
Joint Depth Map Interpolation and Segmentation with Planar Surface Model

Shibiao Xu1, Longquan Dai∗,2, Jiguang Zhang1,3, Jinhui Tang2, G.Hemanth Kumar3, Yanning Zhang4, and Xiaopeng Zhang†,1

1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China

3Department of Computer Science, University of Mysore, Mysore, India
4School of Computer Science, Northwestern Polytechnical University, Xi’an, China

(a) Our partition result (b) Ground truth (c) Our upsampling result (d) [Liu et al. 2013] (e) [Yang et al. 2012] (f) [Park et al. 2011]

Figure 1: The 8X depth upsampling results comparison. We compare our algorithm with two global methods AR[Yang et al. 2012],
MRF[Park et al. 2011] and a local method GF[Liu et al. 2013], and only ours can eliminate edge blurring and texture copying artifacts.

Abstract

Depth map interpolation and segmentation has been a long-standing
problem in computer vision. However, many people treat them as
two independent problems. Indeed, the two problems are comple-
mentary. The results of one problem can aid in improving the re-
sults of the other in powerful ways. Assuming that the depth map
consists of planar surfaces, we propose a unified variational formu-
la for joint depth map interpolation and segmentation. Specifically,
our model uses a multi-label representation of the depth map, where
each label corresponds to a parametric representation of the planar
surface on a segment. Using alternating direction method, we are
able to find the minimal solution. Experiments show our algorithm
outperforms other methods.
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1 Introduction

Recently, a variety of depth sensors such as laser scanners, TOF
cameras and passive stereo systems have been developed. These
are all significant tools for 3D scene understanding. However, these
sensors suffer from various problems. Unlike conventional optical
cameras, the resolution of active depth sensors is extremely low.
For instance, the state-of-the-art 3D-TOF camera Swiss Ranger can
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only capture a 100 × 100 depth map. In contrast, the resolution of
mainstream optical cameras can be even higher than 1000× 1000.
Kinect as a representative passive stereo system can capture a 640×
480 depth image, but it often loses depth information and forms
black holes in the depth map because some infrared lights emitted
from Kinect are absorbed and occluded by the objects in the scene.

Although many methods are proposed to upscale the low-resolution
depth map, and to recover the missing depths in the literature [Chan
et al. 2008; Liu et al. 2013; Park et al. 2011; Yang et al. 2012], there
are still some problems. Specifically, these existing algorithms in-
terpolate missing depths under the guidance of a registered RG-
B image and are based on the assumption that neighboring pixels
with similar colors are likely to have similar depth values. To utilize
the guidance information of RGB images, various edge-preserving
weights have been designed, which are computed from the guidance
image, and these weights have been integrated into the interpolation
models. However, the structure of depth maps and color images
are often mismatched, the defective weights thus inevitably intro-
duce undesirable artifacts into final results, such as edge blurring
and texture copying, which create a problem between the smooth-
ing and edge-preserving. While the color images totally agree with
the depth maps, we can detect color edges and assign zero to the
weights between crossing color edge pixels to indicate that their
depths are irrelevant. However, in the real world, depth edges usu-
ally are a subset of color edges. If adjacent pixels are in the same
depth region but cross color edges, removing the connections be-
tween them will block depth diffusion from the seeds to the inter-
polated pixels. As a compromise, existing methods set color simi-
larities of coupled pixels as their weights. Strong edge-preserving
weights methods will copy the guidance image’s textures into slant
depth surfaces while keeping sharp depth edges. In contrast, weak
edge-preserving weights methods will blur depth edges in order to
remove texture copying artifacts.

To avoid edge blurring and texture copying, we adopt a novel strat-
egy. Guided by a color photo, the depth map is partitioned into dif-
ferent segments. For each interpolated pixel, we only use the seeds
in the same region to interpolate its depth. In this way, we can e-
liminate edge blurring completely. To recover the texture copying
degradation, we assume that the depth surface forms a slant plane
for each segment and use that assumption to estimate the missing
depths on each segment instead of using edge-preserving weights.
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In our algorithm, the segmentation and interpolation are no longer
two independent processes; we couple them with each other and
use a unified variational formula to describe the coupling.

2 Related work

The most related algorithms are depth upsampling methods which
focus on upscaling a depth map without considering segmentation.
These methods are divided into the global method and the local
method. Global methods minimize MRF [Kalra et al. 1999] and AR
[Zhang and Wu 2008] models which produce a large cost for the
coupled pixels that have similar colors but different depths; Local
methods interpolate missing depths by averaging the seeds’ depth
contribution which is proportional to the color similarities between
pixels and seeds. Specifically, Diebel [Diebel and Thrun 2005]
first introduced the MRF model to upscale depths; Park [Park et al.
2011] designed the NLM edge-preserving coefficients to improve
the performance of the MRF model; Instead of using the MRF mod-
el, Yang [Yang et al. 2012] presented an AR interpolation model. In
contrast to these methods [Diebel and Thrun 2005; Park et al. 2011;
Yang et al. 2012] which fall into the global method, Kopf [Kopf
et al. 2007] invented the first filtering-based depth upsampling al-
gorithm. Chan [Chan et al. 2008] indicated the texture copying
artifacts in the upsampled depth map and proposed a noise-aware
filter to eliminate the artifacts. To reduce running time, Liu [Liu
et al. 2013] introduced a novel joint geodesic upsampling filter for
real-time processing tasks.

Segmentation methods contains two types of methods: super-
vised segmentation and unsupervised segmentation. Potts mod-
el [Nieuwenhuis et al. 2013] is a popular supervised segmentation
model. To find the optimal solution, many convex relaxations of
Potts model were proposed. In contrast, K-means, Mean shift and
Normalized cuts are three major unsupervised segmentation meth-
ods. Whether a method needs the description parameters for each
segment determines which category it belongs to. Here, we apply
Potts model to unsupervised segmentation. The partition and the
depth plane parameters for each segment are calculated simultane-
ously.

In our algorithm, the two complementary processes of interpolation
and segmentation are solved jointly, a 3D scene is represented as
a collection of planar surfaces. According to the the parameters
ai, bi, ci of each planar surface aix + biy + ci, we can partition
image domain Ω into several parts Ωi. Based on these parts, we
can interpolate the depths d and estimate the parameters of each
planar surfaces.

3 Object Function

Our goal is to perform depth map interpolation and segmentation
under the guidance of a registered color photo I . Let 1 ≤ i ≤ L
and L is the number of segments. We partition the image domain
Ω into several segments Ωi and estimate the parameters ai, bi, ci
of each planar surface aix + biy + c and interpolate depths d by
optimization. The object function consists of five terms which will
be discussed in the following paragraphs.

Perimeter Per(Ωi): Per(Ωi) denotes the boundary length of Ωi; we
consider that for a satisfactory partition, its perimeter should be as
small as possible. Let ui = 1Ωi which is the indicator function of
Ωi, we have Per(Ωi)=

∫
Ω
|∇ui|, but the form does not employ the

edge information of the guidance image I . To pull the segmenta-
tion boundaries towards strong image edges of I , which should be
possible depth edges, we add a g-weighting term to

∫
Ω
g|∇ui| and

consider that the perimeter Per(Ωi) should be as small as possible
in the sense of

∫
Ω
g|∇ui|, where g(x) = exp(−a|∇I(x)|).

Label cost prior
∑L

i=1 ‖ui‖∞: The minimum description length
principle [Rissanen 1978] demands that we should use fewer sym-
bols than needed to describe the data. Therefore the number of
segments should be as small as possible, otherwise too many label-
s will cause over-segmentation. To overcome the shortcoming, we
exploit the label cost prior

∑L
i=1 ‖ui‖∞ to constrain the maximium

partition number.

Residual ri(S): The residual ri(S) =
∫

Ωi
T (|aix + biy + ci −

d0|, S)dp quantifies how a plane aix + biy + ci fits the observ-
er data d0 on the region Ωi, where S denotes the position of the
observer data and T (·, S) is an interpolation operator which uses
the interpolating values |aix+ biy + ci − d0| on S to estimate the
missing values on S̃ = Ω \ S. Here, we define T (·, S) as the joint
bilateral filter [Kopf et al. 2007] because it is aware of the guidance
image I’s structure while interpolating. For proper plane parame-
ters, ri(S) approaches zero. There are two reasons: 1) our depth
plane assumption is rational and flexible since most objects in a
scene reside in several depth planes; even for the surface which is
not a plane, it can also be approximated by several planes; 2) ri(S)
is a weighted L2 norm of the values |aix + biy + ci − d0| on the
region Ωi

⋂
S, thus smaller values |aix + biy + ci − d0| imply

smaller ri(S).

Smooth term si and Data term ti(S): The smooth term si =

si1(S) + si2(S̃) =
∫

Ωi
⋂

S
|∂xd − ai| + |∂yd − bi|dp +∫

Ωi
⋂

S̃
|∂xd−ai|+|∂yd−bi|dp and data term ti(S) =

∫
Ωi

⋂
S

(d−
d0)2dp measure how the depths d fit a plane aix + biy + ci and
the observed data d0, respectively. When we minimize si1(S), the
depths on S are regularized based on our planar surface assump-
tion; when we minimize si2(S̃), the values of d is extended from S

to S̃; when we minimize ti(S), d would not deviate the observed
data d0 too much.

By putting all terms together, computing ui, ai, bi, ci and d boil-
s down to the minimization of Equ. (1), where fi = fs

i (S) +

ςsi2(S̃) = (βri + ςsi1 + τti)(S) + ςsi2(S̃)

min
ui,ai,bi,ci,d

L∑
i=1

{∫
Ω

g|∇ui|+ γ‖ui‖∞ + fi

}

s.t.
L∑

i=1

ui = 1, ui ∈ {0, 1}

(1)

4 Optimization

The optimization in Equ. (1) poses a difficult non-convex optimiza-
tion problem. If we relax ui to [0, 1] and take a closer look, the
model is convex both in ui and in ai, bi, ci, d. Hence, we can split
up the optimization into two subproblems Equ. (2) and Equ. (3),
and use an alternating direction method [Boyd et al. 2011] to find
optimal results. Specifically, Equ. (2) is used to calculate segment
uk
i for fixed ak−1

i , bk−1
i , ck−1

i and dk−1:

uk
i =arg min

ui

L∑
i=1

{∫
Ω

g|∇ui|+γ‖ui‖∞+fi

}

s.t.

L∑
i=1

ui = 1, ui ≥ 0

(2)



(a) Input (b) EPD result (c) BLF result (d) WLS result (e) Our denosing

(f) Visualization (g) K-Means result (h) Mean shift result (i) Ncut result (j) Our partition

Figure 2: Joint restoration and segmentation. (a) and (f) are the input image and its color visualization. From left to right, the first row shows
the denosing results of EPD [Subr et al. 2009], BLF [Tomasi et al. 1998], WLS [Farbman et al. 2008] and ours; the second row demonstrates
the partition of K-means, Mean shift, Normalized cuts and ours, where pixels with the same color implies that they belong to the same region.

Equ. (3) targets at computing aki , bki , cki and dk for fixed uk
i , where

k is the number of iterations:

aki , b
k
i , c

k
i , d

k = arg minai,bi,ci,d

L∑
i=1

{
fs
i (S) + ςsi2(S̃)

}
(3)

The cost of iterative computing Equ. (2) (3) can be reduced. In-
deed, only the results of Equ. (3) at the last step are accepted as
final results. If we can reduce the cost at the intermediate steps, the
overall cost will be reduced. We discover that the region indicator
function fi consists of two terms fs

i (S) and si2(S̃) which depend
on the values of two disjoint regions S and S̃, respectively. On the
region S, d is constrained by the observed data d0 and thus cannot
be freely chosen. Hence the value of fs

i (S) is usually very large.
On the contrary, si2(S̃) usually is very small because the values
of d on the region S̃ are in freedom. So fs

i (S) is the dominating
factor and we can get rid of si2(S̃) without affecting final results.
In addition, the guidance image I’s structure information which is
embedded into Per(ui) and ri, is more reliable than dk−1 as an indi-
cation of the possible depth edges on the region S̃. This is because
the edges of dk−1 determined by partition uk−1

i are not as reliable
as the color edges of I . Generally, removing si2 from Equ. (2) (3),
we could save the cost of computing the depths on the region S̃
without introducing negative effect. Furthermore, in Equ. (3),

∑
can be removed because fs

i and fs
j are independent for i 6= j, and

each fs
i only determines dkis denoting the part of dk on the region

Ωk
i

⋂
S, where uk

i = 1Ωk
i

.

Jointly minimizing Equ. (2) (3) by the alternating direction
method [Boyd et al. 2011] iteratively, we can find the minimal so-
lution of Equ. (1). Firstly, Equ. (2) uses partial depths d0 on S and
a registered guidance image I to iteratively partition the image do-
main into different parts. After that, Equ. (3) employs the partition
and the partial depths to produce our interpolation results.

5 Experiment

We use matlab to implement our algorithm. The upsampling perfor-
mance of our method is rather stable when the explicit parameters
γ, ς , β, τ of Equ. (1) are in the range [10, 100], [5, 20], [5, 15],

[20, 50]. For convenience, we consistently keep the parameter set-
ting (i.e. γ = 30, ς = 10, β = 10, τ = 30) of all the data sets used
in the experiments unchanged.

Fig. 2 illustrates the ability of joint restoration and segmentation of
our algorithm for a noisy image. In this case, all pixels in the im-
age domain Ω are seeds (i.e. Ω = S) and interpolation reduces
to restoration. We use the noisy image itself to guide the join-
t restoration and segmentation. Original image Fig 2(a) is gray.
For clarity, we visualize all images using a color map. Our method
produces a denoised image Fig 2(e) and corresponding segmenta-
tion Fig 2(j). The results are compared with three state-of-the-art
denoising methods [Subr et al. 2009; Tomasi et al. 1998; Farbman
et al. 2008] and three recently proposed segmentation methods. In
the first row of Fig. 2, EPD [Subr et al. 2009], BLF [Tomasi et al.
1998], WLS [Farbman et al. 2008] copy the undulating surfaces in-
to final results and blur the edges between different parts because
these methods could not suppress the texture copying effect and
prohibit the information diffusion between edges; the segmentation
results of K-means, Mean shift, Normalized cuts in the second row
of Fig. 2 also are influenced by the noise. Unlike previous methods,
our results could exactly keep the sharp edges without any blurring
and the noise in the image does not affect final segmentation.

Our algorithm can be applied to various interpolation tasks such as
random missing, structural missing and upsampling. In these cases,
seeds S are a subset of the image domain Ω. Using the famous Mid-
dlebury stereo datasets [Scharstein and Szeliski 2002] and RGB-D
object dataset [Lai et al. 2011], we synthesize three depth maps (i.e.
structure missing with possion noise, 5% random missing and 8X
upsmapling) to evaluate the performance of our method for these
interpolation tasks. The experimental results are listed in Fig 3
and Fig.1. We also colorize these figures for clarity. We can ob-
serve that Equ. (1) could suppress the noise in the seeds and use
the partial depth information of seeds to partition the entire image
domain. The interpolation results are comparable with the ground
truth, proving that Equ. 1 can interpolate satisfactory results. The
quality of depth ground truth in the second row is not as good as the
quality of depth ground truth in the first row, because the depth of
the second row is captured by Kinect. However, the interpolation
results are superior to the captured depth map due to our model’s
regularization ability which employs several planes to reconstruct
the entire depth map.



Figure 3: Joint interpolation and segmentation. From left to right: ground truth images, guidance images, synthesized noisy images, our
restored depths by Equ. (1), our partition results by Equ. (1), our depth interpolation results by Equ. (1).

Depth map upsampling is an important application which attracts
much attention. We compare our algorithm with two global meth-
ods (AR [Yang et al. 2012], MRF [Park et al. 2011]) and a local
method GF [Liu et al. 2013] with the 8X depth upsampling result-
s in Fig. 1. We can observe that only our algorithm can eliminate
edge blurring and texture copying artifacts. In contrast, we can easi-
ly find the degradation in the results of the optimization based MRF
and AR models [Park et al. 2011; Yang et al. 2012] and the geodesic
filtering based method [Liu et al. 2013].

6 Conclusion

We presented a variational approach for joint depth map interpo-
lation and segmentation. In our model, the interpolation and seg-
mentation complement each other. The boundary information from
segmentation is used to avoid blurring edges while interpolating
depths; the recovered depths are employed to remove the negative
effect of noise while partition. Furthermore, the partition number
is determined automatically by our algorithm. Our method also ex-
plicitly models the surfaces, and so can suppress the texture copying
and edge blurring artifacts as well as removing noise in the image.
Experiments show that our approach is robust to different types of
interpolation and delivers good results for a wide range of images.
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