation 2.4, is locally
identifiable if and only if ∂ f (x,w)

∂wi
, i = 1, . . . , k, are linearly independent as functions

of x, where

∂ f (x,w)
∂wi

=
(

∂ f1(x,w)
∂wi

, . . . ,
∂ fm(x,w)

∂wi

)
. (2.5)

As for parameter-constrained models, Stoica and Ng (1998) presented an
identifiability criterion that needs to compute the orthogonal complement
of the Jacobian J�(w) of �(w). More specifically, since J�(w) has rank c for
all w, there exists a k × (k − c) matrix U(w) such that

J�(w)U(w) = 0 and UT(w)U(w) = Ik−c; (2.6)

then w is locally identifiable if and only if

|UT(w)FIM(w)U(w)| = 0. (2.7)

The difficulty with this method is that one needs to compute the orthog-
onal complement of a functional matrix J�(w), making it a hard task to
perform in nonlinear cases.

2.2 A Kullback-Leibler Divergence Approach for Examining Iden-
tifiability. Essentially, nonidentifiability is the consequence of the lack of
enough “information” to discriminate among admissible parameter values.
Hence, it is natural to examine identifiability with the help of Kullback-
Leibler divergence (KLD), defined as (Cover & Thomas, 1991)

KL(p, q) = Ep

(
log

p(z)

q(z)

)
=

∫
p(z) log

p(z)

q(z)
dz, (2.8)

where p(z) and q(z) are two PDFs. Historically, the KLD was first defined
by Boltzmann and Gibbs in statistical physics in the 19th century and called
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the relative entropy in physics literature (Watanabe, 2009). In information
theory, the KLD is used to measure the dissimilarity between two PDFs
p(z) and q(z) (Cover & Thomas, 1991). In classical statistics, the KLD arises
as an expected logarithm of the likelihood ratio and is a measure of the
inefficiency of assuming that the distribution is p(z) while the true distri-
bution is q(z) (Shao, 1999). The KLD plays a central role in the theoretical
development of identifiability study.

Bowden (1973) presented the following theorem for testing identifia-
bility:

Theorem 3. In a statistical model p(z|w), w0 ∈ R
k is globally (locally) identifiable

if and only if w0 is the unique solution of the equation KL(w0,w) = 0 in R
k (a

neighborhood of w0), where

KL(w0,w) =
∫

p(z|w0) log
p(z|w0)
p(z|w)

dz. (2.9)

The proof can be easily seen from the two properties: (1) KL(w0, w) ≥ 0
for all w ∈ R

k and (2) KL(w0, w) = 0 if and only if Pw0
= Pw (Cover &

Thomas, 1991).
Generally the FIM method can deal only with a local identifiability prob-

lem. This is because FIM(w) is a function of a single argument, and the
positive definiteness of FIM(w0) guarantees local identifiability only with
respect to w0. However, the KLD is a function of two arguments, which
makes it able to deal simultaneously with global and local identifiability
problems (see theorem 3). For simplicity, the KLD equation approach in
Bowden (1973) is abbreviated as KLDE.

Theorem 3 can be easily extended to deal with parameter-constrained
models (Ran & Hu, 2014b).

Theorem 4. In a statistical model p(z|w) with constrained parameter space,
equation 2.1, w0 ∈ Wc is globally (locally) identifiable if and only if w0 is the unique
solution of the following system of equations in Wc (a neighborhood N(w0) ∩ Wc
of w0):

{
KL(w0,w) = 0

Λ(w) = 0
. (2.10)

However, this approach requires solving a set of c + 1 nonlinear equa-
tions whose close-form solution is exceedingly difficult to obtain, resulting
in the use of numerical methods and the loss of the formal nature of the
solution.
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2.3 An Optimization Theory Approach for Examining Identifiability.
To overcome the difficulties of the KLDE method, by making use of the
KLD, Ran and Hu (2014b) cast the identifiability problem into the opti-
mization theory framework, and derived the corresponding identifiability
criteria. To proceed, we recall some basic concepts from optimization theory
(Sundaram, 1996).

Definition 8. A point w0 ∈ R
k is said to be a local minimum point of f (w) if

there is a neighborhood N(w0) of w0 such that f (w) ≥ f (w0) for all w ∈ N(w0).
If f (w) > f (w0) for all w ∈ N(w0),w = w0, then w0 is said to be a strict local
minimum point.

Definition 9. A point w0 ∈ R
k is said to be a global minimum point of f (w) if

f (w) ≥ f (w0) for all w ∈ R
k . If f (w) > f (w0) for all w ∈ R

k,w = w0, then w0
is said to be a strict global minimum point.

In the language of optimization theory, theorem 3 can be equivalently
rewritten as follows (Ran & Hu, 2014b):

Theorem 5. In a statistical model p(z|w), a parameter point w0 ∈ R
k is globally

(locally) identifiable if and only if w0 is the strict global (local) minimum point of
the following unconstrained optimization problem:

min KL(w0,w). (2.11)

In fact, the statement of theorem 5 can be regarded as a dual interpre-
tation of that in theorem 3. Specifically, theorem 3 formulates the identi-
fiability problem as the task of seeking the roots of a nonlinear equation
KL(w0, w) = 0, while theorem 5 formulates the identifiability problem as
an unconstrained optimization problem. The following theorem (Ran & Hu,
2014b) is derived from the optimization theory:

Theorem 6. Suppose that p(z|w) is a statistical model, w0 ∈ R
k , and that the

Hessian matrix,

H(w) =
∂2KL(w0,w)

∂w2
, (2.12)

of KL(w0,w) has constant rank in a neighborhood N(w0) of w0; then w0 is locally
identifiable if and only if H(w0) is positive definite.

The necessity can be readily derived as follows. The Taylor expansion of
KL(w0, w) with respect to w0 is (Ran & Hu, 2014b)

KL(w0, w) = 1
2
(w − w0)

TH(w0)(w − w0) + o(||w − w0||22). (2.13)
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Since H(w0) is positive definite, there exists a neighborhood N(w0) of w0
such that KL(w0, w) > 0 for all w ∈ N(w0), w = w0. This implies that w0 is
a strict local minimum point of KL(w0, w). The sufficiency can be seen in
Ran and Hu (2014b).

Based on theorem 5, Ran and Hu (2014b) proposed a global result as
follows. Compared with the global result in Rothenberg (1971), this result
is valid for any statistical model without restricting it to exponential family.

Theorem 7. Suppose that the Hessian matrix H(w) of KL(w0,w) is positive
definite for all w ∈ R

k,w = w0; then w0 is globally identifiable.

Following the same line as the unconstrained cases, the identifiability
problem of parameter-constrained models can be equivalently formulated
as a constrained optimization problem (Ran & Hu, 2014b).

Theorem 8. In a statistical model p(z|w) with constrained parameter space,
equation 2.1, a parameter w0 ∈ Wc is globally (locally) identifiable if and only if
w0 is the strict global (local) minimum of the constrained optimization problem:

min KL(w0,w) (2.14)

s.t. w ∈ Wc

This gives rise to the following theorem (Ran & Hu, 2014b):

Theorem 9. Suppose the parameter space of the statistical model p(z|w) is re-
stricted to Wc (see equation 2.1), w0 ∈ Wc , A(w) is a block matrix of the form

A(w) =

(
H(w)

JΛ(w)

)
, (2.15)

where H(w) is the Hessian of KL(w0,w), and JΛ(w) is the Jacobian of Λ(w). If
A(w) has constant rank in a neighborhood N(w0) of w0, then the following three
conditions are equivalent:

1. w0 ∈ Wc is not locally identifiable.
2. A(w0) is column rank deficient.
3. H(w0) + JT

Λ(w0)JΛ(w0) is rank deficient.

The benefit gained from the optimization theory framework is that when
information theory through KLD is the link, the interplay between identifi-
ability theory and optimization theory is derived.

In some practical applications, it is of interest to study the problem of
how many constraints are needed to guarantee identifiability. The following
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result (Ran & Hu, 2014b) can be applied as a guideline to quantitative
experiment design.

Theorem 10. Suppose rankH(w0) = r , r < k; the minimum number of constraints
needed to achieve local identifiability is k − r .

A direct result from the convex optimization theory (Boyd & Vanden-
berghe, 2004) is that if the objective function KL(w0, w) is strictly convex
in w and the constraint �(w) is convex, then the local identifiability cri-
terion in theorem 9 becomes a global one. However, the KL(w0, w) is not
generally convex in w although KL(p, q) is convex in the second argument
q (Principe, 2010), as q is nonlinear in w. Thus, one cannot cast the identi-
fiability problem into the convex optimization theory framework, making
it difficult to derive a global criterion. Therefore, the global identifiability
problem remains a challenging subject in identifiability theory.

2.4 An Identifying Function Approach for Examining Identifiability.
This part first recalls the definitions and notations required for the necessary
mathematical background:

Definition 10 (diffeomorphism). Let U and U
′

be two open sets in R
k . A bi-

jective mapping f : U �→ U
′

in C1(U, U
′
) is a diffeomorphism from U to U

′
if

f ∈ C1(U, U
′
) and f−1 ∈ C1(U

′
, U), where C1(U, U

′
) is the function space ex-

panded by all continuously differentiable mappings from U to U
′
, and f−1 is the

inverse mapping of f .

Definition 11 (C1 equivalence). ϕ ∈ C1(U, V) and ψ ∈ C1(U
′
, V

′
) are two diffeo-

morphisms, where U, U
′ ⊂ R

k , V, V
′ ⊂ R

q . If ϕ = g−1 ◦ ψ ◦ f , then ϕ and ψ are
said to be C1 equivalent, where ◦ denotes the function composition.

The following rank theorem in Riemann geometry (Gallot, Hulin, &
Lafontaine, 2008) describes nonlinear constant-rank mappings. It essentially
says that locally, they behave just like linear projection.

Theorem 11. Locally, a constant-rank mapping ϕ(w) ∈ C1(Rk, R
q ) is C1 equiva-

lent to a linear projection

Pr (w1, . . . , wk) = (w1, . . . , wr , 0, . . . , 0), (2.16)

where r is the rank of the Jacobian matrix Jϕ(w) of ϕ(w).

To give an efficient method for testing the identifiability of models, we
introduce the concept of identifying function (Ran & Hu, 2015), which can
be viewed as a reduced-form parameter of the original model:

Definition 12. Suppose Pw is a statistical model; a vector-valued function ϕ(w)
in C1(Rk, R

q ) is an identifying function (IF) if
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w1 ∼ w2 ⇔ ϕ(w1) = ϕ(w2),∀w1,w2 ∈ R
k . (2.17)

It is easy to see that the value of an IF ϕ is unchanged within each equiv-
alent class [w], while it takes different values among different equivalent
classes. That is, only the parameters that are not observationally equivalent
can be identified by the values of IF. This is the origin of the terminology
identifying function (Paulino & Pereira, 1994).

Combining equation 1.13 with 2.17, we have

ϕ(w1) = ϕ(w2) ⇔ Pw1
= Pw2

. (2.18)

This implies that the parameter structure of Pw is completely determined
by its IF, so the identifiability problem of the original model is transformed
into the problem of checking the injectivity of mapping ϕ(w).

Based on the rank theorem, (Ran and Hu, 2015) derive the following
theorem:

Theorem 12. Suppose Pw is a statistical model and ϕ(w) is an IF. If the Jacobian
Jϕ(w) of ϕ(w) is of column full rank at w0, the model is locally identifiable at w0.

It should be noted that the converse of theorem 12 is not true. Consider
the simple model y = w2 + ε, where the noise ε ∼ N (ε|0, 1). It is obvious
that the IF ϕ(w) = w2 since the model is fully determined by the mean w2.
The Jacobian Jϕ(w) = 2w vanishes at w = 0, yet w = 0 is locally identifiable.

With the IF approach, the following theorem can be used to test global
identifiability (Ran & Hu, 2015):

Theorem 13. Suppose Pw is a statistical model and ϕ(w) is an IF. The model
is globally identifiable at w0 ∈ R

k if and only if w0 is the unique solution of the
equation ϕ(w) = ϕ(w0) for w ∈ R

k .

We use univariate PDF p(z|w) for illustrating the procedure of obtaining
IF, since the extension to the case of multivariate is rather straightforward
(Shao, 1999). Recall that the correspondence between a PDF p(z|w) and its
associated characteristic function,

ψ(t|w) = Ez(e
itz) =

∫
eitz p(z|w)dz, (2.19)

is bijective; where i = √−1, the IF can be formed from the collection of
Taylor expansion coefficients of ψ(t|w) in terms of t,

ψ(t|w) =
∞∑

k=0

ψ(k)(0|w)
(it)k

k!
=

∞∑
k=0

Ez(z
k)

(it)k

k!
, (2.20)
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where ψ(k)(0|w) is the kth derivative of ψ(t|w) evaluated at t = 0. This
is because ψ(t|w) is an analytical function of t, so ψ(t|w) (or p(z|w)) is
uniquely determined by the collection of the Taylor expansion coefficients.
In this case, the kth component of ϕ(w) is in fact the kth moment of the PDF
p(z|w).

Note that the dimension q of the IF is assumed to be finite. This assump-
tion does hold for certain parametric models—for example, a gaussian
model (Ran & Hu, 2014a), exponential family (Catchpole & Morgan, 1997),
moving average model (Ran & Hu, 2015), gaussian process (Ran & Hu,
2014a), autoregressive model (Ran & Hu, 2014a), linear or rational dynamic
model (Walter & Pronzato, 1997)—in real-world scenarios. For instance, the
IF for an m-dimensional gaussian PDF,

p(z|w) = 1

(2π)
m
2 |�w| 1

2

exp
(

−1
2
(z − μw)T�−1

w (z − μw)

)
, (2.21)

can be formed from the m elements in the mean μw plus the m(m+1)

2 elements
in the (symmetric) covariance �w. However, this is not always the case for
complicated models. For generic nonlinear models, if one takes the compo-
nents of an IF to be the Taylor expansion coefficients of the characteristic
function, the dimension of the IF may be infinite, thus imposing the problem
of determining the upper bound of the dimension of the IF for a guaranteed
identifiability result (Magaria, Riccomagno, Chappell, & Wynn, 2001). This
challenging problem has not yet been fully resolved.

2.5 A Statistical Approach for Examining Identifiability. Most pre-
vious studies have been concerned mainly with local identifiability. Few
investigations have been reported on how to examine global identifiability.
However, in some cases, such as knowledge-based models, we are more
interested in global identifiability than simple local identifiability. Unfor-
tunately, it is very difficult to obtain global results in generic statistical
settings.

In this section, we review the statistical method that explores the inter-
face between identifiability and various statistics. Recall that a statistic is a
measurable function of samples (Shao, 1999). The major merit of the statis-
tical approach is that the derived results are capable of examining global
identifiability.

Definition 13. The ŵn is a consistent estimator for w, written as ŵn
a .s.→ w, if ŵn

converges to w almost surely (a.s.) for all w ∈ W .

A basic argument between identifiability and the existence of a consistent
estimator is given in Lehmann (1983) as follows:
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Theorem 14. The global identifiability of the parameter is a necessary condition
for the existence of a consistent estimator.

The relationship of identifiability and sufficient statistics is given by
Picci (1977). Paulino and Pereira (1994) proved that global identifiability
is a necessary condition for the existence of an unbiased estimator. This
result can be extended to asymptotically unbiased estimators (Ernesto &
Fernando, 2002). To date, there is no general theoretical result about how
to construct a consistent (or unbiased) estimator for arbitrary statistical
distribution. However, the following case appears often in practice. Suppose
that the parameter wi can be interpreted as characteristic of the PDF. For
instance, the wi might be moment of the PDF; then distinct values of w
imply distinct distributions, resulting in global identifiability. This is given
in Rothenberg (1971):

Theorem 15. Suppose there exist k functions τ1(z), . . . , τk(z), such that for all
w ∈ R

k ,

wi = Ezτi (z). (2.22)

Then w is globally identifiable.

2.6 A Critical Comparison of Various Identifiability Criteria. In Ta-
ble 2, we summarize the requirements, advantages and disadvantages of
the FIM (Rothenberg, 1971), KLDE (Paulino & Pereira, 1994), IF (Ran & Hu,
2015), and statistical method (Rothenberg, 1971).

2.7 Parameter Redundancy. One of the most relevant concepts related
to identifiability is parameter redundancy (PR). In parameter-redundant
models, the intrinsic parameter dimension is strictly less than the number
of model parameters. Another related concept is parameter dependence
(PD), in the sense that a certain subvector of parameter can be expressed as
a function of the remaining one.

Definition 14. A statistical model Pw is parameter redundant if it can be expressed
in terms of a smaller parameter vector β = β(w), where dimβ < dimw. Otherwise,
the model is of full rank.

The following concept of PD is an extension of that in Yang et al. (2008)
and Hu et al. (2009), where PD is defined in a pairwise manner.

Definition 15. A statistical model Pw is parameter dependent if a certain subvector
w(1) of w can be expressed as the function of the remaining subvector w(2), where
w(1) ∪ w(2) = w,w(1) ∩ w(2) = ∅.
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Table 2: A Comparison of Various Criteria for Examining Identifiability.

FIM Requirements Constant-rank condition
Calculate the explicit formulation of FIM

Advantages Theoretically workable for general statistical models
Disadvantages Computationally complex

Can deal only with local identifiability problems
KLDE Requirements Calculate the explicit formulation of KLD

Seek all the roots from the KLD equation
Advantages Theoretically workable for general statistical models

Can simultaneously deal with global and local identifiability
problems

Disadvantages Computationally complex
IF Requirements Dimension of IF is finite

Advantages Can simultaneously deal with global and local identifiability
problems

Computationally simple for testing local identifiability
Disadvantages Computationally complex for testing global identifiability

Statistic Requirements Construct suitable statistics
Advantages Can deal with global identifiability problems
Disadvantages There are no unified methods for constructing statistics

The relationship of PR and PD is stated in Ran and Hu (2015).

Theorem 16. If a model is parameter dependent, the model is parameter redundant.
The converse is not true.

Catchpole and Morgan (1997) introduced the concept of PR in a special
exponential family and proved that PR and nonidentifiability are equivalent
in that case. More recently, Hu (2014) analyzed the redundancy of Bayesian
classifiers whose parameters are given in the form of functionals and proved
that for an M-class classification problem with reject option, the number of
independent parameters in a cost matrix is M.

For linear models, the problem of processing PR and reparameterization
is well understood (see example 1 in Ran & Hu, 2015). Nevertheless, such
a task cannot be easily tackled in nonlinear models. This section reviews
the representative methods for processing PR and reparameterization in
nonlinear settings.

According to Jacquez and Greif (1985), there are two levels of parameters:
structural and observational. The structural parameter w is a basic one
associated with a model, and so explicitly appears in a model equation. In
contrast, the observational parameter is the function of w that is inherent in
the model, and so implicitly appears in original model. The reparameterized
β(w) in definition 14 is in spirit similar to an observational parameter, so it
is at a level different from w.
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By definition 14, the choice of β(w) does not need to be unique. Obvi-
ously, if a statistical model is of full rank, the only feasible reparameteri-
zation (up to a bijective mapping) is β(w) = w. Based on the IF approach,
Ran and Hu (2015) presented the following theorem:

Theorem 17. Suppose Pw is a statistical model and ϕ(w) is an IF. Then Pw is
parameter redundant if and only if the Jacobian Jϕ(w) of ϕ(w) is symbolically
column deficient, that is, there is a nontrivial vector v(w) such that

Jϕ(w)v(w) = 0,∀w ∈ R
k . (2.23)

This result can be viewed in two complementary ways. In an algebraic
viewpoint, a model is parameter redundant if and only if the columns of
the Jacobian Jϕ(w) are linearly dependent. From a geometrical viewpoint,
by equation 2.23, we can see that

∇ϕT
l (w)v(w) = 0, l = 1, . . . , q. (2.24)

This implies that each ∇ϕl (w) is orthogonal to the vector field v(w). Hence,
ϕl (w) has ridges along v(w). In other words, all the parameters giving rise
to the vector field v(w) are completely contained in the same equivalent
class, so that the value of IF is unchanged. This highlights the fact that the
IF is capable of distinguishing between different equivalent classes, yet it
fails to distinguish parameters within the same equivalent class.

We now briefly review the problem of software implementation for
checking for PR. The problem of detecting PR boils down to that of ex-
amining the symbolic rank of the Jacobian of IF. In principle, this test can
be tackled by symbolic computation softwares such as Maple, Mathematica
(Bekker, Merchens, & Wansbeek, 1994). (For specific examples, see Catch-
pole, Morgan, & Viallefont, 2002; Gimenez, Viallefont, Catchpole, Choquet,
& Morgan, 2004; Yang et al., 2008; Hu et al., 2009; and Cole et al., 2010.)
However, calculating the symbolic rank of a functional matrix is still an
extremely challenging task since its complexity increases very quickly with
the number of parameters, the dimension of input and output vectors, and
the nonlinear degree of models (e.g., nonlinear dependency on parameters,
input variables). Therefore, it calls for more powerful software that effec-
tively combines a symbolic with a numerical approach for dealing with PR
in sophisticated models.

2.8 Reparameterization. In parameter-redundant models, although
some obvious reparameterization can be visually inspected (Dasgupta et al.,
2007), relatively little consideration has been made concerning the pro-
cedural reparameterization approach. Dasgupta et al. (2007) presented a
local reparameterization approach based on the FIM. The drawback of



Parameter Identifiability in Statistical Machine Learning 1177

this approach is that it starts by examining local identifiability, so all
the sequential reparameterization procedures inherently possess a local
nature. However, in many practical applications, we are more interested
in global reparameterization than local reparameterization. Therefore, it
is highly desirable to seek an effective method for processing global
reparameterization.

In order to obtain the most parsimonious formulation of original model,
any functional dependence in β(w) should be removed. We introduce the
following definition from classical mathematical analysis (Zorich, 2004):

Definition 16. A set of functions β1(w), . . . , βr (w) is functionally inde-
pendent in R

k if for any continuous function F (y1, . . . , yr ), the equation
F (β1(w), . . . , βr (w)) ≡ 0 holds for w ∈ R

k only when F (y1, . . . , yr ) ≡ 0 in R
r .

It is obvious that functional independence is the nonlinear generalization
of linear independence for which dependency is defined with respect to
linear combination F(y1, . . . , yr) = λ1y1 + · · · + λryr.

Functional independence means that any redundancy in β(w) is re-
moved, so it is of special importance to characterize the intrinsic param-
eter dimension of models. To formalize this, we introduce the following
definition (Ran & Hu, 2015), which is more stringent in comparison with
definition 14:

Definition 17. Suppose Pw is a statistical model. A vector β = β(w) is a minimal
reparameterization of Pw if β satisfies the following two conditions:

1. Pw can be rewritten in terms of β = β(w) with dimβ < dimw.
2. The β = β(w) has a minimality property, that is, there exists no other vector

κ(w) such that dimκ(w) < dimβ(w), and Pw can be rewritten in terms of
κ(w).

Based on the IF approach, Ran and Hu (2015) presented the following
theorem:

Theorem 18. Let Pw be a statistical model. ϕ(w) is an IF and Jϕ(w) is the Jacobian
of ϕ(w). Suppose that Jϕ(w) is symbolically column deficient, and that the null
subspace

V = {v(w) ∈ R
k : Jϕ(w)v(w) = 0} (2.25)

of Jϕ(w) is spanned by a maximal system of d linearly independent vectors
vs(w) = (vs1(w), . . . , vsk(w))T, 1 ≤ s ≤ d. Let r = k − d. Then β = β(w) ∈ R

r is
the minimal reparameterization if and only if β = β(w) ∈ R

r satisfies the following
Lagrange first-order linear partial differential equation:

vsi (w)
∂β

∂w1
+ · · · + vsk(w)

∂β

∂wk
= 0, 1 ≤ s ≤ d. (2.26)
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Moreover, if the matrix Jϕ(β) is of column full rank, the model is locally identifiable
with respect to the minimal reparameterization β.

The entire process of determining parameter structure can be imple-
mented sequently using the following steps:

1. Solve the IF ϕ(w) from original model Pw (see section 2.4).
2. Form the Jacobian Jϕ(w) of IF and check its rank. Specifically, if the

Jacobian is of column full rank at w0, the model is locally identifiable
at w0 (see theorem 12). If the Jacobian is symbolically column defi-
cient, the model is parameter redundant and can be reparameterized
(see theorem 18).

3. Solve the maximal independent vectors in the null space V (see equa-
tion 2.25) of Jϕ(w) if PR is detected.

4. Solve equation 2.26 for minimal reparameterization.

In previous sections, we discussed the parameter-constrained method for
alleviating nonidentifiability problem and the reparameterization method
for alleviating the parameter redundance problem. There is also major re-
search on approaches to alleviating data-driven ill-conditioned problems—
for instance, adopting newer learning settings, such as a transductive
setting, a universum setting, and learning under privileged information
(Vapnik, 2006), different from inductive setting, and modifying underlying
statistical inference problems (Vapnik & Izmailov, 2015a). In many cases,
such settings have been adopted for an inductive setting, which leads to
new data-driven regularization techniques. (Interested readers can consult
Collobert, Sinz, Weston, & Botton, 2006; Cherkassky, Dhar, & Dai, 2011; and
Vapnik & Izmailov, 2015b for more details.)

3 The Influence of Parameter Identifiability in Machine Learning

Identifiability is a primary assumption in almost all classical statistical mod-
els (Dasgupta et al., 2007). However, such an assumption may be violated
in a large variety of models. It has been difficult to study the learning theory
of singular models because there has been no mathematical theory for such
problems. Up to now, this difficulty has not been fully resolved in machine
learning.

In a wide variety of statistical models, the critical set

C = {w ∈ W : |FIM(w)| = 0} (3.1)

at which the FIM degenerates is a zero-measure subset in R
k. Hence, one

might argue that in generic cases, the true parameter wtrue is seldom con-
tained in C and that the learning theory assuming |FIM(wtrue)| > 0 is suffi-
cient in practical applications. Here wtrue means that the model can express
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the true distribution. However, this consideration is generally wrong for
the following reasons:

• In some cases, we have to optimize a statistical model by comparing
several candidate models or hyperparameters. Thus, one always ex-
amines models under the condition that the optimal parameter lies in
a neighborhood of C. Especially in model selection, hyperparameter
optimization, or hypothesis testing, one needs the theoretical results
in the case wtrue ∈ C because we have to determine whether wtrue ∈ C
or not (Watanabe, 2009).

• The learning process takes place in the entire parameter space, so
even if the true parameter is regular, the singular structure strongly
affects the choice of learning algorithms as well as the dynamics of
learning. It has been shown that once parameters are attracted to
singular points, the learning trajectory is very slow to move away
from them (Amari et al., 2006; Cousseau et al., 2008; Wei & Amari,
2008).

From the viewpoint of information geometry (Amari & Nagaoka, 2000),
the parameter space of statistical models forms a geometrical manifold,
called the neuromanifold in the case of ANNs (Amari et al., 2006). Such a
model is endowed with a statistical structure, and a Riemann metric is
given by the FIM. However, the FIM degenerates at singularities. Such a
singular structure is ubiquitous not only in MLPs but also in RBFs, GMMs,
and ARMA time series models, linear systems whose transfer functions are
rational functions (Amari et al., 2006), and many other cases. In singular
models, the standard statistical paradigm of the Cramér-Rao theorem (see
theorem 19) does not hold, and the singularity gives rise to unusual behav-
iors in parameter estimation, hypothesis testing, model selection, learning
algorithm, the dynamic of learning, and Bayesian inference, for example.

In this section, we review the significant influence of singularity on
various aspects of machine learning. First, we review results concerning
special parameter structures of singular models. Second, we briefly survey
the influence of singularity on estimation theory, hypothesis testing, model
selection, and so on. Third, we review the issues of learning algorithms
and learning dynamics within the information geometry framework due
to Amari and Nagaoka (2000). Finally, we review the SLT developed by
Watanabe within the algebraic geometry framework (Shafarevich, 1974);
the SLT has a profound theoretic impact in Bayes inference.

3.1 Parameter Structure of Singular Models. This section focuses on
the problem regarding the geometrical structure of parameter space. In a
singular model, when we summarize observationally equivalent parame-
ters, the model is known to have a generic cone-type singularity embedded
in a finite-dimensional, sometimes infinite-dimensional, regular manifold
(Castelle & Gassiat, 1997). In machine learning, such a structure was
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described in the pioneering work of Brockett (1976) in the case of linear
systems and in the case of MLPs by Sussmann (1992), Chen et al. (1993),
Kurková and Kainen (1994), Fukumizu (1996), and Ruger and Ossen (1997).
More recently, extensive research has focused on this problem, and theories
are now being established.

The local parameter structure of regular models is represented by the
tangent space of the parameter manifold, where the first-order asymptotic
theory is well formulated. The concepts of affine connections and the re-
lated e- and m-curvatures are necessary for high-order asymptotic theory
(Amari & Nagaoka, 2000). Nevertheless, the singular model does not have
tangent space at singularities; instead, the tangent cone is useful for ana-
lyzing its local structure. Castelle and Gassiat (1997) showed the generic
cone structure and elucidated why unusual behaviors emerge in singular
models. Also, the local conic structure and the related random gaussian
field play a fundamental role in analyzing the behaviors of likelihood ratio
statistics (Fukumizu, 2003) as well as the MLE and its generalization ca-
pability (Amari et al., 2006). Specifically, the quotient space W/ ∼ forms a
cone (Amari et al., 2006). This is called a tangent cone and is different from
the tangent space in regular models. (For more details, to refer Amari et al.,
2006.) The geometry of equivalent class [w] is discussed in Dasgupta et al.,
2007.

3.2 Estimation Theory. Despite our ignorance of p(z|wtrue), the abil-
ity to make repeated measurements on z enables us to obtain empirical
knowledge about wtrue. By minimizing an error function E(w), we obtain
an estimator ŵn of wtrue. Just as with any other statistic, the statistical be-
havior of ŵn is completely determined by its probabilistic law, which is
prohibitively difficult to obtain for a training set of size n. We first use
the MLE ŵML as a typical case to illustrate the influence of singularity in
estimation theory.

3.2.1 Maximum Likelihood Estimator. In classical statistics, the MLE is
known to be asymptotically optimal, and the FIM is extensively used to
measure the average amount of information included in a single measure-
ment zn (Amari et al., 2006).

Theorem 19 (Cramér-Rao). Let ŵn be an unbiased estimator of w from n examples
in a globally identifiable model. Then the error covariance of ŵn satisfies

Ez[(ŵn − w)(ŵn − w)T ] � 1
n

FIM−1(w), (3.2)

where the inequality holds in the sense of positive definiteness of matrices. The
equality holds asymptotically for the MLE ŵML ,
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lim
n→∞ nEz[(ŵML − w)(ŵML − w)T ] = FIM−1(w). (3.3)

Moreover, ŵML is asymptotically subject to the gaussian PDF with mean w and
covariance matrix 1

n FIM−1(w).

In contrast to regular models in which the MLE maximizes the likelihood
function, the MLE in singular models is solved by making use of random
field theory (Amari et al., 2006). Hence, it is generally very difficult to
calculate the MLE and analyze its properties.

3.2.2 Large Sample Behavior. It is difficult to obtain the precise probabil-
ity law of ŵn. However, approximation to this probability law for large n
can be obtained by using standard tools, including the law of large num-
bers and the central limit theorem. These approximations reveal that the
probability law of ŵn collapses into a particular well-defined set, becoming
more and more concentrated around this set as n increases (White, 1989a).
This increasing concentration property is referred to as consistency, and the
probability law is known as limiting distribution or asymptotic distribution
of ŵn. We briefly review these two issues below.

Consistency. Consistency means that the estimator ŵn converges almost
surely to the optimal wopt. White (1994) showed that consistency holds
under a collection of regularity conditions; among these conditions is pa-
rameter identifiability. Unfortunately, this condition can be easily violated
in a considerable variety of learning machines. For instance, in MLPs, if
W is restricted to a single cone described by Nielsen (1989), then multiple
minima can be to some extent be alleviated; a heuristic explanation is that
it eliminates the interchangeability of hidden units. Nevertheless, this re-
striction to a Nielsen cone cannot guarantee identifiability if wopt happens
to lie at the singularities. In the case of a single hidden-layer feedforward
network, there are two reasons for this possibility (White, 1989a). The first
is referred to as the case of redundant inputs and the second as the case of
irrelevant hidden units. Specifically, the former occurs when one or more of
the network inputs is a linear combination of the other inputs, while the
latter occurs when identical optimal network performance can be achieved
with fewer hidden units. Both cases generate the manifolds on which E(w)

is flat and minimal. This coincides with the observations noticed by Amari
(see section 3.5).

In singular models, instead of ŵn
a.s.→ wopt, we have (White, 1989a)

inf
w∗∈W∗

||ŵn − w∗||2
a.s.→ 0, (3.4)

where W∗ is the set of all minimizers of E(w), that is,
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W∗ = {w∗ ∈ W : E(w∗) ≤ E(w),∀w ∈ W}. (3.5)

This gives an answer to the question of what is learned when one seeks
the MLE: the learned parameters collapse into the set of parameters that
deliver minimal error.

Asymptotic distribution. The formal concept for studying the limiting dis-
tribution of ŵn is that of convergence in distribution (White, 1989a).

Definition 18. Let zn, n = 1, 2, . . . be a sequence of random variables having dis-
tribution functions Fn(a) = P(zn ≤ a), n = 1, 2, . . ., and let z be another random
variable having distribution function F (a) = P(z ≤ a). zn is said to converge to z
in distribution, if |Fn(a) − F (a)| → 0 at all a for which F is continuous.

The limiting distribution of ŵn depends on the nature of W∗. In general,
W∗ may consist of isolated points or isolated flats, or both. If convergence
to a flat occurs, then ŵn has a limiting distribution that can be analyzed
using the theory of partially identified models (Phillips, 1989). This distri-
bution belongs to the limiting mixed gaussian (LMG) family introduced by
Phillips (1989). When wopt is a regular point, the ŵn has a limiting gaussian
distribution. This result is also a consequence of Phillips’s results but can
be derived as well from the conventional central limit theorem.

Hence, the important influence caused by singularity is that we work
with an LMG family rather than a gaussian family when analyzing the
limiting distribution of ŵn.

3.3 Hypothesis Testing. Hypothesis testing is an important method to
judge from data whether the true distribution lies at the singularities. In
the context of ANNs, because many questions about the precise form of
the optimal network architecture can be formulated as hypothesis testing
regarding ŵn, these questions can be solved by calculating some standard
statistics. It is therefore important to address the effect of singularity from
the aspect of hypothesis testing.

In regular models, the log-likelihood ratio statistic,

λ = 2
n∑

j=1

log
p(z j|ŵML)

p(z j|wtrue)
, (3.6)

obeys the χ2 distribution with degree of freedom k when the data size n
is large enough. However, when the model is singular, the λ may not be
subject to χ2 and may diverge to infinity in proportion to n. This study can
be dated back to the work of Weyl (1939) and Hotelling (1939), and a precise
asymptotic form of the λ in singular models is given in Liu and Shao (2003).
However, it is unfortunate that such tangled problems have usually been
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excluded as pathological cases and have not been well studied. In fact, such
problems emerge ubiquitously in machine learning.

We consider the following statistical test:

H0 : w = wtrue vs. H1 : w = wtrue. (3.7)

When wtrue is regular, one expands λ in the Taylor series, yielding

λ = n(ŵML − wtrue)
TFIM−1(wtrue)(ŵML − wtrue). (3.8)

Hence, λ obeys the χ2 with degree of freedom k when n is large enough. The
expectation of λ is Ezλ = k. However, when wtrue is singular, this situation
changes. The FIM−1(wtrue) diverges, so the similar expansion is no longer
valid. The expectation of λ is asymptotically written as Ezλ = c(n)k, where
the term c(n) takes various forms depending on the nature of singularities.
With the help of the gaussian random field, Fukumizu (2003) proved that
c(n) = log n in the case of MLP, while in the GMM, c(n) = √

log log n.
In the case of MLPs, the limiting distribution of ŵn can be used to test

hypotheses about wtrue. This technique permits statistical inference to ques-
tions regarding the precise form of optimal ANN architectures. Two hy-
potheses of particular interest for MLPs are the irrelevant inputs hypothesis
and the irrelevant hidden units hypothesis. The former can be solved by
making use of standard statistical tools. Nevertheless, there are some diffi-
culties in the limiting distribution of ŵn under the null hypothesis that the
hidden units are irrelevant. Problems arise because when the null hypoth-
esis is true, the optimal weights from input units to the irrelevant hidden
units contain singularities. This problem is known in the statistics literature
as “nuisance parameters are identifiable only under alternative hypothesis”
(White, 1989a). The LMG family plays an essential and unavoidable role in
this case. Hypothesis testing in MLPs has been studied by Davies (1987).
As one should expect from the LMG family, the distribution of the statistic
is no longer χ2. However, certain techniques can be adopted to avoid these
difficulties, yielding a χ2 statistic. (For such tests, see White, 1989b, for more
details.)

In addition to hypothesis testing, the generalization error is related to
the log-likelihood ratio. The generalization error has so far been evaluated
based on the Cramér-Rao paradigm, so we need a new method to attack
this problem in singular models. Fukumizu used a simple linear model and
showed that the generalization error of MLPs with singularities is different
from that of the regular models (Fukumizu, 1999), and this problem is
further studied in Fukumizu (2003).

3.4 Model Selection. To obtain an adequate model, one should select
a model from many alternatives based on the data. In classical statistics,
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this issue is known as bias-variance dilemma (Hastie, Tibshirani, & Friedman,
2001). For instance, in MLPs, one needs to determine the preferred model
size, that is, the number h of hidden units. Conventional AIC (Akaike, 1974),
BIC (Schwarz, 1978), and MDL (Rissanen, 1983) have been extensively used
as model selection criteria.

In pioneering work, Akaike (1974) proposed the well-known AIC:

AIC = −2 log(likelihood) + 2(number of independent parameters),

(3.9)

which basically consists of the badness-of-fit term −2 log(likelihood) and
the complexity term 2(number of independent parameters). This is derived
from asymptotic statistical analysis, where the MLE is subject to gaussian
with covariance 1

n FIM−1(w).
MDL is a criterion to minimize the length of encoding for the observed

data by using a family of parametric models. It is given asymptotically by
the minimizer of

MDL = training error + log n
2n

k. (3.10)

The BIC gives the same criterion as MDL. Both MDL and BIC are derived
from the same assumption regarding the gaussianity of the MLE.

The AIC is a criterion that minimizes the generalization error. Several
authors, such as Murata, Yoshizawa, and Amari (1994), Bozdogan (2000),
and Amari et al. (2006) have questioned whether the complexity term is
a sufficient measure to capture the overparameterization phenomenon in
parameter-redundant models and have proposed several variants. For in-
stance, Hagiwara, Toda, and Usui (1993) noticed this problem when they
used AIC to determine the size of MLPs and found that AIC did not work
well. They observed that this is caused by the singularity of the hierarchical
structures, and investigated ways to overcome this difficulty (Hagiwara,
2002a, 2002b). Akaho and Kappen (2000) also noticed this in the GMMs.
Hence, one should evaluate the log-likelihood ratio carefully in such cases.
For ANNs, the network information criterion as a modified version of AIC
has been proposed (Murata et al., 1994).

Many comparisons of AIC and MDL by computer simulations have been
reported. Sometimes AIC works better, while MDL does better in other
cases. Such confusing reports seem to stem from the differences between
regular and singular models, as well as the differences in the nature of
singularities (Amari et al., 2006). Watanabe (2010) proposed the widely
applicable information criterion (WAIC) for model selection in singular
models. More recently, Watanabe (2013) presented the widely applicable
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Bayesian information criterion (WBIC), a generalized version of BIC for
singular models.

3.5 Learning Algorithm. We now consider how the problem of mini-
mizing E(w) might be solved in practical situations and give an overview
of the influence of singularities on learning algorithms. Among the large
variety of numerical methods, we merely consider some gradient-based
techniques. If E(w) is differentiable, a typical iteration can be constructed
as

wt+1 = wt − αtG(wt )∇E(wt ), t = 1, 2, . . . , (3.11)

where G(wt ) is a positive-definite matrix and αt > 0 is the learning rate.
Different choices for αt and G(wt ) implement different gradient descent
algorithms. Under appropriate conditions, wt converges to w†, a parameter
solving the equation ∇E(w) = 0, which is the necessary first-order condi-
tion for a local minimum of E(w) (Sundaram, 1996).

When the parameter space contains singularities, by using standard gra-
dient descent algorithm where G(wt ) = I, it has been shown that if a pa-
rameter reaches a local minimum, it will remain there for a long period
of time because there is no mechanism to escape (as this would require
a temporary increase in E(w)) (Amari et al., 2006). Also, the presence of
saddle points, or regions where the error surface is very flat, can cause
the algorithm to become “stuck” in the flat domains. In singular models,
this slow convergence or flat plateau becomes extremely severe since the
error surface has completely flat valleys, causing the learning algorithm
to be extremely slow. This is the plateau phenomenon observed in back
propagation (BP) learning for MLPs (Duda, Hart, & Stork, 2001).

To overcome the slow convergence phenomenon, Amari proposed a
natural (or Riemannian) gradient descent (NGD) method from the perspective
of information geometry (Amari, 1998). In statistical models, the parameter
space R

k is endowed with a Riemann metric given by

||w||FIM =
√

wTFIM(w)w. (3.12)

The ||w||FIM plays the role of Riemann metric, so that the gradient ∇E(w)

does not represent the steepest direction, but the natural (or contravariant)
gradient FIM−1(w)∇E(w) does (Amari, 1998).

For MLPs, the weight w can be updated in sequential, stochastic, or batch
mode (Duda et al., 2001). In order to demonstrate the learning dynamic in
section 3.6, we consider only a sequential (or online) algorithm, in which
the data are assumed one at a time and the parameter updates after each
presentation. In contrast, the batch techniques deal with all of the data in one
go. Thus, we obtain the sequential algorithm by applying the techniques
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of stochastic gradient descent, also known as sequential gradient descent
(Bishop, 2006), as follows. If the error function comprises a sum over data
points

E(w) =
n∑

j=1

Ej(w), (3.13)

then after presentation of observation z j, the stochastic gradient descent
algorithm updates the parameter w using

w j+1 = w j − α j∇Ej(w j), j = 1, 2, . . . , n, (3.14)

where the α j needs to ensure that the algorithm converges. This learning
process is Markovian, since at step j + 1, the estimator w j is modified to
give a new estimator w j+1 based on the current observation z j, and the old
observations z1, . . . , z j−1 cannot be reused to obtain w j+1. This method is
a specific version of stochastic approximation proposed by Robbins and
Monro (1951).

The stochastic gradient descent algorithm was proposed by Amari (1967)
and was named the BP algorithm in the ANNs literature (Bishop, 1995;
Haykin, 1998). Specifically, in the case of squared loss function, the stochas-
tic gradient learning is known as the least-mean-squares (LMS) algorithm
(Haykin, 1998). For an input-output example (x j, y j), the squared loss func-
tion is

E(w) = 1
2

n∑
j=1

Ej(w) = 1
2

n∑
j=1

||y j − f(x j, w)||22. (3.15)

This is easily recognized as the BP algorithm when applied to MLPs.
Thus, the sequential gradient descent mode of a BP algorithm can be viewed
as an application of the Robbins-Monro stochastic approximation procedure
to solve the first-order condition in a nonlinear least-squared regression
problem.

By using natural gradient, the online NGD algorithm can be written as
(Amari, 1998)

w j+1 = w j − α jFIM−1(w j)∇Ej(w j), j = 1, 2, . . . , n. (3.16)

By using a simple MLP model, it has been shown that the performance of
NGD is remarkably good (Amari et al., 2006), and it is sometimes free from
being trapped in plateaus, which gives rise to slow convergence in the BP
algorithm. This suggests that the Riemannian structure might eliminate



Parameter Identifiability in Statistical Machine Learning 1187

such plateaus or might make them not so severe. (For more applications,
such as blind source separation, blind multichannel deconvolution and
Boltzmann machine, about NGD, see Amari, 1998.)

Theoretically, the asymptotic performance of online NGD cannot be bet-
ter than the optimal batch procedure in which all the examples can be
reused again and again. Thus the online NGD is at best capable of near-
optimal performance. However, Amari (1998) proved that the online NGD
gives a Fisher asymptotically efficient estimator, so that it is asymptotically
equivalent to the optimal batch method, while the BP is not Fisher efficient.

The main drawback of NGD is that it is difficult to calculate FIM(w j),
because the PDF p(x) of input is generally unknown. Moreover, the cal-
culation of FIM−1(w j) is costly. For alleviating this difficulty, two further
improvements about the learning rate αi and adaptive FIM−1(w j) were
presented in Amari (1998).

3.6 Learning Dynamics. Through the NGD method, slow convergence
is alleviated because the NGD takes the geometrical structure of parameter
manifold into account. However, the FIM (or Riemann metric) degenerates
at singular points, so one needs to study its dynamic behavior of learning—
in particular, the effects of singularities in the BP and NGD methods. Work
done regarding this aspect includes that of Fukumizu and Amari (2000) as
well as the statistical-mechanical approaches taken by Saad and Solla (1995)
and Rattray, Saad, and Amari (1998); Rattray and Saad (1999).

Although there exists no unified theory concerning learning dynam-
ics in singular models, problems caused by particular hierarchical models
have been addressed by many researchers, and various approaches have
been proposed. Kang, Oh, Kwon, and Park (1993) used a special percep-
tron model and found that the parameters are attracted to the critical set
C and are very slow to move away from it. Saad and Solla (1995) ana-
lyzed the learning dynamics in a more general case and showed that such
a phenomenon is universal. They argued that the slow convergence (or the
plateau phenomenon) in the BP algorithm, is caused by this singularity.
Through a simple MLP model, Fukumizu and Amari (2000) calculated the
Hessian along the lines in the critical set. Specifically, when the Hessian
is positive definite, the lines are attractive; when the Hessian has negative
eigenvalues, the learning trajectory eventually escapes from these lines.
They further showed that in some cases, part of the line can be truly attrac-
tive, although it is not a usual asymptotically stable equilibrium but has
directions of escape (even though the derivative along the line vanishes) in
other parts. This is not a usual saddle point, but belongs to the special type
called the Milnor attractor (Milnor, 1985). In such a case, the trajectory is
truly attracted to the line and stays inside the line, fluctuating around it due
to the random noise, until it finds a place from which it can escape. This
explains the flat phenomenon. Inoue, Park, and Okada (2003) demonstrated
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Figure 4: Learning trajectory near the singularities (Amari et al., 2006).

this by using a specific perceptron. Saad and Solla (1995) argued that the
problem of the flat phenomenon cannot be resolved by simply increasing
learning rate α, because even when the trajectory goes outside the line due
to a large α, it may again return to it. Park, Inoue, and Okada (2003) illus-
trated the flat phenomenon via an MLP model whose true parameters are
on the singularities. Once the trajectory reaches C in Figure 4, all points are
observationally equivalent and suboptimal.

The NGD algorithm enables the influence of the singularity to be re-
duced, and the trajectory is not trapped in the plateaus. Rattray et al. (1998)
analyzed the dynamics of NGD by means of statistical physics and showed
that it is almost ideal. Fukumizu and Amari (2000) showed that the NGD
imposes an efficiently strong repulsive force on the directions of escape
from C, so the trajectory moves away without being trapped in C.

3.7 Singular Learning Theory: An Algebraic Geometry Framework.
Watanabe (2001a, 2001b) was the first to study the effect of singularity in
Bayesian inference. He and his colleagues introduced the approaches of
algebraic geometry by using Hironaka’s theorem of singularity resolution
(Hironaka, 1964) and Sato’s formula (Sato & Shintani, 1974) to evaluate the
asymptotic performance of the Bayesian predictive distribution in various
hierarchical models; remarkable results have been derived (Watanabe &
Amari, 2003; Watanabe, 2001a, 2001b, 2009, 2013).

The Bayesian inference is used in many cases where a prior distribution
p(w) about w is available. When the prior distribution penalizes complex
models, it plays a role equivalent to the regularization term in equation 1.8.
When the data Dn, equation 1.3, are generated, the posterior distribution of
the parameter w is written as

p(w|Dn) = 1
Zn

p(w)p(Dn|w), (3.17)
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where Zn is a normalized factor such that p(w|Dn) is a proper PDF with
respect to w:

Zn =
∫

p(w)p(Dn|w)dw. (3.18)

Note that Zn is a measurable function of Dn, so it is a random variable
called the evidence or the marginal likelihood (Watanabe, 2009). The normal-
ized evidence is given by

Z0
n = Zn∏n

j=1 p(z j|wtrue)
. (3.19)

The stochastic complexity, the minus log marginal likelihood, or the free
energy is defined by

Fn = − log Zn. (3.20)

Similarly, the normalized free energy is defined by

F0
n = − log Z0

n. (3.21)

The Bayesian predictive distribution is the distribution of a new sample z
based on Dn. It is given by averaging the p(z|w) over the posterior p(w|Dn):

p(z|Dn) =
∫

p(z|w)p(w|Dn)dw. (3.22)

The Bayesian estimation is then defined by

pBay(z) = p(z|Dn). (3.23)

In other words, the Bayesian estimation is the mapping Dn → pBay(z). It
is known that if p(w) is smooth, its influence decreases as the sample size n
increases, and it approaches the MLE, which is regarded as the maximum
a posterior (MAP) under the uniform prior (Berger, 1985). However, un-
usual behaviors occur in singular models. A smooth prior on W is singular
in the equivalent class W/ ∼ because a singular point in W/ ∼ includes
infinitely many equivalent parameters in W . Hence, the prior density is in-
finitely large on the singular points compared with that on regular points.
The consequence is that the Bayesian smooth prior is in favor of singular
points with an infinitely large factor (e.g., MLPs with a smaller number
of hidden units). This amounts to imposing a prior p(w) = ∞ in singular
points. Hence, the Bayesian method works well in such a manner to avoid



1190 Z.-Y. Ran and B.-G. Hu

overfitting. When a very large perceptron with a smooth Bayesian prior is
used, and an adequately small model will be selected, although no theory
exists that explains how to choose the specific form of prior.

For a full study of SLT, we introduce the following concepts (Watanabe,
2009):

Definition 19. Suppose p(z|w) is a statistical model and p(z|wtrue ) is the true
PDF. The log density ratio function r (z|w), the KLD KL(w), and the log-likelihood
ratio function KLn(w) of p(z|w) are, respectively, defined by

r (z|w) = log
p(z|wtrue )

p(z|w)
, (3.24)

KL(w) =
∫

p(z|wtrue )r (z|w)dz, (3.25)

KLn(w) =
1
n

n∑
j=1

r (z j |w), (3.26)

where KLn(w) is referred as an empirical KLD.

Here, by notational convention in SLT (Watanabe, 2010), we use the
simpler notation KL(w) to denote the KLD between the PDFs p(z|wtrue)

and p(z|w) instead of the more precise form, KL(wtrue, w). This convention
will be used in the rest of this review. For analyzing the performance of
various estimation methods, the following concepts are necessary:

Definition 20. For a given learning algorithm Dn → ŵn, the KLD

KL(ŵn) = KL(wtrue , ŵn) =
∫

p(z|wtrue ) log
p(z|wtrue )
p(z|ŵn)

dz (3.27)

between the true parameter wtrue and the learned parameter ŵn is called the gen-
eralization error. The training error is defined by

KLn(ŵn) = KLn(wtrue |ŵn) =
1
n

n∑
j=1

log
p(z j |wtrue )

p(z j |ŵn)
. (3.28)

In general, the KL(ŵn) and KLn(ŵn) are measurable functions of the ran-
dom samples Dn; hence, they are real-valued random variables. One of the
main goals of SLT is to clarify the probability distributions of the generaliza-
tion error and training error for a given training algorithm. The expectation
values EDn

KL(ŵn) and EDn
KLn(ŵn) are called the mean generalization er-

ror and mean training error, respectively. If the mean generalization error is
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small, the learning algorithm is more appropriate. One other goal of SLT is
to establish a relationship between the generalization error and training er-
ror. If the generalization error can be estimated from the training error, one
can select the suitable model or hyperparameter among several candidate
models.

If a model is regular, then the Bayes a posterior distribution can be
approximated by the gaussian distribution (Watanabe, 2009). Also, the MLE
and MAP estimators are asymptotically subject to gaussian distribution.
Such a property is called asymptotic gaussianity. However, singular models
do not have such a property, so we need a new theoretical tool that enables
us to analyze such singular models.

Let Ew̃[.] be the expectation value using the posteriori distribution
p(w|Dn). In Bayesian estimation, the true distribution is estimated by the
predictive distribution Ew̃[p(z|w)]. In Gibbs estimation, a parameter w is
randomly chosen from p(w|Dn); then the true distribution is estimated by
p(z|w) (Watanabe, 2009). Gibbs estimation depends on a random choice of
the parameter w; hence, to study its generalization error, we need the ex-
pectation value over random choices of w. The Bayes and Gibbs estimations
have generalization and training errors, respectively. The set of four errors
is referred as the Bayes quartet (Watanabe, 2009).

Definition 21 (Bayes quartet). For a statistical model p(z|w) and a prior PDF
p(w), the four errors are defined as follows:

1. The Bayes generalization error,

Bg = Ez

[
log

p(z|wtrue )
Ew̃[p(z|w)]

]
, (3.29)

is the KLD from p(z|wtrue ) to the predictive distribution Ew̃[p(z|w)].
2. The Bayes training error,

Bt =
1
n

n∑
j=1

log
p(z j |wtrue )

Ew̃[p(z j |w)]
, (3.30)

is the empirical KLD from p(z|wtrue ) to the predictive distribution
Ew̃[p(z|w)].

3. The Gibbs generalization error,

Gg = Ew̃

[
Ez

[
log

p(z|wtrue )
p(z|w)

]]
, (3.31)

is the mean KLD from p(z|wtrue ) to p(z|w).
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4. The Gibbs training error,

Gt = Ew̃

⎡⎣ 1
n

n∑
j=1

log
p(z j |wtrue )

p(z j |w)

⎤⎦ , (3.32)

is the mean empirical KLD from p(z|wtrue ) to p(z|w).

To evaluate how good the statistical model p(z|w) and prior p(w) are
for a given data set Dn, we have to study the case when the set of true
parameters,

Wtrue ={w ∈ W : p(z|w) = p(z|wtrue)}
= {w ∈ W : KL(w) = 0}, (3.33)

consists of not one single point but a union of several manifolds. If KL(w)

is a polynomial, then Wtrue is called an algebraic set; if KL(w) is an analytic
function, then Wtrue is called an analytic set (Watanabe, 2009).

The basic term in SLT is the empirical KLD KLn(w), which is a function
of w. For w ∈ W\Wtrue, a random process

ψn(w) =
n∑

j=1

KL(w) − r(z j|w)
√

nKL(w)
(3.34)

is well defined. The log-likelihood ratio is rewritten as

nKLn(w) = nKL(w) −
√

nKL(w)ψn(w). (3.35)

This expression has two problems (Watanabe, 2009):

1. Geometrical problem. In a singular model, Wtrue is not one single point
but a real analytical set; hence, the log-likelihood ratio cannot be
treated locally. Moreover, since the set Wtrue contains complicated
singularities, it is difficult to analyze its behavior even in each local
neighborhood of Wtrue.

2. Probabilistic problem. When n → ∞, ψn(w) converges in law to a gaus-
sian process ψ(w) on the set W\Wtrue. However, neither ψn(w) nor
ψ(w) is well defined on the set Wtrue. Therefore, it is difficult to
analyze such a stochastic process near the true parameters.

Before introducing the main results, we recall some materials from al-
gebraic geometry (Shafarevich, 1974). For real analytic function KL(w), the
fundamental theorem in algebraic geometry ensures that there exists a real
k-dimensional manifold M and a real analytic mapping,

g : M � m → w ∈ W, (3.36)
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such that for each coordinate Mα of M, KL(g(m)) is a direct product,

KL(g(m)) = m
2s1
1 m

2s2
2 . . . m

2sk
k , (3.37)

where m = (m1, . . . , mk) and s1, . . . , sk are nonnegative integers. Moreover,
there exists a function ρ(m) > 0 and nonnegative integers h1, . . . , hk such
that

p(g(m))|g′(m)| = ρ(m)|mh1
1 m

h2
2 · · · m

hk
k |, (3.38)

where |g′(m)| is the Jacobian determinant of w = g(m). By using the fol-
lowing compact notations,

m = (m1, . . . , mk), (3.39)

s = (s1, . . . , sk), (3.40)

h = (h1, . . . , hk), (3.41)

the function KL(g(m)) and the prior PDF p(g(m))|g′(m)| are, respectively,
expressed as

KL(g(m)) = m2s, (3.42)

p(g(m))|g′(m)| = ρ(m)|mh|. (3.43)

This theorem that ensures the existence of such a real analytic manifold
M and a real analytic mapping w = g(m) is called Hironaka’s theorem or
resolution of singularities (Hironaka, 1964). The function w = g(m) is called
a resolution mapping. Since it can be proved that there exists a real analytic
function a(z, m) such that

r(z|g(m)) = a(z, m)m2s, (3.44)

one can introduce a well-defined stochastic process on M:

ξn(m) = 1√
n

n∑
j=1

{
ms − a(z j, m)

}
. (3.45)

The four main formulas in SLT (Watanabe, 2009) are summarized as follows:

Theorem 20 (standard form of log-likelihood ratio function). For a singular sta-
tistical model, there exists a k-dimensional real analytic manifold M and a real
analytic mapping g : M → W such that the log-likelihood ratio function is repre-
sented by
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KLn(g(m)) = m2s − 1√
n

msξn(m), (3.46)

where ξn(m) converges in law to a gaussian with mean zero and variance 2.

This theorem states that by algebraic geometrical transformation, the log-
likelihood ratio function of any singular statistical model can be changed
to the standard form, which allows |g′(m)| = 0.

The following theorem concerns the convergence of stochastic comple-
xity:

Theorem 21. Let (−λ) and c be, respectively, the largest pole and order of the zeta
function

ζ (z) =
∫

KLz(w)p(w)dw, (3.47)

where z ∈ C is a complex number. The normalized stochastic complexity has the
following expansion,

F 0
n = λ log n − (c − 1) log log n + F R(ξ ) + o p(1), (3.48)

where F R(ξ ) is a random variable and o p(1) is a random variable that converges in
probability to 0. Therefore, the stochastic complexity has the following asymptotic
expansion,

Fn = nSn + λ log n − (c − 1) log log n + F R(ξ ) + o p(1), (3.49)

where Sn is the empirical entropy defined by

Sn = − 1
n

n∑
j=1

log p(z j |wtrue ). (3.50)

This theorem claims that the stochastic complexity is asymptotically
determined by the algebraic geometrical birational invariant. If a model is
regular, the KL(w) is equivalent to ||w||22; hence, λ = k/2 and c = 1. The
asymptotic expansion of Fn in a regular model is well known as the BIC, or
the MDL.

By using the convergence in law ξn(m) → ξ (m), one can prove the con-
vergence in law of the Bayes quartet:

nBg → B∗
g , nBt → B∗

t , (3.51)

nGg → G∗
g , nGt → G∗

t . (3.52)
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In real-world problems, the true distribution is generally unknown. The
following theorem is therefore especially useful because it holds indepen-
dent of the true distribution:

Theorem 22 (equations of states in statistical estimation). There are two universal
relations in Bayes quartet:

EDn
[B∗

g ] − EDn
[B∗

t ] = 2(EDn
[G∗

t ] − EDn
[B∗

t ]), (3.53)

EDn
[G∗

g] − EDn
[G∗

t ] = 2(EDn
[G∗

t ] − EDn
[B∗

t ]). (3.54)

The remarkable merit of these equations is that one is capable of estimat-
ing the Bayes and Gibbs generalization errors from the Bayes and Gibbs
training errors without any knowledge of the true distribution.

The last formula concerns the ML method or a posterior method in
singular models.

Theorem 23 (symmetry of generalization and training errors). If the maximum
likelihood method or maximum a posterior method is applied, the symmetry of
generalization and training errors holds:

lim
n→∞ EDn

[nRg] = − lim
n→∞ EDn

[nRt]. (3.55)

4 Summary and Perspective

We live in a world where massive amounts of data are collected and
recorded on nearly every aspect of human endeavor. Understanding and
making sense of the complex and information-rich data is the main con-
cern of machine learning. We have presented a review on the relevance of
parameter identifiability for statistical machine learning. First, we review
various approaches for determining parameter structure from the existing
literature. This involves three interrelated issues: parameter identifiabil-
ity, parameter redundancy, and reparameterization. Second, we review the
significant influence of identifiability on various aspects of machine learn-
ing. In addition to demonstrating the influence and utility of identifiability,
we show the interplay among, for example, identifiability theory, machine
learning, mathematical statistics, information theory, optimization theory,
information geometry, Riemann geometry, symbolic computation, Bayesian
inference, and algebraic geometry.

In the following, we present a new perspective of parameter identifi-
ability in machine learning; we expect that the discussion will be helpful
for understanding new directions and possible challenges in the future.
A new perspective that relies on the modeling approach should show
great potential toward human-like machines. The current machine learning
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approaches, including the deep learning models (LeCun, Bengio, & Hin-
ton, 2015), are mostly based on a data-driven manner. The future learning
machines, however, will evolve into knowledge- and data-driven models.
In other words, human-like machines will use both knowledge and data
maximally. When these machines emulate functions and behaviors of hu-
man beings, they will outperform an average human being in utilization of
knowledge and data. The knowledge- and data-driven models will bring
us new challenges in the study of parameter identifiability. We list three
challenges.

The first challenge is to add transparency (or interpretability) to a model.
The study of adding interpretation to black box models is a broad field. For
example, Hand (2006) showed that a simplistic interpretable approach that
argues superiority of more sophisticated methods may be something of
an illusion. Breiman (2001) argued that if the goal is to use data to solve
problems, then one needs to adopt an algorithmic modeling approach and
make use of a more diverse set of tools. This will become one of the most
important issues for machines in the future. It is particularly true for studies
on complex systems, such as biological, ecological, economic, financial, or
social ones. These systems are largely black box in nature. Cherkassky and
Dhar (2015) argued that model interpretation cannot be achieved by theo-
retical analysis of predictive models. That is, any meaningful interpretation
should incorporate application domain knowledge outside data analysis.
We wish to reveal their governing mechanisms, or physical insights, of the
processes through artificial models. Parameter identifiability will be the key
issue for achieving the transparency of a model, especially for the physical
parameters in the knowledge-driven submodel.

The second challenge is to use any type of prior information. This chal-
lenge is derived from the first one. However, there exists no unified frame-
work to embed any type of priors into a model because priors may impose
one or a combination of limitations in a modeling approach (Hu et al.,
2009), such as the diversity or lack of structures in the representation of
knowledge. Hence, machine learning encounters generalized constraints
(Zadeh, 2005). When a prior boils down to a finite-dimensional parameter,
identifiability analysis will play a key role.

The third challenge is to select coupling operation between a knowl-
edge submodel and a data submodel. The knowledge- and data-driven
submodels present a new degree of freedom in the modeling approach:
the selection of various coupling operations between the two submodels.
The implementation of parameter identification can be changed with the
coupling operations and with the criteria for model design.

While parameter identifiability is a classic subject in economics, dynamic
control, machine learning, and other model-related fields, the new perspec-
tive from these three challenges will enlarge our understanding of this
subject. The benefit from studying knowledge- and data-driven models is
their unified framework, which includes traditional modeling approaches,
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either first-principle model or black box model, as a special case. Much
more work is expected to emerge for theoretical and practical aspects in the
identifiability study from the new perspective. Mathematical statistics, ma-
chine learning, information theory, optimization theory, and other relevant
areas must work together, hand in hand.
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Király, F., & Tomioka, R. (2012). A combinatorial algebraic approach for the identifi-
ability of low-rank matrix completion. In Proceedings of the International Conference
on Machine Learning. Piscataway, NJ: IEEE.

Koopmans, T. C., & Reierøsl, O. (1950). The identification of structural characteristics.
Annuals of Mathematical Statistics, 21, 165–181.
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