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ABSTRACT
In this paper, a decentralised tracking control (DTC) scheme is developed for unknown large-scale nonlinear
systems by using observer-critic structure-based adaptive dynamic programming. The control consists of
local desired control, local tracking error control and a compensator. By introducing the local neural net-
work observer, the subsystem dynamics can be identified. The identified subsystems can be used for the
local desired control and the control input matrix, which is used in local tracking error control. Meanwhile,
Hamiltonian-Jacobi-Bellman equation can be solved by constructing a critic neural network. Thus, the local
tracking error control canbederiveddirectly. To compensate the overall error causedby substitution, obser-
vation and approximation of the local tracking error control, an adaptive robustifying term is employed.
Simulation examples are provided to demonstrate the effectiveness of the proposed DTC scheme.

1. Introduction
The increasing demands of production efficiency and quality
have ledmany practical systems to become large-scale and com-
plex, such as power systems, smart grids, urban traffic systems
and ecosystems. Generally speaking, the difficulty in designing
many feedback loops for these systems inspires the development
of decentralised control. The superiority of this approach lies in
that it can reduce the design complexity by using only the local
information of corresponding subsystems.

However, it is worthy pointing out that the major challenge
in designing decentralised controllers for large-scale systems is
how to deal with the interconnections, which affect the control
performance, and even cause the system to be unstable. To
solve this problem, considerable efforts have been made to
the design of decentralised controllers for large-scale systems.
Labibi, Lohmann, Sedigh, and Maralani (2002) provided suf-
ficient conditions for minimising the weight sensitivity of the
interconnections between the subsystems, and developed a con-
structive decentralised control scheme. Al-Tamimi, Lewis, and
Abu-Khalaf (2008) addressed the global decentralised discrete-
time sliding mode control of interconnected systems using only
output information. They considered unmatched uncertainties,
unknown interconnections and bounded time-varying delays
for analysing system stability. Tong, Zhang, and Li (2016)
investigated an observer-based adaptive fuzzy decentralised
output-feedback tracking control for switched unknown
systems with dead zones. Yi and Zheng (2016) proposed a
decentralised proportional integral control scheme with delay
dependent analysis to solve a constrained decentralised shaping
control problem. Choi and Yoo (2016) proposed a decentralised
approximation-free control design approach for interconnected
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nonlinear time-delay systems with unknown non-affine pure-
feedback nonlinearities. By designing a reduced-order observer
for estimating the unmeasured state variables, Hua, Zhang,
and Guan (2015) presented a decentralised output feedback
adaptive NN tracking control for time-delay stochastic inter-
connected systems with prescribed performance. Koo, Park,
and Joo (2016) presented a decentralised sampled-data fuzzy
observer to minimise the ratio of interconnection bound to
attenuation degree. Each observer design problem was formu-
lated as an optimisation problem with linear matrix inequality
(LMI). Nowadays, the decentralised control methods have been
utilised in robot manipulators (Henikl, Kemmetmller, Meurer,
& Kugi, 2016; Zhao & Li, 2014), microgrids (Sadabadi, Karimi,
& Karimi, 2015), power systems (Langarica & Ortega, 2015),
spacecrafts (Zhang, Zhang, & Zhang, 2015), unmanned vehicles
(Yang, Naeem, Irwin, & Li, 2014), and so on.

It is well known that optimal control problem of nonlin-
ear systems can be addressed by solving the Hamilton-Jacobi-
Bellman (HJB) equations. HJB equations can be solved by adap-
tive dynamic programming (ADP) (Werbos, 1992) to remove
the ‘curse of dimensionality’ with approximators, such as NNs.
There are many synonyms used for ADP, such as adaptive
dynamic programming (Wang, Zhang, & Liu, 2009), approxi-
mate dynamic programming (Al-Tamimi et al., 2008), neuro-
dynamic programming (Bertsekas & Tsitsiklis, 1995), adaptive
critic designs (Prokhorov & Wunsch, 1997) and reinforcement
learning (Kaelbling, Littman, & Moore, 1996). Werbos (1992)
classified ADP approaches into heuristic dynamic program-
ming (HDP), dual heuristic dynamic programming (DHP),
action-dependent HDP (ADHDP) and action-dependent DHP
(ADDHP). After that, two other approaches called globalised
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DHP (GDHP) and ADGDHP were proposed (Prokhorov &
Wunsch, 1997). In recent few years, ADP algorithmswere devel-
oped further to solve control problems of continuous-time sys-
tems (Liu, Li, Li, Wang, & Ma, 2015; Liu, Wang, & Li, 2014),
discrete-time systems (Mehraeen & Jagannathan, 2011; Qin,
Zhang, Luo, & Wang, 2014), external disturbances and uncer-
tainties (Gao, Jiang, Jiang, & Chai, 2016; Wang, Liu, Mu, &
Ma, 2016; Wang, Liu, Zhang, & Zhao, 2016), trajectory track-
ing (Enns & Si, 2003; Lin, Wei, & Liu, 2016; Mu, Sun, Song, &
Yu, 2016; Wei & Liu, 2014; Zhang, Song, Wei, & Zhang, 2011;
Zhang, Wei, & Luo, 2008), control input saturation (Yang, Liu,
& Wang, 2014; Zhang, Luo, & Liu, 2009), fault tolerant (Zhao,
Liu, & Li, 2016, 2017), time-delay (Zhang et al., 2011), zero-sum
games (Fu, Fu, & Chai, 2015; Zhang, Cui, & Luo, 2013), event-
driven systems (Wang, Mu, He, & Liu, 2016; Wang, Mu, Zhang,
& Liu, 2016), etc.

In recent literature, ADP-based decentralised control prob-
lems have been tackled extensively. For linear interconnected
systems, Jiang and Jiang (2012) and Bian, Jiang, and Jiang (2015)
presented a decentralised control via robust ADP and policy
iteration (PI) technique. Gao et al. (2016) developed a data-
driven output-feedback control policy based on both PI and
value iteration (VI) methods. Tlili and Braiek (2014) inves-
tigated a decentralised observation and control approach for
linear interconnected systems with nonlinear interconnections.
The control problem was formulated as an optimisation prob-
lem by LMI to compute the robust observation and control gain
matrix simultaneously. Hioe, Hudon, and Bao (2014) utilised
linear partial differential Hamilton-Jacobi equation to solve the
robust nonlinear control problem which was transformed from
the dissipativity shaping problem. Liu et al. (2014) constructed
the cost functions for the isolated subsystems with the assumed
known bounded interconnections. Then, a decentralised con-
trol strategy was developed to stabilise continuous-time nonlin-
ear interconnected large-scale systems. Furthermore,Wang et al.
(2016) considered the interconnected subsystems as a whole
system and constructed a cost function for the overall plant.
Then, they developed the decentralised guaranteed cost control
by solving the modified HJB equation. For unknown nonlinear
interconnected systems, Liu et al. (2015) established an online
model-free integral PI algorithm based decentralised control
scheme via actor-critic technique. Lu, Si, and Xie (2008) applied
the direct HDP to address the coordinated control for large
power systems with uncertainties. Yang et al. (2014) designed a
tracking control with filtered tracking error by using directHDP.
For decentralised tracking control (DTC) problem, Mehraeen
and Jagannathan (2011) proposed a decentralised nearly opti-
mal controller using online tuned action NN and critic NN
by assuming that the input gain matrix was known and the
unknown interconnection was weak. From the aforementioned
literature, the optimal tracking control commonly consists of
the feedforward controller and the feedback controller (Park,
Choi, & Lee, 1996). The feedforward controller requires a pri-
ori knowledge of the system dynamics, while the feedback con-
troller can be derived by only utilising ADP methods. However,
we can observe that the existing works on DTC via ADPmainly
focused on systems with known dynamics. Since DTC for large-
scale systems has wide potential in practice, only a few results

based on ADP have been carried out, and it is still an open prob-
lem to be solved.

Motivated byMehraeen and Jagannathan (2011), Zhang, Cui,
Zhang, and Luo (2011) and Liu et al. (2014), in this paper, a
DTC scheme via observer-critic structure-based ADP is pro-
posed for unknown large-scale nonlinear systems. The devel-
oped decentralised control consists of local desired control, local
tracking error control and an adaptive robustifying compen-
sator. In order to remove the assumptions on boundedness and
matched condition of interconnections, the desired trajectories
of coupled subsystems are shared to substitute their actual ones.
Then, the substituted subsystem dynamics is identified by estab-
lishing a local NN observer. It helps to derive the local desired
control, as well as the control input matrix of the local tracking
error control. Together with the solution to HJB equation based
on the critic NN approximated value function, the local tracking
error control can be obtained directly. The overall error, which
contains the substitution error, observation error and approxi-
mation error of local tracking error control, is compensated by
an adaptive robustifying term. The proposed DTC can guaran-
tee the tracking error of the closed-loop system to be asymp-
totically stable via Lyapunov’s direct method. Two simulation
examples are provided to demonstrate the effectiveness of the
proposed scheme.

The main contributions of this paper have the following four
aspects:

(1) To the best of our knowledge, it is the first time to
extend the ADP approach to solve the DTC prob-
lem for unknown large-scale nonlinear systems. This
method establishes the local NN observer to identify the
unknown subsystem dynamics, which helps derive not
only the local desired control, but also the local tracking
error control. The controllers have the similar structures,
which are different from existing methods (Lin et al.,
2016; Mehraeen & Jagannathan, 2011; Yang, Liu, Wei, &
Wang, 2016).

(2) Unlike existingmethods (Gao et al., 2016; Liu et al., 2014,
2015), the states of coupled subsystems are substituted by
their desired states. Thus, the assumptions on the bound-
edness and matched condition of interconnections can
be relaxed.

(3) The local tracking error control is derived by combin-
ing the identified control input matrix with the critic NN
approximated value function. Therefore, the action NN,
which is commonly adopted in existing methods, is not
required anymore.

(4) The substitution error, observation error and approx-
imation error can be compensated simultaneously by
employing an adaptive robustifying term, and the track-
ing error of the closed-loop system can be guaranteed to
be asymptotically stable.

The rest of the paper is organised as follows. In Section 2, the
problem statement is presented, and the subsystemdynamics are
transformed for simplifying the controller design. In Section 3,
the detailed design procedure of the DTC that consists of the
local desired control, the local tracking error controller and a



1980 BO ZHAO ET AL.

compensator is given. Then, the stability analysis is provided via
Lyapunov’s direct method. In Section 4, two simulation exam-
ples are employed to verify the effectiveness of the developed
scheme. In Section 5, the conclusion is drawn.

2. Problem statement
Consider unknown large-scale nonlinear systems that are com-
posed of N interconnected subsystems, whose ith (i = 1, 2,… ,
N) subsystem can be described by

ẋi(t ) = fi(xi(t )) + gi(xi(t ))ui(xi(t )) + hi(x(t )), (1)

where xi (t ) = [xi1 (t ), xi2 (t ), . . . , xi(ni) (t )]T ∈ R
ni , i =

1, . . . ,N and ui(xi(t )) ∈ R
mi are the state vector and

control input of the ith subsystem, respectively; x(t ) =
[xT1(t ), . . . , xTN (t )]T ∈ R

n is the overall system state vector
with n =∑N

i=1 ni; fi(xi(t)), gi(xi(t)) and hi(x(t)) are unknown
nonlinear internal dynamics, input gain matrix and intercon-
nection term, respectively.

Assumption 2.1: The nonlinear functions fi(xi(t)), gi(xi(t)) and
hi(x(t)) are Lipschitz and continuous in their arguments with fi(0)
= 0, and the subsystem (1) is controllable.

Unlike assuming hi(x) to be bounded and satisfying the
matching conditions (Liu et al., 2014, 2015), the desired trajec-
tories of the coupled subsystems are employed to substitute their
actual states, so the interconnection term can be expressed as

hi(x) = hi(xi, x jd ) + �hi(x, x jd ), (2)

where xjd denotes the desired trajectories of the coupled subsys-
tems with j= 1,… , i− 1, i + 1, …N.�hi(x, xjd)= hi(x)− hi(xi,
xjd) denotes the substitution error. Thus, (1) becomes

ẋi = Fi(xi, x jd ) + gi(xi)ui(xi) + �hi(x, x jd ), (3)

where Fi(xi, xjd)= fi(xi) + hi(xi, xjd), which is still Lipschitz con-
tinuous on a set�i ∈ R

ni according toAssumption 2.1. Since the
interconnection satisfies the global Lipschitz condition, which
implies

∥∥�hi(x, x jd )
∥∥ ≤

n∑
j=1, j �=i

di jE j, (4)

whereEj =‖xj − xjd‖, anddij � 0 is an unknownglobal Lipschitz
constant.

The objective of this paper is to find a set of decentralised
tracking control policies u1(x1),… , ui(xi),… , uN(xN) such that
the states of the overall unknown large-scale nonlinear system
track the desired trajectories.

Remark 2.1: Wenotice that the interconnection term is approx-
imated by signals from the local subsystem and the desired sig-
nals from coupled subsystems. It is worthy pointing out that
the desired signals, which are decided according to the control
objective, are shared to each subsystem before the system runs.

For ith subsystem, define the tracking error as

ei = xi − xid, (5)

where xid is the predefined desired trajectory.
Combining (5) with (2), the tracking error dynamics can be

expressed as

ėi = ẋi − ẋid. (6)

Thus, associated with the tracking error dynamics (6), the local
tracking error control policy should minimise the following
local infinite horizon value function

Vi(ei(t )) =
∫ ∞

t
Ui (ei(τ ), uie(τ )) dτ , (7)

where Ui(ei(t ), uie(ei)) = eTi (t )Qiei(t ) + uTie(ei)Riuie(ei) is the
local utility function, Ui(0, 0) = 0, and Ui(ei, uie) � 0 for all ei
and uie, in which Qi ∈ R

ni×ni and Ri ∈ R
mi are positive definite

matrices, uie = ui(xi) − uid(xid) is the local control input error,
and uid(xid) is the local desired control input.

3. Decentralised tracking controller design
The detailed design procedure of DTC in the optimal manner
for unknown large-scale nonlinear system is given in this sec-
tion.

3.1. Decentralised controller design of systemswith
known dynamics
In order to achieve the control objective, the controller design
procedure for unknown systems follows the strategy for systems
with known dynamics. In this subsection, the DTC for systems
with known dynamics is introduced.

The optimal tracking control problem should be solved for
N isolated subsystems. For systems with known dynamics, the
local desired control input can be obtain by (3) as

uid(xid ) = g+
i (xid ) (ẋid − Fi(xd ) − �hi(xd )) , (8)

where xd = [xT1d, . . . , x
T
Nd]

T, and g+
i (·) is the Moore-Penrose

pseudo-inverse of gi(·).
According to the optimal control theory, the designed track-

ing error control policy must not only ensure the tracking error
converge to a small neighbourhood on�i, but also guarantee the
local value function (7) to be finite. In other words, the tracking
error control policy should be admissible.

Definition 3.1: For local tracking error dynamics (6), a track-
ing error control policyμie(ei) is said to be admissible ifμie(ei) is
continuous on a set �i with μie(0) = 0, μie(ei) ensures the con-
vergence of the ith subsystem (1) on �i, and Ji(ei(t)) is finite for
all ei � �i.

For any admissible control policy μi(ei) � ψ i(�i) of subsys-
tem (1), whereψ i(�i) is the set of admissible control, if the local
value function

Vi(ei(t )) =
∫ ∞

t
Ui (ei(τ ), μie(τ )) dτ (9)
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is continuously differentiable, then the infinitesimal version of
(9) is the so-called Lyapunov equation

0 = Ui (ei, μie) + (∇Vi(ei))T ėi (10)

withVi(0)= 0, and the term�Vi(ei) denotes the partial deriva-
tive of Vi(ei) with respect to the local tracking error ei, i.e.
∇Vi(ei) = ∂Vi(ei)/∂ei.

The Hamiltonian of the optimal control problem and the
optimal value function can be formulated as

Hi (ei, μie,∇Vi(ei)) = Ui (ei, μie) + (∇Vi(ei))T ėi,

and

V ∗
i (ei) = min

μie∈ψi(ei)

∫ ∞

t
Ui (ei(τ ), μie(τ )) dτ .

Thus,

0 = min
μie∈ψi(ei )

Hi
(
ei, μie,∇V ∗

i (ei)
)
,

where ∇J∗i (ei) = ∂J∗i (ei)/∂ei. If the solution V ∗
i (ei) exists and

is continuously differentiable, the local desired optimal tracking
error control can be described as

u∗
ie(ei) = −1

2
R−1
i gTi (xi)∇V ∗

i (ei). (11)

Therefore, the desired DTC can be expressed as

ui(xi) = u∗
ie(ei) + uid(xid ). (12)

Remark 3.1: In existing results on dealing with trajectory track-
ing problems, ADP-based controllers as in (12) commonly con-
tain two parts, namely desired control and desired tracking error
control. Inspired by that, in this paper, we concern the DTC
scheme in a similar way. That is, the DTC for systems with avail-
able dynamics in Section 3.1 provides a design strategy for that
of large-scale system with unknown dynamics. The design of
DTC for such systems will be detailed in the following subsec-
tions.

3.2. Neural network observer-based unknown subsystem
identification
The purpose of designing a local NN observer is to identify
dynamics of the unknown subsystems. With the help of iden-
tified subsystems, the DTC can be designed for unknown large-
scale nonlinear systems in a similar control structure as in
Section 3.1.

For the ith subsystem of the unknown large-scale nonlinear
system (1), it can be identified by a local NN observer, which can
be established as

˙̂xi = F̂i(x̂i, x jd ) + ĝi(x̂i)ui(xi) + Kio(xi − x̂i), (13)

where x̂i = [x̂i1, . . . , x̂i(ni )]T ∈ R
ni is the state vector of the

developed observer, F̂i(x̂i, x jd ) and ĝi(x̂i) are the observation
of nonlinear dynamics Fi(xi, xjd) and gi(xi), respectively; Kio =
diag[ki1o, ki2o] is a positive definite observation gain matrix.

Define the observation error vector eio = xi − x̂i, combining
(3) with (13), the observation error dynamics can be described
as

ėio = Fi(xi, x jd ) − F̂i(x̂i, x jd ) + (gi(xi) − ĝi(x̂i)
)
ui(xi)

+�hi(x, x jd ) − Kioeio.

The nonlinear unknown terms Fi(xi, xjd) and gi(xi) are approx-
imated by two ideal radial basis function (RBF) NNs as

Fi(xi, x jd ) = W T
i f σi f (xi, x jd ) + εi f ,

∥∥εi f ∥∥ ≤ εi1, (14)

gi(xi) = W T
igσig(xi) + εig,

∥∥εig∥∥ ≤ εi2, (15)

whereWif andWig are ideal weight vectors from the hidden layer
to the output layer, σ if(xi, xjd) and σ ig(xi) are basis functions, ϵif
and ϵig are approximation errors, and ϵi1 and ϵi2 are unknown
positive constants.

Let Ŵi f and Ŵig be the estimations of Wif and Wig, respec-
tively. We have

F̂i(x̂i, x jd ) = Ŵ T
i f σi f (x̂i, x jd ), (16)

ĝi(x̂i) = Ŵ T
igσig(x̂i), (17)

where Ŵi f and Ŵig can be updated by the adaptive laws as

˙̂Wi f = 	i f eioσi f (x̂i, x jd ), (18)

˙̂Wig = 	igeioσig(x̂i)ui, (19)

where 	if and 	ig are positive constants.
Combining (14) and (16), (15) and (17), we have

Fi(xi, x jd ) − F̂i(x̂i, x jd ) = W T
i f σ̃i f (xi, x̂i, x jd )

+W̃ T
i f σi f (x̂i, x jd ) + εi f , (20)

gi(xi) − ĝi(x̂i) = W T
igσ̃ig(xi, x̂i) + W̃ T

igσig(x̂i) + εig, (21)

where W̃i f = Wi f − Ŵi f and W̃ig = Wig − Ŵig are the weight
estimation errors, σ̃i f (xi, x̂i, x jd ) = σi f (xi, x jd ) − σ̂i f (x̂i, x jd )

and σ̃ig(xi, x̂i) = σig(xi) − σig(x̂i) are the estimation errors of
RBFs, respectively.

Theorem 3.1: For interconnected subsystem (1), the developed
local NN observer can guarantee the observation error eio to
be uniformly ultimately bounded (UUB) with the updating laws
(18)–(19).

Proof: Select a Lyapunov function candidate as

Li1 = 1
2
eTioeio + 1

2
W̃ T

i f	
−1
i f W̃i f + 1

2
W̃ T

ig	
−1
ig W̃ig. (22)
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The time derivative of (22) is

L̇i1 = eTioėio − W̃ T
i f	

−1
i f

˙̂Wi f − W̃ T
ig	

−1
ig

˙̂Wig

= eTio(Fi(xi, x jd ) − F̂i(x̂i, x jd ) + (gi(xi) − ĝi(x̂i)
)
ui(xi)

+�hi(x, x jd ) − Kioeio)

−W̃ T
i f	

−1
i f

˙̂Wi f − W̃ T
ig	

−1
ig

˙̂Wig. (23)

Combining (23) with (20) and (21), we have

L̇i1 = eTio
(
W̃ T

i f σi f (x̂i, x jd ) + W̃ T
igσig(x̂i)ui(xi) + wi1 + �hi(x, x jd )

)
− eTioKioeio − W̃ T

i f	
−1
i f

˙̂Wi f − W̃ T
ig	

−1
ig

˙̂Wig, (24)

where wi1 = W T
i f σ̃i f (xi, x̂i, x jd ) + εi f + (W T

igσ̃ig(xi, x̂i) + εig)ui
denotes the overall NN approximation error.

Substituting (18) and (19) into (24), we have

L̇i1 = eTio
(
wi1 + �hi(x, x jd )

)− eTioKioeio. (25)
�

Assumption 3.1: The defined approximation wi1 is norm-
bounded, i.e.‖wi1‖ � ηi1, where ηi1 is an unknown positive con-
stant.

Letting ηi2 =∑N
j=1, j �=i di jE j, according to (4), (25) becomes

L̇i1 ≤ ‖eio‖ (ηi1 + ηi2) − λmin(Kio) ‖eio‖2
= −‖eio‖ (λmin(Kio) ‖eio‖ − (ηi1 + ηi2)) ,

whereλmin (Kio) denotes theminimumeigenvalue ofKio.We can
observe that L̇i1 ≤ 0 when eio lies outside of the compact set

�eio =
{
eio : ‖eio‖ ≤ ηi1 + ηi2

λmin(Kio)

}
.

Therefore, according to Lyapunov’s direct method, the observa-
tion error eio is UUB. This completes the proof.

Remark 3.2: It should be pointed out that controllers of
unknown nonlinear systems were commonly designed by intro-
ducing an action NN in many previous works (Liu et al., 2014,
2015). Different from these, in our approach, the control law
is designed in a similar control structure to model-based con-
troller by using the identified input gain matrix via local NN
observer. On the other hand, the key point for obtaining the
desired trajectory tracking control for unknown systems is to
find the system dynamics, which can be identified by the present
local NN observer.

3.3. Decentralised tracking controller design for unknown
large-scale nonlinear systems
From the present observer (7), the identifier of the ith subsystem
should be expressed as

˙̂xi = F̂i(x̂i, x jd ) + ĝi(x̂i)ui(x̂i), (26)

where uio(x̂i) is the control input of the identifier. Thus, the
desired control input of identifier uid(xid) can be obtained by

uid(xid ) = ĝ+
i (xid )

(
ẋid − F̂i(xd )

)
. (27)

Since the value function is highly nonlinear and nonanalytic,
it can be approximated by NNs, which are powerful tools
for approximating nonlinear functions. For the ith subsystem,
a critic NN is employed to approximate the corresponding
assumed continuous local value function on the compact set �i
as

Vi(ei) = W T
icσic(ei) + εic(ei), (28)

whereWic ∈ R
li×ni is the ideal weight vector, σic(ei) ∈ R

li is the
activation function, li is the number of neurons in the hidden
layer and ϵic(ei) is the approximation error of NN. Then, the gra-
dient of Vi(ei) with respect to ei is

∇Vi(ei) = (∇σic(ei))TWic + ∇εic(ei), (29)

where ∇σic(ei) = ∂σic(ei)/∂ei ∈ R
li and �ϵic(ei) are the gra-

dients of the activation function and the approximation error,
respectively.

Combining (10) with (29), we have

0 = Ui (ei, μie) + ((∇σic(ei))TWic + ∇εic(ei)
)T ėi.

Therefore, the local Hamiltonian can be expressed as

Hi (ei, μie,Wic) = Ui (ei, μie) +W T
ic∇σi(ei)ėi

= −∇εic(xi)ėi = eicH, (30)

where eicH is the residual error caused by NN approximation.
The critic NN (28) can be approximated as

V̂i(ei) = Ŵ T
icσic(ei), (31)

where Ŵic ∈ R
li×ni is the weight estimation.

Then, the gradient of (31) with respect to ei is

∇V̂i(ei) = (∇σic(ei))T Ŵic.

Therefore, the approximate local Hamiltonian can be expressed
as

Hi(ei, μie,Ŵic) = Ui (ei, μie) + Ŵ T
ic∇σi(ei)ėi = eic. (32)

Let θi = ∇σi(ei)ėi. From (30) and (32), we have

eic = eicH − W̃ T
icθi,

where W̃ic = Wic − Ŵic, and it can be updated as

˙̃Wic = − ˙̂Wic = li1
(
eicH − W̃ T

icHθi
)
θi, (33)

where li1 > 0 is the learning rate of the critic NN.
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To obtain the updating rule of the critic NN weight vector
Ŵic, with the steepest decent algorithm, the local objective func-
tion Eic = 1

2 e
T
iceic should be minimised as

˙̂Wic = − ˙̃Wic = −li1eicθi. (34)

Therefore, the ideal local optimal tracking error control can be
derived as

μie(ei) = −1
2
R−1
i gTi (xi)

(
(∇σic(ei))TWic + ∇εic(ei)

)
.

Since the nonlinear system is unknown, consider the identified
control input matrix (17) and the approximate critic NN (31),
the local optimal tracking error control can be expressed as

μ̂ie(ei) = −1
2
R−1
i ĝTi (xi) (∇σic(ei))T Ŵic. (35)

Theorem 3.2: For ith interconnected subsystem (1), the weight
approximation error W̃ic can be guaranteed to be UUB as long as
the weights of the critic NN are updated by (34).

Proof: Select the Lyapunov function candidate as

Li2 = 1
2li1

W̃ T
icW̃ic. (36)

Along the solutions of (33), the time derivative of (36) is

L̇i2 = 1
li1
W̃ T

ic
˙̃Wic

= W̃ T
ic eicHθi −

∥∥W̃icθi
∥∥2

≤ 1
2
e2icH − 1

2
∥∥W̃icθi

∥∥2.
Assume ‖θ i‖ � θ iM. Hence, L̇i2 < 0 whenever the approxima-
tion error of the critic NN W̃ic lies outside of the compact set

�W̃ic
=
{
W̃ic :

∥∥∥W̃ic

∥∥∥ ≤
∥∥∥∥ eicHθiM

∥∥∥∥
}

.

According to Lyapunov’s direct method, the weight approxima-
tion error is UUB. This completes the proof. �

Taking the difference between (8) and (27) as well as the
approximation error between (11) and (35) into account, they
may cause the system performance degradation or even destroy
the system stability. Thus, they should be compensated by an
adaptive robustifying term as

uic = −ĝ+
i (xid )sgn(ei)ŵi, (37)

where sgn(ei) = [sgn(ei1), . . . , sgn(ei(ni))]T, ŵi is the estima-
tion of overall error wi, which will be defined later. It can be
updated by the following adaptive law

˙̂wi = 	iw

ni∑
k=1

|eik| , (38)

where 	iw is a positive constant.
In summary, the overall DTC can be developed as

ui = uid + μ̂ie + uic. (39)

The control architecture of the proposed DTC for unknown
large-scale nonlinear systems via observer-critic structure-
based ADP is shown in Figure 1.

Remark 3.3: In local identifier design, RBFNN is employed
to construct local NN observers, since the convergence rate is
higher than that of back propagation (BP) NN. On the other
hand, the local tracking error controller requires the partial
derivative of local critic NN, which has heavy computational
burden. To trade off between the convergence rate and compu-
tational burden, BPNN is selected for local critic NN. Thus, dif-
ferent structures are chosen for these two NNs.
Remark 3.4: Actually, the proposed DTC scheme is an online
algorithm. On the one hand, the unknown dynamics of large-
scale nonlinear systems can be identified by the developed local
NN observer (13) in real time, which helps obtain the subsystem
dynamics as in (26). Therefore, the local desired control can be
derived in real time. On the other hand, the local tracking error
control is obtained by employing local critic NN, which is also
trained online. Therefore, the strategy of the proposed DTC is
online.

3.4. Stability analysis

Theorem 3.3: Consider the unknown large-scale nonlinear sys-
tems which are composed of N subsystems as in (1) with the local
value function (7). The developed observer-critic structure-based
DTC (39) can guarantee the tracking error of closed-loop system
to converge to zero asymptotically.

Proof: Select the Lyapunov function candidate as

Li3 = 1
2
eTi ei +Vi(ei) + 	−1

iw w̃2
i . (40)

As Fi(·) is locally Lipschitz, there exists a positive constant
ηif such that ‖Fi(xi, xjd) − Fi(xd)‖ � ηif‖ei‖. Assuming that∥∥ĝi(xid )∥∥ ≤ ηig and denoting μ̂ie = μie − μ̃ie, the time deriva-
tive of (40) becomes

L̇i3 = eTi ėi + ∇Vi(ei)ėi − 	−1
iw

˙̂wiw̃i

= eTi
(
Fi(xi, x jd ) − Fi(xd ) + Fi(xd ) − F̂i(xd )

+�hi(x, x jd )
)−Ui(ei, μie) − 	−1

iw
˙̂wiw̃i

+ eTi
((
gi(xi) − ĝi(xid ) + ĝi(xid )

)
ui(xi) − ĝi(xid )uid(xid )

)
≤ ηi f ‖ei‖2 + eTi

(
F̃i(xd ) + g̃i(xid )ui(xi)

+�hi(x, x jd ) − ĝi(xid )μ̃ie
)

+ ηig ‖ei‖ ‖μie‖ + eTi ĝi(xid )uic −Ui(ei, μie) − 	−1
iw

˙̂wiw̃i

= ηi f ‖ei‖2 + eTi
(
F̃i(xd ) + g̃i(xid )ui(xi)

+�hi(x, x jd ) − ĝi(xid )μ̃ie
)+ 1

2
‖ei‖2

+ eTi ĝi(xid )uic − λmin(Qi) ‖ei‖2

−
(
λmin(Ri) − η2

ig

)
‖μie‖2 − 	−1

iw w̃i
˙̂wi. (41)
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Figure . The control architecture of the proposed DTC.

Denoting δi = F̃i(xd ) + g̃i(xi, xid )ui(xi) + �hi(x, x jd ) −
ĝi(xid )μ̃ie as the overall error, where g̃i(xi, xid ) = gi(xi) −
ĝi(xid ) and δi is assumed to be the upper bounded, i.e. ‖δi‖ � wi,
we have

L̇i3 = ηi f ‖ei‖2 + |ei| wi + 1
2

‖ei‖2 + eTi ĝi(xid )uic

− λmin(Qi) ‖ei‖2 −
(
λmin(Ri) − η2

ig

)
‖μie‖2 − 	−1

iw
˙̂wiw̃i

≤ ηi f ‖ei‖2 +
ni∑
k=1

|eik| wi + 1
2

‖ei‖2 + eTi ĝi(xid )uic

− λmin(Qi) ‖ei‖2 −
(
λmin(Ri) − η2

ig

)
‖μie‖2 − 	−1

iw
˙̂wiw̃i.

(42)

Substituting (37) into (42), and combining with (38), we
have

L̇i3 = ηi f ‖ei‖2 +
ni∑
k=1

|eik| w̃i + 1
2

‖ei‖2

− λmin(Qi) ‖ei‖2 −
(
λmin(Ri) − η2

i f

)
‖μie‖2

−	−1
iw

˙̂wiw̃i

= −
(

λmin(Qi) − ηi f − 1
2

)
‖ei‖2

−
(
λmin(Ri) − η2

ig

)
‖μie‖2 .

We can observe that L̇i3 ≤ 0 whenever the following conditions
hold

⎧⎨
⎩λmin(Qi) ≥ ηi f + 1

2
,

λmin(Ri) ≥ η2
ig.

It implies that the developed observer-critic structure ADP
based DTC (39) ensures the tracking errors of the unknown
large-scale closed-loop system converge to zero asymptotically.
This completes the proof. �
Remark 3.5: We can see that δi includes the substitution error,
observation error and approximation error of the local track-
ing error control. They can be considered as overall error, which
is compensated simultaneously by (37). Therefore, the tracking
errors of the unknown large-scale nonlinear system can con-
verge to zero asymptotically.

Remark 3.6: Some observer-based ADP methods have been
studied for optimal control (He & Jagannathan, 2005; Yang, Liu,
&Wang, 2014), but action NNs are always employed to approx-
imate the control law. Different from them, the proposed DTC
scheme is obtained by the critic NN only, the training of action
NN is no longer required. It implies that the computational bur-
den can be reduced.

4. Simulation studies
To show the effectiveness of the developed DTC scheme, two
examples are given in this section.

Example 4.1: Consider a hard spring connected parallel
inverted pendulum system (Hua, Li, Wang, & Guan, 2015),
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whose model can be expressed as

{
m1l21 θ̈1 − m1gl1 sin θ1 + b1θ̇1 − Fa1 cos(θ1 − β) = δ1u1,
m2l22 θ̈2 − m2gl2 sin θ2 + b2θ̇2 − Fa2 cos(θ2 − β) = δ2u2,

(43)

where b1 and b2 are damping coefficients, and

F = k
{
1 + A2 (lk − l0)2

}
(lk − l0) ,

|A (lk − l0)| < 1,

β = arctan
(

a1 cos θ1 − a2 cos θ2
l0 − a1 sin θ1 + a2 sin θ2

)
,

lk = {(l0 − a1 sin θ1 + a2 sin θ2)
2 + (a1 cos θ1 − a2 cos θ2)2

}2
.

In this simulation, the parameters of the coupled inverted pen-
dulums are chosen as: δ1 = δ2 = 1, m1 = m2 = 1kg, l1 = l2 =
0.5m, l0 = 1m, g = 9.8m/s2, b1 = b2 = 0.009, k = 30, A = 0.1,
and the spring position a1 = a2 = 0.1.

Let xi = [xi1, xi2]T = [θi1, θ̇i1]T ∈ R
2. The modified model

(43) can be expressed as

ẋi = fi(xi) + gi(xi)ui + hi(x),

where fi(xi) = [ xi2
5.88 sin xi1 − 0.036xi2 ], gi(xi) = [ 0

δi
], hi(x) =

[ 0
4Fai cos(xi1 − β) ].
In this simulation, the desired trajectories of the two subsys-

tems can be given as

{
x11d = 0.5 cos(0.5t ),
x21d = 0.8 sin(0.3t + π/6).

Denote Xi = [xi, x jd]T. The basis functions of RBFNNs in the
observers are chosen as Gaussian style as

σi f (Xi) = exp

(
−(Xi − ci f )T(Xi − ci f )

b2i f

)
,

σig(xi) = exp

(
−(xi − cig)T(xi − cig)

b2ig

)
,

where the centres of the basis functions are

ci f =

⎡
⎢⎢⎣

−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3

⎤
⎥⎥⎦ ,

cig =
[−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

]
,

and the widths of the basis functions are bif = big = 0.5.
Let the initial states of the subsystems be x10 = x20 = [1, 0]T,

the initial states of the observers be x̂10 = [2,−1]T, x̂20 =
[1.5,−0.5]T, the observer gain matrix be Kio = diag[ki1o, ki2o]
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Figure . The observation errors by using the neural network observer of Example
..
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Figure . The trajectories tracking performance of Example ..

= diag[400, 1200] and the RBFNN weights learning rate of the
observer be 	if = 	ig = 0.002. The local value function (7) is
approximated by critic NN, whose structure is chosen as 2–3–1
with two input neurons, three hidden neurons and one output
neuron, and the weight vector as Ŵic = [Ŵic1,Ŵic2,Ŵic3]T with
initial values Ŵ1c = [0.4, 1.8, 1.2]T and Ŵ2c = [0.2, 0.4, 0.2]T.
The activation function of the critic NN is chosen as σic(ei) =
[e2i1, ei1ei2, e2i2]. Let the weight learning rates of the critic NN be
li1 = 0.1, the gain of the compensator (38) be 	iw = 15, and Qi
= 2I2, R1 = 0.001I, R2 = 0.0001I, where In denotes the identity
matrix with appropriate dimensions.

The simulation results are shown as Figures 2–5. Figure 2
describes that the observation errors converge to a small region
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Figure . The tracking errors of Example ..
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Figure . The control inputs of Example ..

by using the local NN observers, which ensure the observation
errors to be UUB. It implies that the unknown subsystems are
identified online successfully. The trajectories tracking curves
are illustrated as Figure 3, we can see that the actual trajecto-
ries can follow their desired ones after the system runs for a
short time by using the developed DTC (39). Figure 4 shows
the tracking errors between the desired trajectories and actual
trajectories, which give the same conclusion more intuitively.
Figure 5 gives the curves of control inputs. From these figures,
the closed-loop system can be guaranteed to be asymptotically
stable. Therefore, the simulation results demonstrate the effec-
tiveness of the proposed DTC scheme.

Example 4.2: In order to further test the effectiveness of
the present observer-critic-based ADP for DTC method, a
reconfigurable manipulator with 2-DOF (degree of freedom) is
employed in our simulation (Zhao & Li, 2014).

Reconfigurable manipulators that consist of standard links
and jointmodules can be considered as a set of subsystems inter-
connected by coupling torques. In this simulation, the entire
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Figure . The observation errors by using the neural network observer of Example
..
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Figure . The trajectories tracking performance of Example ..

dynamics of reconfigurable manipulator can be expressed as

M(q)q̈ +C(q, q̇)q̇ + G(q) = u,

where q ∈ R
2 is the vector of joint displacements,M(q) ∈ R

2×2

is the inertia matrix,C(q, q̇) ∈ R
2 is the Coriolis and centripetal

force, G(q) ∈ R
2 is the gravity term and u ∈ R

2 is the applied
joint torque. The system matrices are

M(q) =
[
0.36 cos(q2) + 0.6066 0.18 cos(q2) + 0.1233
0.18 cos(q2) + 0.1233 0.1233

]
,
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C(q, q̇) =
[ −0.36 sin(q2)q̇2 −0.18 sin(q2)q̇2
0.18 sin(q2)(q̇1 − q̇2) 0.18 sin(q2)q̇1

]
,

G(q) =
[−5.88 sin(q1 + q2) − 17.64 sin

(
q1
)

−5.88 sin(q1 + q2)

]
.

For the development of DTC, each joint is considered as a sub-
system of the entire manipulator system interconnected by cou-
pling torque. By separating terms only depending on local vari-
ables (qi, q̇i, q̈i) from those terms of other joint variables, each
subsystem dynamic model can be formulated in joint space as

Mi(qi)q̈i +Ci(qi, q̇i)q̇i + Gi(qi) + Zi(q, q̇, q̈) = ui (44)

with

Zi(q, q̇, q̈) =
⎧⎨
⎩

n∑
j=1, j �=i

Mi j(q)q̈ j + [Mii(q) − Mi(qi)]q̈i

⎫⎬
⎭

+
⎧⎨
⎩

n∑
j=1, j �=i

Ci j(q, q̇)q̇ j + [Cii(q, q̇) −Ci(qi, q̇i)]q̇i

⎫⎬
⎭

+ [
Ḡi(q) − Gi(qi)

]
,

where qi, q̇i, q̈i,Gi(q) and ūi are the ith element of the vectors
q, q̇, q̈,G(q) and u, Mij(q) and Ci j(q, q̇) are the ijth element of
the matricesM(q) andC(q, q̇), respectively.

Let xi = [xi1, xi2]T = [qi, q̇i]T, (44) can be expressed as

{
ẋi1 = xi2,
ẋi2 = fi(qi, q̇i) + gi(qi)ui + hi(q, q̇, q̈),

(45)

where xi is the state of the ith subsystem, and

fi(qi, q̇i) = M−1
i (qi)

[−Ci(qi, q̇i)q̇i − Gi(qi)
]
,

gi(qi) = M−1
i (qi),

hi(q, q̇, q̈) = −M−1
i (qi)Zi(q, q̇, q̈).

The desired trajectories of two subsystems are

qd =
[
q1d
q2d

]
=
[
0.5 cos(t ) + 0.2 sin(3t )
0.3 cos(3t ) − 0.5 sin(2t )

]
.

The structure of RBFNNs, the initial states of subsystems, as
well as the initial states of observers are the same as those of
Example 4.1. Let the observer gain matrix be Kio = diag[200,
400], the RBFNN weights learning rate of the observer be 	if
= 500 and 	ig = 1. Let the critic NN be the same structure as
Example 4.1 with initial valuesŴ1c = [0.2, 1.5, 1.1]T andŴ2c =
[1.2, 0.8, 0.9]T, the weight learning rates of the critic NN be ηi1
= 0.0001, the gain of the compensator (38) be 	iw = 5, Qi =
10I2, Ri = 0.001I.

We can see from Figure 6 that the observation errors of
each subsystem are verified to be UUB by using the developed
local NN observer. Figures 7 and 8 show that the trajectory
tracking and tracking errors satisfy the control performance
when using the present DTC (39). The tracking control inputs
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Figure . The tracking errors of Example ..
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Figure . The control inputs of Example ..

in Figure 9 demonstrate the closed-loop system of the reconfig-
urable manipulator asymptotically stable.

In summary, the simulation results of the two examples verify
the effectiveness of the proposed scheme.

5. Conclusion
In this paper, we develop a DTC scheme for unknown large-
scale nonlinear systems via observer-critic structure-basedADP.
A local NN observer is established to identify the unknown
subsystem. Hereafter, the local desired control can be derived
directly. For error dynamic system, the local value function is
approximated by constructing a critic NN, and the local track-
ing error control can be obtained. Then, the overall error caused
by the substitution, observation and approximation of the local
tracking error control can be compensated by an adaptive robus-
tifying term. Therefore, the overall DTC can guarantee the
closed-loop system to be asymptotically stable by Lyapunov’s
direct method. Two examples are employed to verify the effec-
tiveness of the proposed DTC scheme.
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