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Error Bound Analysis of Q-Function for Discounted
Optimal Control Problems With Policy Iteration

Pengfei Yan, Student Member, IEEE, Ding Wang, Member, IEEE, Hongliang Li, and Derong Liu, Fellow, IEEE

Abstract—In this paper, we present error bound analysis of
the Q-function for the action-dependent adaptive dynamic pro-
gramming for solving discounted optimal control problems of
unknown discrete-time nonlinear systems. The convergence of
Q-functions derived by a policy iteration algorithm under ideal
conditions is given. Considering the approximated errors of the
Q-function and control policy in the policy evaluation step and
policy improvement step, we establish error bounds of approxi-
mate Q-functions in each iteration. With the given boundedness
conditions, the approximate Q-function will converge to a finite
neighborhood of the optimal Q-function. To implement the pre-
sented algorithm, two three-layer neural networks are employed
to approximate the Q-function and the control policy, respectively.
Finally, a simulation example is utilized to verify the validity of
the presented algorithm.

Index Terms—Adaptive dynamic programming (ADP), error
analysis, nonlinear systems, policy iteration, Q-function.

I. INTRODUCTION

OPTIMAL control is an indispensable field in modern
control theory, and dynamic programming is one of the

most effective techniques to solve the optimal control problem
by solving the Hamilton–Jacobi–Bellman (HJB) equation [1].
Unfortunately, it is often difficult to obtain the solutions to
a group of nonlinear partial difference equations and some-
times the HJB equation even has no analytic solution [2].
Furthermore, it will suffer the “curse of dimensionality” when
running dynamic programming to solve the optimal control
problem [3]. Adaptive dynamic programming (ADP) [4]–[6],
similar to the reinforcement learning, is an improved technique
of the dynamic programming and overcomes the problem of
the curse of dimensionality. According to the difference of the
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function approximation architectures, existing ADP algorithms
can be classified into several schemes: heuristic dynamic pro-
gramming (HDP) which approximates the value function [7],
dual heuristic programming (DHP) which approximates the
derivative of value function [8], [9], global dual heuristic
dynamic programming (GDHP) which approximates both the
value function and the derivative of value function [10],
and their action-dependent versions (ADHDP, ADDHP, and
ADGDHP) which employ the state-action value function (also
known as Q-function) [11], [12].

ADP has attracted wide-spread attention to obtain the opti-
mal control policy in the interacted environment, and has been
applied to practical problems, such as multiagent systems [13],
energy system control [14], decentralized control [15], and
zero-sum game [16], [17]. The iterative algorithms for ADP
to solve the optimal control problem include value itera-
tion, policy iteration, and generalized policy iteration [18]
which generalizes value iteration and policy iteration. Value
iteration can solve the optimal control problem of linear
or nonlinear systems with an initial positive semi-definite
function, which will converge to the optimal value function.
Al-Tamimi et al. [7] proved the convergence of the value
iteration algorithm for solving HJB equation of the discrete-
time nonlinear systems. Policy iteration can solve the optimal
control problems with an initial admissible control. With the
iterations between the policy evaluation step and the policy
improvement step, the control policy and the value function
will converge to the optimal ones. The convergence of the
policy iteration algorithm for continuous-time nonlinear sys-
tems and discrete-time nonlinear systems have been given
in [19] and [20], respectively. Wei et al. [21] proved the
iterative value function was monotonically nonincreasing and
converged to the optimum by properly choosing the parameter.
Wei and Liu [22] developed a generalized policy iteration algo-
rithm to solve infinite horizon optimal control algorithm and
demonstrated its stability. Wang et al. [23] demonstrated the
stability of online policy iteration algorithm for continuous-
time nonlinear systems. Generalized policy iteration contains
value iteration and policy iteration, and its convergence is very
difficult to analyze. Some work has been reported in the lit-
erature, such as generalized policy iteration for discounted
finite-state Markov decision problems [24], and more work
needs to be done in the area.

In recent years, data-driven control or model-free con-
trol has attracted more and more attention. Many ADP
algorithms were designed to derive the optimal control for
systems with partially known model [25]–[30] or unknown
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model [2], [31]–[36]. However, in the above model-free
schemes, the dynamic models were still required to be
identified using the input-output data beforehand, which
would bring additional computational cost on building the
model network and introduce the modeling error which
decreases the performance of the controller [7]. Fortunately,
the action-dependent versions of ADP provide a useful
way for deriving the optimal control policy directly by the
state-action value function without building a model net-
work [5], [18], [37]–[40]. Hence, the action-dependent ver-
sions of ADP are completely model-free, which have attracted
many researchers’ interest. Si and Wang [37] applied the
ADHDP algorithm to solve the cart-pole balancing prob-
lem. Song et al. [41] developed a self learning optimal
control laws for nonlinear systems based on ESN architec-
ture. Yang et al. [42] introduced the input constraints to
reinforcement learning for unknown continuous-time non-
linear system. Wei and Liu [43] proposed a policy itera-
tion based deterministic Q-learning for discrete-time systems.
Li et al. [44] developed an integral reinforcement learning for
linear continuous-time zero sum games. Zhao et al. [45]–[47]
improved the convergence rate of the ADHDP algorithm
via integrating the prior experience into a supervisor for
the driver assistance systems. Wei and Liu [48] introduced
iterative ADP for temperature control of water gas shift
reaction.

As the function approximation is used in most ADP
schemes, the error bound analysis must be established to make
sure the ADP methods available. Van Roy [49] established
bounds for approximate value iteration with performance loss.
Mounos provided the error bounds between approximate poli-
cies derived by the approximate value function and the optimal
policy using Lp-norms [50], [51] and quadratic norm [52].
Bertsekas [53] gave the error bounds of approximate pol-
icy iteration according to weighted sup-norm contractions.
Perkins and Precup [54] proved that the approximate pol-
icy iteration algorithm with a model-free form can converge
to one solution. Liu and Wei [55] presented finite approx-
imation error analysis based optimal control approach for
discrete-time nonlinear systems. Rantzer [56] established a
relaxed dynamic programming in switching systems which
could make the distance from optimal values within preset
bounds of the optimal cost function. Grune and Rantzer [57]
applied the relaxed value iteration to discrete-time nonlinear
systems with a receding horizon control scheme. Liu et al. [58]
discussed error bounds of ADP algorithms for value itera-
tion, policy iteration and generalized policy iteration. Most
of the above works study the error bounds of value function
which is just a function of the states. However, as a widely
applied scheme, the action-dependent ADP has not been ana-
lyzed for error bounds of the Q-function when considering
approximation errors, which motivates this paper. To the best
of our knowledge, this is the first time to establish the error
bounds of the Q-function with policy iteration for discounted
optimal control problems considering the approximation
errors.

The infinite-horizon optimal control problem of discrete-
time deterministic nonlinear systems is an important area of

optimal control [1], [59]. In this paper, we consider the approx-
imation errors of the iterative Q-functions in policy evaluation
step and policy improvement step. First, we give a data-
driven ADP algorithm based on the discounted Q-function
with policy iteration. Instead of the contraction assumption,
a novel convergence proof of this algorithm under ideal
conditions is established. Then, the error bounds of the approx-
imate Q-functions derived by the approximate policy iteration
are considered. Furthermore, we prove that the approximate
Q-functions will converge to a finite neighborhood of the opti-
mal Q-function. This result provides a theoretical guarantee to
introduce an approximator such as neural network to action-
dependent ADP, which is important to the development of
ADP in both theory and application. To implement the devel-
oped algorithm, two three-layer neural networks are used to
approximate the Q-function and the controller. Finally, a simu-
lation example of mass-spring system is given to demonstrate
the effectiveness of the developed algorithm.

The rest of this paper is organized as follows. Section II
presents the infinite-horizon optimal control problem for
discrete-time deterministic nonlinear systems. Section III
presents the convergence and error bound analysis for the
model-free optimal control problem based on policy itera-
tion. Section IV provides the implementation of the developed
approach with three-layer neural networks. Section V provides
a simulation example to demonstrate the effectiveness of the
developed algorithm, and Section VI gives the conclusions.

II. PROBLEM FORMULATION

In this paper, we consider the following deterministic
discrete-time nonlinear dynamical system:

xk+1 = f (xk, uk), k = 0, 1, 2, . . . (1)

where xk ∈ R
n is the state vector, and uk ∈ R

m is the con-
trol input. The system (1) is assumed to be controllable which
implies that there exists a continuous control policy on a com-
pact set � ⊆ R

n that stabilizes the system asymptotically. We
assume that xk = 0 is an equilibrium state of the system (1)
and f (0, 0) = 0. The system function f (xk, uk) is Lipschitz
continuous with respect to xk and uk. The infinite horizon cost
function with discount factor for any initial state x0 is given by

J(x0, u) =
∞∑

k=0

γ kU(xk, uk) (2)

where u is the control sequence defined as u =
{u0, u1, u2, . . .}, U is the utility function which is continuous
and positive definite on xk and uk, and γ is the discount factor
which satisfies 0 < γ ≤ 1. For any feedback control policy
μ(x), the value function Vμ(x), the map from any state x to
the value of (2), is defined as

Vμ(x) = J(x, μ(x)). (3)

Definition 1: A feedback control policy μ(x) is admissible
with respect to system (1), if μ(0) = 0, μ(x) is continuous and
stabilizes the system, and the value function Vμ(x) is finite.



YAN et al.: ERROR BOUND ANALYSIS OF Q-FUNCTION FOR DISCOUNTED OPTIMAL CONTROL PROBLEMS 1209

Our goal is to find an admissible control which can
minimize the value function such that

V∗(x) = min
μ

{
Vμ(x)

}
. (4)

According to Bellman’s principle of optimality, the optimal
value function satisfies the discrete-time HJB equation

V∗(x) = min
u

{
U(x, u)+ γ V∗(f (x, u))

}
(5)

and the optimal control policy μ∗(x) is given by

μ∗(x) = arg min
u

{
U(x, u)+ γ V∗(f (x, u))

}
. (6)

To replace the value function in data-driven ADP schemes, the
Q-function which is also known as state-action value function
is defined as

Qμ(x, u) = U(x, u)+ γ Qμ
(
x+, μ

(
x+
))

(7)

where x+ is the state of the next moment, i.e., x+ = f (x, u).
According to (3), the relationship between value function and
Q-function is

Qμ(x, μ(x)) = U(x, μ(x))+ γ Qμ
(
x+, μ

(
x+
))

= J(x, μ(x))

= Vμ(x).

Then the optimal Q-function is defined as

Q∗(x, u) = min
μ

Qμ(x, u)

and the optimal control policy μ∗(x) can be obtained by

μ∗(x) = arg min
u

Q∗(x, u). (8)

The optimal Q-function satisfies the following Bellman opti-
mality equation:

Q∗(x, u) = U(x, u)+ γ min
u+

Q∗
(
x+, u+

)
(9)

where u+ is the action of the next moment. The connec-
tion between the optimal value function and the optimal
Q-function is

V∗(x) = min
u

Q∗(x, u).

In most situations, the optimal control problem for nonlin-
ear systems has no analytical solution and traditional dynamic
programming faces the curse of dimensionality. In this paper,
we develop a data-driven iterative ADP algorithm by using
Q-function which depends on the state and action to solve
the nonlinear optimal control problem. Similar to most of
the ADP methods, function approximation structures like neu-
ral networks are used to approximate the Q-function (or
state-action value function) and the control policy. The approx-
imation errors may increase along with the iteration processes.
Therefore, it is necessary to establish the error bounds of
Q-function for iteration algorithm considering the function
approximation errors.

III. POLICY-ITERATION-BASED DATA-DRIVEN ADP

In this section, we develop a data-driven ADP algorithm
based on the discounted Q-function with policy iteration algo-
rithm. Convergence analysis of this algorithm under ideal
conditions is presented and the error bound for the algorithm
considering the approximation errors is established.

A. Policy Iteration Under Ideal Conditions

We assume that the system (1) is unknown, and only an
offline data set {xk, uk, xk+1}N is available, where xk+1 is the
next state of xk and uk, and N is the number of samples in
the data set. xk+1 and xk stand for the dynamic behavior of
one-shot data and do not mean that the data set has to take
samples from one trajectory. In general, the data set contains
a variety of trajectories and scattered data.

For the policy iteration of the data-driven ADP algorithm, it
starts with an initial admissible control μ0. For i = 0, 1, . . . ,

the policy iteration algorithm contains policy evaluation phase
and policy improvement phase given as follows.

Policy evaluation

Qμi
j+1(xk, uk) = U(xk, uk)+ γ Qμi

j (xk+1, μi(xk+1)). (10)

Policy improvement

μi+1(xk) = arg min
uk

Qμi(xk, uk) (11)

where j is the policy evaluation index and i is the policy
improvement index. Qμi

j represents the jth evaluation for the
ith control policy μi, and Qμi

0 = Qμi−1∞ . Let Qμi denote the
Q-function for μi. Next, we will prove that the limit of Qμi

j
as j→∞ exists and Qμi∞ = Qμi .

Assumption 1: There exists a finite positive constant λ that
makes the condition minuk+1 Q∗(xk+1, uk+1) ≤ λU(xk, uk)

hold uniformly on �.
Remark 1: Assumption 1 is a basic assumption which

ensures the convergence of ADP algorithms. For most non-
linear systems, it is easy to find a sufficiently large number λ

to satisfy this assumption as Q∗(·) and U(·) are finite.
Lemma 1: Let Assumption 1 hold. Suppose that μ0 is an

admissible control policy and Qμ0 is the Q-function of μ0. Let
Qμi

j and μi be updated by (10) and (11). Then we can obtain
the following conclusions.

1) The sequence {Qμi
j } is monotonically nonincreasing, i.e.,

Qμi
j ≥ Qμi

j+1, ∀i ≥ 1. Moreover, as j→∞, the limit of
Qμi

j is denoted by Qμi∞, and equal to Qμi , ∀i ≥ 1.
2) The sequence {Qμi} is monotonically nonincreasing, i.e.,

Qμi ≥ Qμi+1 , ∀i ≥ 1.
Proof: The entire proof includes two parts.
1) μ0 is an admissible control policy, according

to (10) and (11), then we can obtain

Qμ1
0 (xk, uk) = Qμ0(xk, uk)

= U(xk, uk)+ γ Qμ0(xk+1, μ0(xk+1))

≥ U(xk, uk)+ γ min
uk+1

Qμ0(xk+1, uk+1)

= U(xk, uk)+ γ Qμ0(xk+1, μ1(xk+1))

= Qμ1
1 (xk, uk). (12)
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So Qμ1
j ≥ Qμ1

j+1 holds for j = 0. If Qμ1
j ≥ Qμ1

j+1 holds
for j = m− 1, when j = m, we can obtain

Qμ1
m (xk, uk) = U(xk, uk)+ γ Qμ1

m−1(xk+1, μ1(xk+1))

≥ U(xk, uk)+ γ Qμ1
m (xk+1, μ1(xk+1))

= Qμ1
m+1(xk, uk). (13)

According to the mathematical induction, we can obtain
that Qμi

j ≥ Qμi
j+1 holds for i = 1. Since {Qμ1

j } is a
monotonically nonincreasing sequence and Qμ1

j ≥ 0,
the limit of {Qμ1

j } exists, which is denoted by Qμ1∞ , and
Qμ1

j ≥ Qμ1∞ ,∀j. According to (10), we have

Qμ1
j+1(xk, uk)

≥ U(xk, uk)+ γ Qμ1∞ (xk+1, μ1(xk+1)), j ≥ 0. (14)

Letting j→∞, we have

Qμ1∞ (xk, uk) ≥ U(xk, uk)+ γ Qμ1∞ (xk+1, μ1(xk+1)).

(15)

Similarly, we can obtain

Qμ1∞ (xk, uk) ≤ U(xk, uk)

+ γ Qμ1
j (xk+1, μ1(xk+1)), j ≥ 0. (16)

Letting j→∞, we have

Qμ1∞ (xk, uk) ≤ U(xk, uk)+ γ Qμ1∞ (xk+1, μ1(xk+1)). (17)

Hence, we can obtain

Qμ1∞ (xk, uk) = U(xk, uk)+ γ Qμ1∞ (xk+1, μ1(xk+1)). (18)

Thus, we can obtain that Qμi∞ = Qμi holds for i = 1. We
assume that Qμi

j ≥ Qμi
j+1 and Qμi∞ = Qμi hold for any

i = l, l ≥ 1. According to (10) and (11), we can obtain

Qμl+1
0 (xk, uk) = Qμl(xk, uk)

= U(xk, uk)+ γ Qμl(xk+1, μl(xk+1))

≥ U(xk, uk)+ γ min
uk+1

Qμl(xk+1, uk+1)

= U(xk, uk)+ γ Qμl(xk+1, μl+1(xk+1))

= Qμl+1
1 (xk, uk). (19)

Considering (10) and (19), we have

Qμl+1
1 (xk, uk) = U(xk, uk)+ γ Qμl+1

0 (xk+1, μl(xk+1))

≥ U(xk, uk)+ γ Qμl+1
1 (xk+1, μl(xk+1))

= Qμl+1
2 (xk, uk). (20)

Similarly, we can obtain that Qμi
j ≥ Qμi

j+1 holds for
i = l + 1 by induction and Qμi∞ = Qμi . Therefore, the
proof is completed by induction.

2) According to 1), we have

Qui = Qui+1
0 ≥ Qui+1∞ = Qui+1 . (21)

Therefore, {Qμi} is a monotonically nonincreasing
sequence and the proof is completed.

Theorem 1: Let Assumption 1 hold. Suppose that Q∗ ≤
Qμ0 ≤ βQ∗, 1 ≤ β ≤ ∞. μ0 is an admissible control pol-
icy and Qμ0 is the Q-function of μ0. Let Qμi

j and μi be

updated by (10) and (11). Then the Q-function sequence Qμi

approaches Q∗ according to the inequalities

Q∗ ≤ Qμi ≤
[

1+ β − 1
(
1+ λ−1

)i

]
Q∗, ∀i ≥ 1. (22)

Proof: According to the definitions of Q∗ and Qμi , the
left-hand side of the inequality (22) always holds for any
i ≥ 1. Next, we prove the right-hand side of (22) by induction.
According to Assumption 1, we have

γ min
uk+1

Q∗(xk+1, uk+1) ≤ min
uk+1

Q∗(xk+1, uk+1) ≤ λU(xk, uk).

(23)

Considering (10), (11), and (23), we can obtain

Qμ1
1 (xk, uk) = U(xk, uk)+ γ min

uk+1
Qμ1

0 (xk+1, uk+1)

= U(xk, uk)+ γ min
uk+1

Qμ0(xk+1, uk+1)

≤ U(xk, uk)+ γβ min
uk+1

Q∗(xk+1, uk+1)

≤ U(xk, uk)+ γβ min
uk+1

Q∗(xk+1, uk+1)

+ β − 1

λ+ 1

[
λU(xk, uk)− γ min

uk+1
Q∗(xk+1, uk+1)

]

=
(

1+ λ
β − 1

λ+ 1

)
U(xk, uk)

+
(

β + β − 1

λ+ 1

)
γ min

uk+1
Q∗(xk+1, uk+1)

=
[

1+ β − 1(
1+ λ−1

)
]

Q∗(xk, uk). (24)

According to Lemma 1, we have

Qμ1 = Qμ1∞ ≤ Qμ1
1 (xk, uk) ≤

[
1+ β − 1(

1+ λ−1
)
]

Q∗(xk, uk)

(25)

which shows that the right-hand side of (22) holds for i = 1.
Assume that

Qμi(xk, uk) ≤
[

1+ β − 1
(
1+ λ−1

)i

]
Q∗(xk, uk)

holds for any i = l, l ≥ 1, then we can obtain

Qμl+1(xk, uk)

≤ Qμl+1
1 (xk, uk)

= U(xk, uk)+ γ min
uk+1

Qμl(xk+1, uk+1)

≤ U(xk, uk)+ γ

[
1+ β − 1

(
1+ λ−1

)l

]
min
uk+1

Q∗(xk+1, uk+1)

+ β − 1
(
1+ λ−1

)l+1

[
λU(xk, uk)− γ min

uk+1
Q∗(xk+1, uk+1)

]

≤
[

1+ β − 1
(
1+ λ−1

)l+1

]
Q∗(xk, uk) (26)

which shows that the right of (22) holds for i = l + 1.
According to the mathematical induction, the right of (22)
holds. The proof is completed.
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In policy iteration, an initial admissible control policy is
required, which is usually obtained by experience or trial.
However, for most nonlinear systems, it is hard to obtain an
admissible control policy, especially in data-driven ADP for
unknown systems. So we present a novel initial condition for
policy iteration.

Lemma 2: Let Assumption 1 hold. Suppose that there is an
positive definite function Q0 satisfying γ Q0 ≥ Qμ1

1 for any
xk, uk. Let Qμ1

j and μ1 be obtained by (10) and (11). Then
μ1(x) is an admissible control policy and Qμ1 = Qμ1∞ is the
Q-function of μ1(x).

Proof: Considering (10) and (11), we have

μ1(xk) = arg min
uk

Q0(xk, uk) (27)

and

Qμ1
1 (xk, uk) = U(xk, uk)+ γ Q0(xk+1, μ1(xk+1)). (28)

Using the assumption of Q0, we can obtain

γ Q0(xk, μ1(xk)) ≥ Qμ1
1 (xk, μ1(xk))

= U(xk, μ1(xk))+ γ Q0(xk+1, μ1(xk+1)).

(29)

Considering Q0(xk, μ1(xk)) ≥ 0 and

Q0(xk+1, μ1(xk+1))− Q0(xk, μ1(xk)) ≤ −1/γ U(xk, μ1(xk))

(30)

we can conclude that the control policy μ1 is asymptotically
stable for the system (1). Then, similar to (12)–(18), we can
obtain that Qμ1 = Qμ1∞ ≤ Q0. Thus, the value function of
μ1 is

Vμ1(xk) = Qμ1(xk, μ1(xk)) ≤ Q0(xk, μ1(xk)). (31)

Therefore, we can conclude that μ1(xk) is an admissible
control. The proof is completed.

According to Lemma 2, we can obtain an admissible con-
trol by using an initial positive definite function Q0. Thus,
considering Theorem 1, we can obtain the following corollary.

Corollary 1: Let Assumption 1 hold. Suppose that there
is an initial positive definite function Q0 which satisfies
γ Q0 ≥ Qμ1

1 for any xk, uk. Let Qμ1
j and μ1 be updated

by (10) and (11). Then the Q-function sequence {Qμi}
approaches Q∗ according to the following inequalities:

Q∗ ≤ Qμi ≤
[

1+ β − 1
(
1+ λ−1

)i

]
Q∗, ∀i ≥ 1. (32)

From Theorem 1 and Corollary 1, we can see that as
i→∞, Qμi converges to Q∗ in ideal conditions, i.e., the con-
trol policy and Q-function in each iteration can be obtained
accurately. They also give a convergence rate of Qμi with pol-
icy iteration. When the discount factor γ = 1, the discounted
optimal control problem turns into an undiscounted optimal
control problem, and Theorem 1 and Corollary 1 still hold.

However, in practice, considering that the iteration indices i
and j cannot reach infinity as the algorithm must stop in finite
steps, there exist convergence errors in the iteration process. In
addition, the control policy and Q-function in each iteration are

obtained by approximation structures, so there exist approxi-
mate errors between approximate and accurate values. Hence,
Theorem 1 and Corollary 1 may be invalid and the policy-
iteration-based data-driven ADP may even be divergent. To
overcome this difficulty, in the following section we establish
new error bound analysis results for Q-function considering
the convergence and approximation errors.

B. Error Bound for Approximate Policy Iteration

For the approximate policy iteration, function approxima-
tion structures are used to approximate the Q-function and the
control policy. The approximate expressions of Qμi and μi are
Q̂μ̂i and μ̂i, respectively. We assume that there exist two finite
positive constants δ ≤ 1 and δ̄ ≥ 1 that make

δQμ̂i ≤ Q̂μ̂i ≤ δ̄Qμ̂i (33)

hold uniformly, for any i ≥ 1, where Qμ̂i is the exact
Q-function associated with μ̂i. δ and δ̄ imply the convergence
error in j-iteration and the approximation error of Qμ̂i in pol-
icy evaluation phase. When δ = δ̄ = 1, both errors are zero.
Considering Lemma 1, we can obtain

Q̂μ̂i ≤ δ̄Qμ̂i ≤ δ̄Q̂μ̂i
1 (34)

where Q̂μ̂i
1 (xk, uk) = U(xk, uk) + γ Q̂μ̂i−1(xk+1, μ̂i(xk+1)).

Similarly, we assume that there exist two finite positive
constants σ ≤ 1 and σ̄ ≥ 1 that make

σQμ̂i
1 ≤ Q̂μ̂i

1 ≤ σ̄Qμ̂i
1 (35)

hold uniformly, ∀i ≥ 1, where Qμ̂i
1 (xk, uk) = U(xk, uk) +

γ Q̂μ̂i−1(xk+1, μi(xk+1)). σ and σ̄ imply the approximation
errors of μ̂i in the policy improvement phase. If the iterative
control policy can be obtained accurately, then σ = σ̄ = 1.
Considering (34) and (35), we can get

Q̂μ̂i ≤ σ̄ δ̄Qμ̂i
1 . (36)

On the other hand, considering (33) and (35), we have

Q̂μ̂i ≥ δQμ̂i ≥ δQ∗. (37)

Therefore, the whole approximation errors in the Q-function
and control policy update step can be expressed by

εQ∗ ≤ Q̂μ̂i ≤ ε̄Qμ̂i
1 (38)

where ε = δ and ε̄ = σ̄ δ̄. We establish the error bounds for
approximate policy iteration by the following theorem.

Theorem 2: Let Assumption 1 hold. Suppose that Q∗ ≤
Qμ0 ≤ βQ∗, 1 ≤ β ≤ ∞. μ0 is an admissible control
policy and Qμ0 is the Q-function of μ0. The approximate
Q-function Q̂μ̂i satisfies the iterative error condition (38).
Then, the Q-function sequence {Q̂μ̂i} approaches Q∗ according
to the following inequalities:

εQ∗ ≤ Q̂μ̂i+1

≤ ε̄

⎡

⎣1+
i∑

j=1

λjε̄j−1(ε̄ − 1)

(λ+ 1)j
+ λiε̄i(β − 1)

(λ+ 1)i

⎤

⎦Q∗. (39)
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Moreover, the approximate value function sequence {Q̂μ̂i} con-
verges to a finite neighborhood of Q∗ uniformly on � as
i→∞, that is

εQ∗ ≤ lim
i→∞ Q̂μ̂i ≤ ε̄

1+ λ− ε̄λ
Q∗ (40)

under the condition ε̄ ≤ 1/λ+ 1.
Proof: First, the left-hand side of (39) holds clearly accord-

ing to (38). Next, we prove the right-hand side of (39) holds
for i ≥ 1. Considering (38) and Assumption 1, we can obtain

Q̂μ̂2(xk, uk)

≤ ε̄Qμ̂2
1 (xk, uk)

= ε̄[U(xk, uk)+ γ Q̂μ̂1(xk+1, μ̂2(xk+1))]

= ε̄[U(xk, uk)+ γ min
uk+1

Qμ̂1(xk+1, uk+1)]

≤ ε̄[U(xk, uk)+ γβε̄ min
uk+1

Q∗(xk+1, uk+1)]

+ ε̄
ε̄β − 1

λ+ 1
[λU(xk, uk)− γ min

uk+1
Q∗(xk+1, uk+1)]

= ε̄

(
1+ λ

ε̄β − 1

λ+ 1

)
U(xk, uk)

+ ε̄

(
βε̄ − ε̄β − 1

λ+ 1

)
γ min

uk+1
Q∗(xk+1, uk+1)

= ε̄

(
1+ λ

ε̄β − 1

λ+ 1

)
Q∗(xk, uk)

= ε̄

(
1+ λ(ε̄ − 1)

λ+ 1
+ λε̄(β − 1)

λ+ 1

)
Q∗(xk, uk). (41)

Hence, the upper bound of Q̂μ̂i+1 holds for i = 1. Suppose
that the upper bound of Q̂μ̂i holds for i ≥ 1. Then, we have

Q̂μ̂i+1(xk, uk)

≤ ε̄

[
U(xk, uk)+ γ min

uk+1
Q̂μ̂i(xk+1, uk+1)

]

≤ ε̄

[
U(xk, uk)+ γ ε̄ρ min

uk+1
Q∗(xk+1, uk+1)

]

≤ ε̄

[
U(xk, uk)+ γ ε̄ρ min

uk+1
Q∗(xk+1, uk+1)

]

+ ε̄


[
λU(xk, uk)− γ min

uk+1
Q∗(xk+1, uk+1)

]

= ε̄(1+
λ)

[
U(xk, uk)+ γ min

uk+1
Q∗(xk+1, uk+1)

]

= ε̄(1+
λ)Q∗(xk, uk) (42)

where ρ = 1 + ∑i−1
j=1(λ

jε̄j−1(ε̄ − 1)/(λ+ 1)j) +
(λi−1ε̄i−1(β − 1)/(λ+ 1)i−1), 
 satisfies 
 ≥ 0 and
1+
λ = ε̄ρ −
. Hence, we can calculate


 = ε̄ρ − 1

1+ λ

= ε̄ − 1

1+ λ
+

i−1∑

j=1

λjε̄j(ε̄ − 1)

(λ+ 1)j+1
+ λi−1ε̄i(β − 1)

(λ+ 1)i

=
i∑

j=1

λj−1ε̄j−1(ε̄ − 1)

(λ+ 1)j
+ λi−1ε̄i(β − 1)

(λ+ 1)i
. (43)

Substituting (43) into (42), we can obtain

Q̂μ̂i+1 ≤ ε̄

⎡

⎣1+
i∑

j=1

λjε̄j−1(ε̄ − 1)

(λ+ 1)j
+ λiε̄i(β − 1)

(λ+ 1)i

⎤

⎦Q∗. (44)

Thus, the upper bound of Q̂μ̂i holds for i + 1. According to
the mathematical induction, the right-hand side of (39) holds.
Since the sequence {λjε̄j−1(1 − ε̄)/(λ + 1)j} is a geometric
series, we have

i∑

j=1

λjε̄j−1(ε̄ − 1)

(λ+ 1)j
=

λ(1− ε̄)

λ+ 1

(
1−

(
λε̄

λ+ 1

)i
)

1− λε̄
λ+1

. (45)

Considering ε̄ ≤ 1/λ+ 1, we have

lim
i→∞ Q̂μ̂i ≤ ε̄

1+ λ− ε̄λ
Q∗. (46)

The proof is completed.
Remark 2: We can find that the upper bound is a mono-

tonically increasing function of ε̄. The condition ε̄ ≤ 1/λ+ 1
ensures that the upper bound in (40) is finite and positive. A
larger λ will lead to a slower convergence rate and a larger
error bound. Besides, a larger λ also requires more accurate
iteration to converge. When ε = ε̄ = 1, the approximate
Q-function sequence Q̂μ̂i converges to Q∗ uniformly on �

as i→∞.
For the undiscounted optimal control problem, the discount

factor γ = 1, and the Q-function is redefined as

Qμ(x, u) = U(x, u)+ Qμ
(
x+, μ

(
x+
))

(47)

and the optimal Q-function satisfies

Q∗(x, u) = U(x, u)+min
u+

Q∗
(
x+, u+

)
. (48)

From Theorems 1 and 2, we know that when γ = 1, all the
deductions still hold. So we have the following corollary.

Corollary 2: For the undiscounted optimal control problem
with Assumption 1 and the admissible control policy μ0 sat-
isfying Q∗ ≤ Qμ0 ≤ βQ∗, 1 ≤ β ≤ ∞, if the approximate
Q-function Q̂μ̂i satisfies the iterative error condition (38), the
approximate Q-function sequence {Q̂μ̂i} converges to a finite
neighborhood of Q∗ uniformly on � as i→∞, that is

εQ∗ ≤ lim
i→∞ Q̂μ̂i ≤ ε̄

1+ λ− ε̄λ
Q∗ (49)

under the condition ε̄ ≤ 1/λ+ 1.

IV. NEURAL NETWORK IMPLEMENTATION FOR

APPROXIMATE POLICY ITERATION

In the previous section, the approximation Q-function with
policy iteration is proven to converge to a finite neighborhood
of the optimal one. Hence, it is feasible to approximate the
Q-function and the control policy using neural networks. We
present the detailed implementation of the proposed algorithm
using neural networks in this section.

The structure diagram of the data-driven iterative ADP in
this paper is shown in Fig. 1. The outputs of critic network and
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Fig. 1. Structure diagram of data-driven iterative ADP.

the action network are the approximations of the Q-function
and the control policy, respectively.

The approximate Q-function Q̂ûi
j (xk, uk) is expressed by

Q̂ûi
j (xk, uk) = WT

c(ij)σ

(
VT

c(ij)

[
xT

k , uT
k

]T
)

(50)

where σ(·) is the activation function, which is selected as
tanh(·). The target function of the critic neural network is
given by

Q̂∗i,j+1(xk, uk) = U(xk, uk)+ Q̂ûi
j

(
xk+1, μ̂i(xk+1)

)
(51)

where xk+1 = f (xk, μ̂i(xk)). Then, the training function for the
critic network is defined by

ec(i,j+1)(xk) = Q̂ûi
j+1(xk, uk)− Q̂∗i,j+1(xk, uk) (52)

and the performance function to be minimized is defined by

Ec(i,j+1) = 1

2
eT

c(i,j+1)ec(i,j+1). (53)

The approximate control policy μ̂i is expressed by the action
network

μ̂i(xk) = WT
a(i)σ

(
VT

a(i)xk

)
. (54)

The target function of the action network is defined by

μ̂∗i+1(xk) = arg min
μ

Q̂μ̂i(xk, u). (55)

Then, the error function for training the action network is
defined by

ea(i+1)(xk) = μ̂i+1(xk)− μ̂∗i+1(xk). (56)

The performance function of the action network to be mini-
mized is defined by

Ea(i+1) = 1

2
eT

a(i+1)ea(i+1). (57)

We use the gradient descent method to update the weights
of critic and action networks on a data set. A detailed process
of the approximate policy iteration is given in Algorithm 1.

Algorithm 1 Approximate Policy Iteration
1: Initialization:

Initialize critic and action networks randomly;
Select an initial stabilizing control policy μ0;
Set the approximation errors of policy evaluation step
and policy improvement step as ζ and ξ , and maximum
iteration numbers of policy evaluation step and policy
improvement step as Jmax and Imax.

2: Set i = 0.
3: For j = 0, 1, . . . , Jmax, update the Q-function Q̂μ̂i

j+1(xk)

by minimizing (53) on the training set {xk}. When j =
Jmax or the convergence conditions are met, set Q̂μ̂i(xk) =
Q̂μ̂i

j+1(xk) and go to Step 4.
4: Update the control policy μ̂i+1(xk) by minimizing (57) on

the training set {xk}.
5: Set i← i+ 1.
6: Repeat Steps 3–5 until the convergence conditions are met.
7: Obtain the approximate optimal control policy μ̂i(xk).

Fig. 2. Convergence of Q-function Q̂μ̂i
j on state [0.5,−0.5]T at i = 1.

V. SIMULATION STUDY

In this section, we use a simulation example to demon-
strate the effectiveness of the developed algorithm. Consider
the mass-spring system [34] whose dynamics is
[

x1,k+1
x2,k+1

]
=
[

0.05x2,k

−0.0005x1,k − 0.0335x3
1,k + x2,k

]
+
[

0
0.05

]
uk.

(58)

Define the Q-function as

Q(x0, u) =
∞∑

k=0

γ k
(

xT
k Qxk + uT

k Ruk

)
(59)

where Q =
[

0.1 0
0 0.1

]
, R = 0.1, and γ = 0.95.

In the simulation, we choose two three-layer neural net-
works as the approximation structures of controller and
Q-function. The structures of the critic and action neural
networks are chosen as 3–8–1 and 2–8–1, respectively. The
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Fig. 3. Convergence of Q-function Q̂μ̂i on state [0.5,−0.5]T.

(a) (b)

Fig. 4. State trajectories from the state [1,−1]T for (a) x1 and (b) x2.

activation function is selected as tanh(·). In order to guar-
antee the convergence of the neural network training, the
initial weights of the activation functions are chosen randomly
around zero. In this paper, we set the initial weights of both
the critic and action networks as random values with uniform
distribution of [−0.01, 0.01]. The preset approximation errors
are ζ = ξ = 10−8, and the maximum iteration steps of pol-
icy evaluation and policy improvement are Jmax = 40 and
Imax = 10. The compact subset � of the state space is chosen
as 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. The training set {xk} contains
1000 samples choosing randomly from the compact set �. The
initial admissible control policy is chosen as μ0 = [−3,−1]xk.

We train the action and critic neural networks offline
with Algorithm 1. Fig. 2 illustrates the convergence process
of the Q-function Q̂μ̂i

j with the iteration index j on state
x = [−0.5, 0.5]T at i = 1. Fig. 3 shows the convergence
curve of Q-function Q̂μ̂i on state [0.5, 0.5]T with the itera-
tion index i. Fig. 4 shows the state trajectories from the initial
state [1,−1]T to the equilibrium under the initial control policy

Fig. 5. Action trajectories corresponding to the states from [1,−1]T.

and the approximate optimal control policy obtained by our
method, respectively. Fig. 5 shows the action trajectories of
the initial control policy and the approximate optimal control
policy obtained by our method, respectively.

VI. CONCLUSION

In this paper, we developed a novel error bound analy-
sis method of Q-function with policy iteration for unknown
discounted discrete-time nonlinear systems. A new error con-
dition was given at each iteration, under which the approx-
imate Q-function would converge to a finite neighborhood
of the optimal Q-function. Strict mathematical deduction was
given to prove the above conclusion. This paper guaranteed
that using an approximation structure like neural networks
it is possible to solve nonlinear optimal control problems
with model-free ADP. Two three-layer neural networks were
used to approximate the Q-function and the control policy
in the implementation of the developed method. An example
was given in the simulation to verify the effectiveness of the
developed algorithm.
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