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Abstract—In this paper, a computationally efficient frame-
work for intelligent critic control design and application of
continuous-time input-affine systems is established with
the purpose of disturbance attenuation. The described prob-
lem is formulated as a two-player zero-sum differential game
and the adaptive critic mechanism with intelligent compo-
nent is employed to solve the minimax optimization prob-
lem. First, a neural identifier is developed to reconstruct
the unknown dynamical information incorporating stability
analysis. Next, the optimal control law and the worst-case
disturbance law are designed by introducing and tuning a
critic neural network. Moreover, the closed-loop system is
proved to possess the uniform ultimate boundedness. At
last, the present method is applied to a smart microgrid and
then is further adopted to control a general nonlinear sys-
tem via simulation, thereby substantiating the performance
of disturbance attenuation.
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I. INTRODUCTION

IN CONTROL theory and engineering, robustness is an im-
portant criterion to evaluate the performance of the designed

controller with respect to uncertain parameters or disturbances
of the dynamical plant [1]–[5], where stability analysis is the
basic issue as studied in [6]–[9]. For example, there are several
excellent robust control algorithms developed for microgrids
to improve their performance with respect to disturbances and
uncertainties [10]–[13]. In particular, the H∞ method generally
focuses on constructing the worst-case control law for specified
plants including additive disturbances or dynamical uncertain-
ties [14], [15]. In order to obtain a controller that minimizes
the cost function in the worst-case disturbance, the H∞ design
requires to find the Nash equilibrium solution by considering
the Hamilton–Jacobi–Isaacs equation. However, it is intractable
to acquire the analytic solution for general nonlinear systems.
Hence, the adaptive/approximate dynamic programming strat-
egy was developed [16], as an effective method to solve optimal
control problems using a design manner of forward-in-time.
Therein, function approximation structures, such as artificial
neural networks, were always included [17], [18]. Remarkably,
the core of the adaptive/approximate dynamic programming ap-
proach lies in the adaptive critic mechanism with intelligent
component [16]–[18]. In other words, it can be regarded as an
intelligent control implementation of the traditional optimiza-
tion design, especially for complex systems with nonlinearities
and uncertainties.

When mentioning the research of adaptive/approximate dy-
namic programming, in the last decade, it has gained much
progress in term of optimal control design for discrete-time
systems [19]–[21], continuous-time systems [22]–[26], and po-
tential applications [27]–[31], particularly for power system de-
sign and control [27]–[30]. In addition, the nonlinear H∞ con-
trol [32]–[36] and multiagent differential game design [37] also
have been revisited and studied under this framework incorpo-
rating adaptivity and learning ability. However, existing works
are mostly conducted for optimal regulation problem or H∞
control design with known dynamics, which lacks an extension
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to zero-sum differential game problems for unknown nonlinear
plant. Additionally, building an architecture composed of ac-
tor, critic, and disturbance elements, is often complicated since
it relies on a number of neural networks and occupies large
computational resource. This, of course, motivates our research
on developing an effectively intelligent H∞ control method
with simple identification structure and adaptive critic learning
module.

Compared with the traditional mathematical programming
methods, the adaptive/approximate dynamic programming is
appropriate for solving sequential optimization and control
problems under uncertain environment, which are common in
real-world applications [31]. Hence, this paper focuses on de-
signing the intelligent critic control with unknown nonlinear
dynamics for the purpose of achieving disturbance attenuation.
The main contribution lies in that the neural network identifi-
cation framework is combined with the adaptive critic learning
technique, in order to study the nonlinear H∞ feedback control
and application with unknown dynamical information.

Notations: Throughout this paper, R represents the set of all
real numbers. Rn is the Euclidean space of all n-dimensional
real vectors. Rn×m is the space of all n × m real matrices. ‖ · ‖
denotes the vector norm of a vector in Rn or the matrix norm
of a matrix in Rn×m . In represents the n × n identity matrix.
λmax(·) and λmin(·) stand for the maximal and minimal eigen-
values of a matrix, respectively. Let Ω be a compact subset of
Rn , Ωu be a compact subset of Rm , and A (Ω) be the set of
admissible controls on Ω. L2 [0,∞) denotes a space of func-
tions where the Lebesgue integral of the element is finite. ρ is
the L2-gain performance level. “T” is used for representing the
transpose operation, tr(·) is adopted to conduct the trace oper-
ation, and ∇(·) � ∂(·)/∂x is employed to denote the gradient
operator.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a class of continuous-time input-affine systems with
external perturbations described by

ẋ(t) = f(x(t)) + g(x(t))u(t) + h(x(t))v(t) (1)

where x(t) ∈ Ω ⊂ Rn is the state vector, u(t) ∈ Ωu ⊂ Rm is
the control vector, v(t) ∈ Rq is the perturbation vector with
v(t) ∈ L2 [0,∞), z(t) = Q(x(t)) ∈ Rp is the objective output,
and f(·), g(·), h(·) are differentiable in their arguments with
f(0) = 0. We let the initial state at t = 0 be x(0) = x0 and
x = 0 be the equilibrium point of the controlled plant. The
system (1) is assumed to be controllable.

Assumption 1: The control and disturbance matrices g(x)
and h(x) are upper bounded such that ‖g(x)‖ ≤ λg and
‖h(x)‖ ≤ λh , where λg and λh are positive constants.

The nonlinear H∞ design needs to derive a feedback control
law u(x) such that the closed-loop dynamics is asymptotically
stable and has L2-gain no larger than �, that is,

∫ ∞

0

(‖Q(x(τ))‖2 + uT(τ)u(τ)
)
dτ ≤ �2

∫ ∞

0
‖v(τ)‖2dτ (2)

where ‖Q(x)‖2 = xT(t)Qx(t) and Q ∈ Rn×n is a positive def-
inite matrix.

In light of [32]–[36], designing the H∞ control can be re-
garded as a two-player zero-sum differential game. The solu-
tion of H∞ control problem is the saddle point of zero-sum
game theory, denoted as a pair of laws (u∗, v∗), where u∗ and v∗

are called the optimal control and the worst-case disturbance,
respectively. Let

U(x(τ), u(τ), v(τ)) = xT(τ)Qx(τ) + uT(τ)u(τ)

− �2vT(τ)v(τ) (3)

represent the utility function and define the infinite horizon cost
function as

J(x(t), u, v) =
∫ ∞

t

U(x(τ), u(τ), v(τ))dτ. (4)

For simplicity, the cost J(x(t), u, v) is often written as J(x(t))
or J(x) in the sequel. What we always concern is the cost func-
tion starting from t = 0, which is denoted as J(x(0)) = J(x0).
Here, our goal is to find the feedback saddle point solution
(u∗, v∗), such that the Nash condition

J∗(x0) = min
u

max
v

J(x0 , u, v) = max
v

min
u

J(x0 , u, v) (5)

holds. For an admissible control u ∈ A (Ω), if the related cost
function (4) is continuously differentiable, then its infinitesimal
version is the nonlinear Lyapunov equation

0 = U(x, u, v) + (∇J(x))T(f(x) + g(x)u + h(x)v) (6)

with J(0) = 0. Define the Hamiltonian of system (1) as

H(x, u, v,∇J(x)) = U(x, u, v) + (∇J(x))T(f + gu + hv).
(7)

Employing Bellman’s optimality principle, the optimal cost
function J∗(x) makes sure that the so-called Hamilton–Jacobi–
Isaacs equation minu maxv H(x, u, v,∇J∗(x)) = 0 holds. The
saddle point solution (u∗, v∗) satisfies the stationary condition
[34], which can be used to derive the optimal control law and
the worst-case disturbance law by [32]–[36]

u∗(x) = −1
2
gT(x)∇J∗(x), (8a)

v∗(x) =
1

2�2 hT(x)∇J∗(x). (8b)

Considering the two formulas in (8), the Hamilton–Jacobi–
Isaacs equation turns to the form

0 = xTQx + (∇J∗(x))Tf(x)

− 1
4
(∇J∗(x))Tg(x)gT(x)∇J∗(x)

+
1

4�2 (∇J∗(x))Th(x)hT(x)∇J∗(x), J∗(0) = 0. (9)

The formula (9) is called the Hamilton–Jacobi–Isaacs equation
and is difficult to solve in theory. This inspires us to find an alter-
nate avenue to overcome the difficulty by adopting the adaptive
critic mechanism.
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III. INTELLIGENT CRITIC CONTROL DESIGN WITH

DISTURBANCE ATTENUATION

A. Identification of the Controlled Plant With Stability

Here, we introduce a three-layer neural network identifier to
reconstruct the dynamics (1) by using the input/output data. Let
the number of neurons in the hidden layer be denoted by lm and
then the system (1) can be approximated by

ẋ = Ax + ωT
m σm (z̄) + εm (10)

where A ∈ Rn×n is a stable design matrix, ωm ∈ Rlm ×n is
the ideal weight matrix between the hidden layer and the
output layer, σm (·) ∈ Rlm is a differentiable and monotoni-
cally increasing activation function such as σm (·) = tanh(·),
z̄ = νT

m z with z̄ ∈ Rlm , νm ∈ R(n+m+q)×lm is the ideal weight
matrix between the input layer and the hidden layer, z =
[xT, uT, vT]T ∈ Rn+m+q is the augmented input vector, and
εm ∈ Rn is the reconstruction error. With the differentiable ac-
tivation function σm (·), for any a, b ∈ R (a ≥ b), there exists a
constant λ0 (λ0 > 0), such that the relationship

σm (a) − σm (b) ≤ λ0(a − b) (11)

holds [23], [26]. Note that when performed for a vector, (11) is
applied to each element of the vector. Hence, under the condition
(11), we can further derive the following inequality

‖σm (ξa) − σm (ξb)‖ ≤ λ0‖ξa − ξb‖ (12)

for any two vectors ξa and ξb with the same dimensions.
For simplicity, we let the input-hidden weight matrix νm

be constant and only tune the hidden-output weight matrix.
Actually, we can initialize the input-hidden matrix randomly
and keep it unchanged during the identification. Then, the output
of neural network identifier is

˙̂x = Ax̂ + ω̂T
m (t)σm (ẑ) (13)

where ω̂m (t) is the currently estimated weight matrix of the
ideal value ωm at time t , x̂ is the estimated system state, and
ẑ = νT

m [x̂T, uT, vT]T.
Let ω̃m = ω̂m − ωm be the weight estimation error of the

neural identifier and x̃ = x̂ − x be the identification error. Then,
according to (10) and (13), the dynamical equation with respect
to the identification error can be derived as

˙̃x = Ax̃ + ω̃T
m (t)σm (ẑ) + ωT

m (σm (ẑ) − σm (z̄)) − εm . (14)

Observing the identifier weight matrices and the reconstruction
error, we present two common assumptions often used in the
community, such as [23] and [26], which are helpful to ana-
lyze the stability of the identification error dynamics. Note that
the reconstruction error εm can be arbitrarily small, as long as
the number of the hidden layer node lm is large enough. In the
neural identification field, the reconstruction error εm is often
considered to be bounded by a known constant. However, ob-
serving (14), we know that εm is closely linked with x̃. From
a mathematical perspective, the assumption that εm is bounded
by a function of x̃ is regarded to be more general.

Assumption 2: The ideal weight matrices are bounded such
as ‖ωm‖ ≤ λωm

and ‖νm‖ ≤ λνm
, where λωm

and λνm
are

positive constants.
Assumption 3: The neural reconstruction error εm is upper

bounded by a function of the identification error, such that
εT
m εm ≤ λεm

x̃Tx̃, where λεm
is a positive constant.

Theorem 1: Using the neural identifier (13) with a suit-
able stable matrix A, if the network weight is tuned by
˙̂ωm = −αm σm (ẑ)x̃T, where αm > 0 is the learning rate, then
the state estimation error x̃ is asymptotically stable.

Proof: Choose a Lyapunov function candidate as the form
L1(t) = L11(t) + L12(t), where

L11(t) = x̃T(t)x̃(t), L12(t) =
1

αm
tr{ω̃T

m (t)ω̃m (t)}. (15)

We take the derivative of L11(t) along the trajectory of the error
system (14) and obtain

L̇11(t) = 2x̃T[Ax̃ + ωT
m (σm (ẑ) − σm (z̄)) − εm ]

+ 2x̃Tω̃T
m (t)σm (ẑ). (16)

Using the adjusting criterion ˙̂ωm = −αm σm (ẑ)x̃T, the fact that
˙̃ωm = ˙̂ωm , and the property of trace operation, we find that

L̇12(t) =
2

αm
tr(ω̃T

m
˙̃ωm ) = −2x̃Tω̃T

m σm (ẑ). (17)

According to (16) and (17), we can obtain

L̇1(t) = 2x̃TAx̃ + 2x̃TωT
m (σm (ẑ) − σm (z̄)) − 2x̃Tεm . (18)

Adopting (12) and observing Assumption 2, we have ‖ẑ − z̄‖ ≤
‖νm‖‖x̂ − x‖ ≤ λνm

‖x̃‖, such that

2x̃TωT
m (σm (ẑ) − σm (z̄))

≤ x̃TωT
m ωm x̃ + (σm (ẑ) − σm (z̄))T(σm (ẑ) − σm (z̄))

≤ x̃TωT
m ωm x̃ + λ2

0λ
2
νm

x̃Tx̃. (19)

Recalling Assumption 3, we derive −2x̃Tεm ≤ (1 + λεm
)x̃Tx̃,

which is combined with (19) to further obtain the reduction of
(18) to

L̇1(t) ≤ x̃T[2A + ωT
m ωm + (1 + λεm

+ λ2
0λ

2
νm

)In ]x̃

� − x̃TΞx̃ (20)

where the square matrix

Ξ = −2A − ωT
m ωm − (1 + λεm

+ λ2
0λ

2
νm

)In . (21)

If A is selected to ensure that Ξ > 0, then the time derivative
of the Lyapunov function is L̇1(t) < 0 for any x̃ 
= 0. Thus,
we find that the identification error can approach zero as time
goes to infinity (i.e., x̃(t) → 0 as t → ∞), which completes the
proof. �

According to Theorem 1, we observe that the model neural
network is actually an asymptotically stable identifier. Hence,
after a sufficient learning stage, we can obtain an available neural
identifier with finally converged weights as follows:

ẋ = f(x) + g(x)u + h(x)v = Ax + ωT
m σm (z̄) (22)
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which, in fact, represents the information of the state derivative
of the controlled plant. In addition, we respectively take the
partial derivative of (22) with regard to the control u and the
disturbance v and derive that

g(x) = ωT
m

(
∂σ(z̄)

∂z̄

)
νT

m

⎡
⎣0n×m

Im

0q×m

⎤
⎦ (23a)

h(x) = ωT
m

(
∂σ(z̄)

∂z̄

)
νT

m

⎡
⎣ 0n×q

0m×q

Iq

⎤
⎦ (23b)

where the term ∂σ(z̄)/∂z̄ is in fact a lm -dimensional square
matrix. The two formulas in (23) reconstruct the information
of the control matrix and the disturbance matrix. Remarkably,
the obtained neural dynamics reflects the data-based learning of
the controlled plant and thus is helpful for the intelligent H∞
control design in the sequel.

Remark 1: Strictly speaking, the state derivative ẋ in (22),
the control matrix g(x) in (23a), and the disturbance matrix h(x)
in (23b) should be denoted by ˙̂x, ĝ(x), and ĥ(x), respectively, as
approximated values. However, this may cause the complication
of symbols as well as the confusion of control design description.
For convenience of analysis, from the next part, we keep on
using the notations ẋ, g(x), and h(x), without stating that they
are actually the converged variables after the sufficient learning
session.

B. Intelligent Critic Control Design With Stability

For performing the neural control implementation, we denote
lc as the number of neurons in the hidden layer. According
to the universal approximation property [38], the cost function
J∗(x) can be reconstructed by a neural network with a single
hidden layer on a compact set Ω as J∗(x) = ωT

c σc(x) + εc(x),
where ωc ∈ Rlc is the ideal weight vector, σc(x) ∈ Rlc is the
activation function, and εc(x) ∈ R is the reconstruction error.
Then, the gradient vector is

∇J∗(x) = (∇σc(x))Tωc + ∇εc(x). (24)

Since the ideal weight is unknown, a critic neural network is
introduced and used for approximating the cost function as
Ĵ(x) = ω̂T

c σc(x), where ω̂c ∈ Rlc denotes the estimated weight
vector. Similarly, we have the gradient vector

∇Ĵ(x) = (∇σc(x))Tω̂c . (25)

Adopting the neural network expression (24), the optimal con-
trol law (8a) and the worst-case disturbance law (8b) are
written as

u∗(x) = −1
2
gT(x)((∇σc(x)Tωc + ∇εc(x)) (26a)

v∗(x) =
1

2�2 hT(x)((∇σc(x))Tωc + ∇εc(x)). (26b)

Incorporating the critic neural network, the approximate ex-
pressions of the above two laws are

û(x) = −1
2
gT(x)(∇σc(x))Tω̂c (27a)

v̂(x) =
1

2�2 hT(x)(∇σc(x))Tω̂c . (27b)

For the control u and the disturbance v, we apply the neural
network expression to the Hamiltonian and derive that

H(x, u(x), v(x), ωc) = U(x, u(x), v(x)) + ωT
c ∇σc(x)

× (f(x) + g(x)u(x) + h(x)v(x)) � ecH (28)

where the term

ecH = −(∇εc(x))T(f(x) + g(x)u(x) + h(x)v(x)) (29)

represents the residual error arisen in the approximate operation.
Meanwhile, the approximate Hamiltonian is

Ĥ(x, u(x), v(x), ω̂c) = U(x, u(x), v(x)) + ω̂T
c ∇σc(x)

× (f(x) + g(x)u(x) + h(x)v(x)) � ec . (30)

Let us define the error vector between the ideal weight and the
estimated value as ω̃c = ωc − ω̂c . Then, we combine (28) with
(30) and yield

ec = −ω̃T
c ∇σc(x)(f(x) + g(x)u(x) + h(x)v(x)) + ecH

(31)
which comprises the relationship of the above two versions of
the Hamiltonian.

Next, we turn to train the critic neural network as the main
learning component and need to design the weight vector ω̂c to
minimize the objective function Ec = (1/2)e2

c . In the learning
stage, the approximated control and disturbance laws are used.
We employ the normalized steepest descent algorithm to adjust
the weight as

˙̂ωc = −αc
1

(1 + φTφ)2

(
∂Ec

∂ω̂c

)

= −αc
φ

(1 + φTφ)2 (U(x, û(x), v̂(x)) + φTω̂c) (32)

where αc > 0.5 represents the learning rate to be determined

φ = ∇σc(x) (f(x) + g(x)û(x) + h(x)v̂(x)) (33)

is a lc -dimensional column vector, and the term (1 + φTφ)2 is
utilized for normalization.

In what follows, we construct the error dynamics of the critic
network and focus on its stability. By recalling ˙̃ωc = − ˙̂ωc and
introducing

φ1 =
φ

(1 + φTφ)
, φ2 = 1 + φTφ ≥ 1 (34)

we further derive that the critic error dynamics is written as

˙̃ωc = −αcφ1φ
T
1 ω̃c + αc

φ1

φ2
ecH . (35)
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When designing an adaptive control system, the persistence of
excitation assumption is necessary to perform system identifi-
cation [39]. In the adaptive critic control community, it is also
required because we need to identify the parameter of the critic
network to approximate the optimal cost function.

Assumption 4 (cf. [22]): The signal φ1 is persistently excit-
ing within the interval [t, t + T ], T > 0, i.e., there exist two
constants ς1 > 0, ς2 > 0 such that

ς1Ilc ≤
∫ t+T

t

φ1(τ)φT
1 (τ)dτ ≤ ς2Ilc (36)

holds for all t.
According to Assumption 4, the persistence of excitation

condition guarantees λmin(φ1φ
T
1 ) > 0, which is important to

perform the stability analysis. In the sequel, the uniformly ulti-
mately bounded stability [40] of the closed-loop system is ana-
lyzed. Before proceeding, the following assumption is required,
as usually stated and used in the literature [23], [26].

Assumption 5: On the given compact set Ω, the terms ωc ,
∇σc(x), ∇εc(x), and ecH are upper bounded such that ‖ωc‖ ≤
λωc

, ‖∇σc(x)‖ ≤ λdσc
, ‖∇εc(x)‖ ≤ λdεc

, and |ecH | ≤ λec
,

where λωc
, λdσc

, λdεc
, and λec

are positive constants.
Theorem 2: For the nonlinear system (1), we suppose that

Assumptions 1 and 5 hold. The neural identifier is constructed
by (13) with x̃ = x̂ − x being the identification error. The ap-
proximate optimal control law and worst-case disturbance law
are given by (27a) and (27b), respectively, where the con-
structed critic network is tuned by adopting (32). Then, the
closed-loop system state x, the system identification error x̃,
and the critic weight error ω̃c are uniformly ultimately bounded,
respectively, by

√
λ1

2�2λmin(Q)
� Bx ,

√
λ1

2�2λmin(Ξ)
� Bx̃ (37a)

√
λ1

�2(2αc − 1)λmin(φ1φT
1 ) − λ2

dσc
(�2λ2

g + λ2
h)

� Bω̃ c

(37b)

where λ1 = �2(λ2
gλ

2
dεc

+ α2
c λ

2
ec

) + λ2
hλ2

dσc
λ2

ωc
is a constant.

Proof: Choose a Lyapunov function candidate composed of
three terms as L2(t) = L21(t) + L22(t) + L23(t), where

L21(t) = J∗(x(t)), L22(t) = L1(t), L23(t) =
1
2
ω̃T

c (t)ω̃c(t).
(38)

We compute the time derivative of the Lyapunov function L2(t)
along the dynamics (1), (14), and (35) and obtain

L̇21(t) = (∇J∗(x))T(f(x) + g(x)û(x) + h(x)v̂(x)) (39a)

L̇22(t) ≤ −x̃TΞx̃ (39b)

L̇23(t) = −αcω̃
T
c φ1φ

T
1 ω̃c + αc

ω̃T
c φ1

φ2
ecH . (39c)

Note that the formula (8) implies that

(∇J∗(x))Tg(x) = −2u∗T(x) (40a)

(∇J∗(x))Th(x) = 2�2v∗T(x). (40b)

In addition, (9) reveals

(∇J∗(x))Tf(x) = −xTQx + u∗T(x)u∗ − �2v∗T(x)v∗(x).
(41)

Considering (39a) and based on (40) and (41), we derive

L̇21(t) = − xTQx + u∗T(x)u∗(x) − �2v∗T(x)v∗(x)

− 2u∗T(x)û(x) + 2�2v∗T(x)v̂(x)

≤ − xTQx + ‖u∗(x) − û(x)‖2 + �2‖v̂(x)‖2 . (42)

Recalling the neural-network-related formulas of u∗(x) and
û(x), i.e., (26a) and (27a), it follows from the fact ωc = ω̂c + ω̃c

and Assumptions 1 and 5 that

‖u∗(x) − û(x)‖2

=
1
4
‖gT(x)((∇σc(x))Tω̃c + ∇εc(x))‖2

≤1
2
λ2

g (λ
2
dσc

‖ω̃c‖2 + λ2
dεc

). (43)

Then, it follows from (42) that

L̇21(t) ≤ − λmin(Q)‖x‖2 +
1

2�2 λ2
dσc

(�2λ2
g + λ2

h)‖ω̃c‖2

+
1

2�2 (�2λ2
gλ

2
dεc

+ λ2
hλ2

dσc
λ2

ωc
). (44)

When considering (39c) and Assumption 5, we employ the
Young’s inequality and derive that

L̇23(t) ≤ −
(

αc − 1
2

)
λmin(φ1φ

T
1 )‖ω̃c‖2 +

1
2
α2

c λ
2
ec

. (45)

By combining (44) and (45), it follows from (39) that

L̇2(t) ≤ − λmin(Q)‖x‖2 − λmin(Ξ)‖x̃‖2 +
1

2�2 λ1

−
[(

αc − 1
2

)
λmin(φ1φ

T
1 )

− 1
2�2 λ2

dσc
(�2λ2

g + λ2
h)

]
‖ω̃c‖2 . (46)

Hence, if one of the following inequalities holds:

‖x‖ > Bx , ‖x̃‖ > Bx̃ , ‖ω̃c‖ > Bω̃ c
(47)

then L̇2(t) < 0. Thus, based on the standard Lyapunov exten-
sion theorem, we obtain the conclusion that the state vector x,
the neural identification error x̃, and the critic weight error ω̃c are
all uniformly ultimately bounded. Clearly, their upper bounds
are, respectively, written as Bx , Bx̃ , and Bω̃ c

, which completes
the proof. �

Corollary 1: The approximate control law û in (27a) and dis-
turbance law v̂ designed in (27b) converge to the neighborhood
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Fig. 1. Simple control structure (the solid line represents the signal and
the dashed line represents the back-propagating path).

of their optimal values, u∗ and v∗, with finite bounds

1
2
λg (λdσc

Bω̃ c
+ λdεc

) � Bu (48a)

1
2�2 λh(λdσc

Bω̃ c
+ λdεc

) � Bv (48b)

respectively.
Proof: According to Theorem 2, we derive that ‖ω̃c‖ < Bω̃ c

.
Based on (26a) and (27a), we find that

‖u∗ − û‖ =
1
2
‖gT(x)((∇σc(x))Tω̃c + ∇εc(x))‖ ≤ Bu (49)

where Bu stands for the finite bound with respect to the control
signal. Using a similar mechanism, we can obtain from (26b)
and (27b) that

‖v∗ − v̂‖ =
1

2�2 ‖hT(x)((∇σc(x))Tω̃c + ∇εc(x))‖ ≤ Bv

(50)
whereBv denotes the finite bound with respect to the disturbance
signal. This actually completes the proof. �

Remark 2: According to Theorem 2, we can find that the
bounds of the x, x̃, and ω̃c can be adjusted to be arbitrarily
small, if we enlarge the related parameters such as λmin(Q),
λmin(Ξ), and αc . Clearly, in light of Corollary 1, the bounds
of approximate control with respect to the optimal value and
approximate disturbance law with respect to the optimal one
also can be modulated based on the initial parameter settings.
This kind of stability is weaker than the asymptotic stability.

At the end of the section, we give a simple diagram of the
present intelligent critic control scheme as shown in Fig. 1.

IV. EXPERIMENTAL VERIFICATION

In this section, we first apply the present control approach to
a microgrid system with linear dynamics and then turn to the
simulation verification of a more general nonlinear plant.

A. Application to a Microgrid System

Smart grids including various load changes and multiple re-
newable generations have received intensive attention in recent
years. In modern power systems, many kinds of distributed and
renewable energies have been frequently integrated into mi-
crogrids. However, the involvement of the intermittent power

may bring in some unforeseeable causes, which will inevitably
affect the stability of microgrids. In particular, the imbalance be-
tween load consumptions and power generations is a common
phenomenon, which may result in the frequency deviation, es-
pecially for microgrids [41], [42]. Hence, the frequency stability
of microgrids has been a significant topic to the development
of modern power systems [43]. The load frequency control is
seemed as an essential control design strategy to guarantee the
reliable operation in the field of power systems [44]. It also
requires a robust controller to ensure the balance between all
power generations and load consumptions under uncertain and
disturbed environment.

We consider a benchmark power system constructed in Fig. 2,
which is composed of regular generations (microturbines), re-
newable energy generation sources (photovoltaic arrays), and a
set of demand sides (smart homes and loads). The benchmark
power system can be regarded as a microgrid, which is affected
and controlled by the local smart microgrid management cen-
ter [45]. The active power is produced by microturbines and
photovoltaic arrays to balance all local loads. The states of the
microgrid system incorporate the frequency deviation, the tur-
bine power, and the governor position. All the variables can
be measured by distributed sensors and then transmitted to the
microgrid management center via a communication medium,
where the collected data is also processed. Then, the generated
control signals are sent back to each participating unit in the
local system, so as to guarantee the frequency stability.

Now, we formulate the load frequency control problem in-
spired by the excellent work in [46] and [47]. The primary
design objective is to guarantee that the load frequency of the
microgrid system can maintain the command frequency level
even if there exist load disturbances and energy uncertainties.
Some mathematical notations are provided in Table I to facil-
itate describing the benchmark system. The dynamics of this
system is given as follows:

˙Δξf = − 1
Tp

Δξf +
kp

Tp
Δξt +

kp

Tp
v (51a)

Δ̇ξt = − 1
Tt

Δξt +
1
Tt

Δξp , (51b)

˙Δξp = − 1
spTg

Δξf − 1
Tg

Δξp +
1
Tg

u (51c)

where u ∈ R and v ∈ R are, respectively, regarded as the
control signal to be designed and the perturbation signal caused
by photovoltaic power and load demand change.

Under this circumstance, we define x = [Δξf ,Δξt ,Δξp ]T ∈
R3 as the state vector, where x1 = Δξf , x2 = Δξt , and x3 =
Δξp . Then, the state-space description of the proposed power
system dynamics (51) can be written as

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tp

kp

Tp
0

0 − 1
Tt

1
Tt

− 1
spTg

0 − 1
Tg

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎢⎣

0
0

1
Tg

⎤
⎥⎥⎥⎥⎦u +

⎡
⎢⎢⎢⎢⎣

kp

Tp

0

0

⎤
⎥⎥⎥⎥⎦v.

(52)
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Fig. 2. Simple diagram of the proposed microgrid system, which is considered as a microgrid. The module “ac/dc” represents the power conversion
between alternating current and direct current. The dashed blue line denotes the signal transmission via a communication channel component.

TABLE I
PARAMETERS OF THE MICROGRID SYSTEM

Parameters Meaning

Δξf The frequency deviation
Δξt The turbine power
Δξp The governor position value
Tt Time constant of the turbine
Tg Time constant of the governor
Tp Time constant of the power system
kp Gain of the power system
sp The speed regulation coefficient

Here, the control matrix and the disturbance matrix, i.e., g =
[0, 0, 1/Tg ]T and h = [kp/Tp , 0, 0]T are both constant, which
obviously, satisfies the bounded assumption. Note that (52) is
an input-affine form (1) with linear dynamics.

In the sequel, we design the intelligent critic controller and
then evaluate the H∞ control performance of the dynamical
plant (52). For the simulation purpose, we select the values of
the related parameters as shown in Table II. Let the initial state
of the controlled plant be x0 = [0.1,−0.2, 0.2]T and choose
Q = I3 and � = 5. During the simulation process, we select six
hidden neurons, i.e., lm = 6, and perform the neural identifi-
cation algorithm for 100 s with σm (·) = tanh(·), λ0 = 1, and
αm = 0.3, to obtain the converged weight matrices of input-to-
hidden (5 × 6) and hidden-to-output (6 × 3) given as

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2356 −0.0832 −0.1201 0.1075 0.3984 −0.9423
−0.8418 0.3918 −0.6774 0.2900 0.6064 0.7372
−0.3848 0.5043 0.8364 0.1357 −0.9555 0.7439
0.2989 −0.1097 0.5611 0.0228 −0.3531 −0.4407
−0.2576 −0.6032 −0.4062 0.0979 −0.8700 −0.6095

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣
−0.0439 0.0886 −0.1490 1.0762 −0.0325 −0.1926
−0.4653 0.4896 0.1111 1.4269 0.2398 −0.4250
4.5871 −2.3624 4.5912 2.8955 1.6888 −4.3937

⎤
⎥⎦

T

.

TABLE II
VALUES OF THE MICROGRID SYSTEM

Parameters Tt Tg Tp kp sp

Values 5 0.2 2 0.5 0.5

Note that the above input-hidden matrix is initialized randomly
and kept unchanged. Besides, the approximated values of g and
h can be derived after the identification stage. Then, the critic
network is constructed as follows:

Ĵ(x) = ω̂T
c σc(x) = ω̂c1x

2
1 + ω̂c2x

2
2 + ω̂c3x

2
3

+ ω̂c4x1x2 + ω̂c5x1x3 + ω̂c6x2x3 (53)

where the weight ω̂c = [ω̂c1 , ω̂c2 , ω̂c3 , ω̂c4 , ω̂c5 , ω̂c6 ]T and
the activation function σc(x) = [x2

1 , x
2
2 , x

2
3 , x1x2 , x1x3 , x2x3 ]T

with lc = 6. In what follows, we will make effort to derive an
applicable weight vector. It is worth mentioning that the number
of hidden layer neurons is often determined by computer exper-
iment. Actually, the choice of the activation function is more of
an art than science, involving a tradeoff between control accu-
racy and computational complexity.

For adjusting the critic network, we set the learning rate of
the critic network as αc = 2. For performing effective learn-
ing and approximation, we add a probing noise to guaran-
tee the persistence of excitation condition within the first
550 s. The simulation result of the neural network learning
stage in illustrated in Fig. 3(a). Therein, we find that the
weight vector of the critic network gradually converges to
[0.1600, 0.2775, 0.0771, 0.2218,−0.1657, 0.1221]T, which re-
flects the learning ability of the intelligent critic controller.

Next, we evaluate the H∞ control performance by ap-
plying the obtained intelligent critic controller to the plant
(52) for 60s and introducing an external perturbation v(t) =
e−0.2t cos(−0.6t), t > 0. The simulation results of the H∞ con-
trol implementation stage are exhibited in Fig. 3(b) and (c).
Among them, the 3-D (three-dimensional) view of the system
state trajectory is depicted in Fig. 3(b). Besides, in order to
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Fig. 3. (a) Convergence of the weight vector. (b) 3-D view of the system state curve. (c) Control input and ratio function.

Fig. 4. (a) Convergence of the weight vector. (b) System state trajectory. (c) Control input and ratio function.

reflect the disturbance attenuation of the H∞ control problem,
we define a ratio function �̄(t) as the form

�̄(t) =

√∫ t

0

(
xT(τ)Qx(τ) + uT(τ)u(τ)

)
dτ

/∫ t

0
‖v(τ)‖2dτ .

(54)
As time goes on, the approximate control law û(x(t)) and the
ratio �̄(t) converge to 0 and 0.6635, respectively, which are
both shown in Fig. 3(c). Since �̄(t) → 0.6635 < � = 5, we suc-
cessfully observe a required L2-gain performance level for the
closed-loop system. Consequently, the designed intelligent critic
control law possesses an excellent ability of disturbance atten-
uation.

Remark 3: Note that during the simulation, the “Time (s)”
marked in the figures is in fact the time steps. The system
state should be persistently excited long enough so as to let the
critic network acquire the optimal cost as accurately as possible.
Hence, it requires sufficient time steps to perform the learning
task. However, it is certainly not the actually elapsed time of the
CPU. In this example, using the computer with the processor
Intel Core i7-4790, the actual elapsed time of the learning and
control processes is 14.9562 and 0.9934 s, respectively, rather
than the time steps marked in Fig. 3(a) and (c). Of course, the
elapsed time is related to the computer configuration. This fact
is also true for the next example.

B. Simulation of a Nonlinear Dynamical Plant

Consider a continuous-time nonlinear system with input-
affine structure and external disturbance given as follows:

ẋ =

[
−x3

1 − 2x2

x1 + 0.5 cos x2
1 sin x3

2

]
+

[
1

sin x1

]
u +

[
−1

cos x2

]
v

(55)

where x = [x1 , x2 ]T ∈ R2 , u ∈ R, and v ∈ R are the state,
control, and perturbation variables, respectively. Clearly, the
bounded condition of the control and disturbance matrices is true
due to the fact that

√
1 + sin2 x1 ≤ √

2 and
√

1 + cos2 x2 ≤√
2. We consider the H∞ control problem with an initial state

x0 = [1,−0.5]T and choose Q = I2 and � = 3. In this simula-
tion, we select six hidden neurons (lm = 6) and set the learning
rate as αm = 0.8. Then, the critic network is introduced with
the structure

Ĵ(x) = ω̂T
c σc(x) = ω̂c1x

2
1 + ω̂c2x

2
2 + ω̂c3x1x2 (56)

where ω̂c = [ω̂c1 , ω̂c2 , ω̂c3 ]T and σc(x) = [x2
1 , x

2
2 , x1x2 ]T with

lc = 3. Note that the probing noise should also be brought into
the implementation process to satisfy the persistence of excita-
tion condition with the learning rate αc = 3.5. We can observe
that the convergence of the weight vector occurred after 450 s.
In addition, the convergence process of the weight vector to
[0.9390, 2.1959, 0.5902]T is depicted in Fig. 4(a).

At last, we apply the approximated control law to the
controlled plant (55) for 20 s with an external perturbation
v(t) = 3e−t cos t, t > 0 being employed and then obtain the
system state trajectory is shown in Fig. 4(b). In addition, the
adjustments of the control input and the ratio function are il-
lustrated in Fig. 4(c), which reveals that the designed H∞ feed-
back controller attains a prespecified L2-gain performance level
for the closed-loop system (i.e., �̄(t) → 1.0150 < � = 3). The
above simulation results substantiate the effectiveness of the
intelligent critic control strategy with respect to the external
disturbance.

V. CONCLUSION

The intelligent H∞ control of continuous-time affine dynamic
systems was investigated with adaptive critic framework. The
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approximate optimal control and worst-case disturbance laws
were derived with the help of regulating an identifier and training
a critic network with stability proof. The application to a power
system and the simulation for a nonlinear system was presented
as experimental verification. The general discussion on discrete-
time systems is worth further studying in the future.
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