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Optimal Traffic Sensor Location for
Origin–Destination Estimation Using a

Compressed Sensing Framework
Peijun Ye and Ding Wen

Abstract— A series of flow estimation problems, especially
origin–destination estimation, involves optimally locating sen-
sors on a transportation network to measure traffic counts.
As compressed sensing (CS) provides a new method to solve
the estimation problem, its sensor location strategy needs to be
researched in order to facilitate the reconstruction. This paper
first points out that the accurate flow recovery is difficult by intro-
ducing a necessary condition, and then categorizes the location
determination into two cases: sensor number with restriction and
without restriction. For both cases, we elucidate their theoretical
foundations of locating methods and propose an algorithm based
on column coherence minimization, which optimally facilitates
the reconstruction for CS framework. Numerical experiments
indicate that the selected sensor locations fit the flow recovery and
the proposed algorithm, compared with other methods, can lead
to a slightly better result under certain observations.

Index Terms— Traffic sensor location, traffic flow estimation,
compressed sensing.

NOTATIONS

| · | absolute value if · is a real number;
cardinality if · is a vector or set.

‖ · ‖p �p norm.
Rank(·) rank of a matrix.
μ(·) column coherence of a matrix.
< ·, · > inner product of two vectors.
G(N0, A, Ac) abstract road network, N0: node set,

A: link set, Ac: observable link set.
X sensor located link set (X ⊆ Ac)

or the traffic flow measurement vector.
xi traffic counts from link i .
V original traffic flow vector.
v j the j -th entry of the vector V .
N dimension of V .
P assignment matrix, also measurement

matrix.
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pi j cell in P , pi j ∈ [0, 1].
pi· the i -th row of P , pi· = [pi1 · · · pi N ].
m number of sensors.
L N × N transformation basis for V .
W coordinates of V under the basis L.
Pc assignment matrix for Ac.
M number of rows for Pc.
k sparse degree of V .
� CS matrix for P , � = P · L.
ϕ̃· j the j -th column in �.
�c CS matrix for Pc, �c = Pc · L.
�ccom |Pc| × (N

2

)
temporary matrix.

Ncom number of columns of �ccom , Ncom = (N
2

)
.

�m temporary matrix constructed by
selecting m rows from �ccom .

ϕi j cell in �m or �ccom .
C

m×N m × N complex matrix.
Rm×m m × m real matrix.

I. INTRODUCTION

FLOW estimation (such as Origin-Destination (OD), link,
route flow) is crucial for transportation planning and

traffic management. This type of problems consists of inferring
the whole flow vector by given available traffic count mea-
surements from a subset of links. Mathematically, these three
kinds of flow estimations are similarly formulated as an under
determined linear system according to the flow conservation
constraints, among which OD estimation is the most represen-
tative [1]–[3]. It is solved by various models like Maximum
Likelihood, Generalized Least Squares, Bayesian Inference,
Bi-level Programming, etc [4]–[7]. Recently, Compressed
Sensing (CS) has been employed into this issue [8], [9].
It seeks an appropriate transformation basis to convert the
original flow vector into a sparse one approximately and
reconstructs it by �1-minimization with a proper measurement
matrix.

In the estimation process, a sub-problem—the optimal sen-
sor deployment—cannot be avoided and has been researched
for decades. The problem arises because the transportation
agencies, in practice, face budget constraints in implementing
comprehensive sensor deployment plans, and assuming the
full observability of link flows is unreasonable. Meanwhile,
due to the linear dependence of some link traffic counts,
full observation is extravagant and unnecessary. In general,
optimal sensor location issues can be classified into two
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categories: those focusing on the algebraic and topological
properties of the network structure, represented by [10]–[12],
and those associating with observed traffic states (traffic flow
is mainly focused in this paper) as well as the estimation
techniques [13], [14]. This paper mainly concentrates on the
latter scope, regarding �1-minimization as the reconstruction
approach. The reconstruction is severely influenced by the
sensor location strategy, which motivates us to conduct a
detailed research. The main contributions of this paper can
be listed as follows. Firstly, theoretical analysis of accurate
flow reconstruction in CS framework is given, which indicates
the exact recovery is much difficult unless extremely strict
conditions are satisfied. Optimization is an appropriate way to
improve the probability of accurate reconstruction. Secondly,
sensor location determination is categorized into two cases and
the location strategies for each are presented. Since the prob-
lem is NP-hard, an approximate algorithm based on column
coherence minimization is designed. Compared with our pre-
vious work, column coherence minimization leads to a much
more complex case but a more accurate reconstruction [8].
Thirdly, detailed numerical experiments and a comparative
analysis are given.

The remainder of the paper is organized as follows: In the
next section, an investigation of the sensor deployment rules
and optimization models is shown. Section III gives neces-
sary and sufficient conditions of flow estimation using CS,
and points out that the accurate reconstruction is difficult.
Section IV demonstrates the analytical process and gen-
eral principles of sensor location determination for sparse
recovery. The algorithm based on column coherence, which
can promote the probability of reconstruction rather than
row coherence, is also designed in this section. To illus-
trate the algorithm, Section V shows the numerical exper-
iments with the interpretation of the results. Comparative
analysis with other determination rules is conducted as well.
Section VI concludes this paper and puts several additional
discussions.

II. LITERATURE REVIEW

A. Traffic Sensor Location

Traditionally, the traffic sensor location problem has been
mostly addressed as a sub-problem of the broader OD demand
estimation, rather than as an independent problem in the
context of link-based applications. Lam and Lo proposed the
traffic flow volume coverage principles for determining the
priority of link observation in 1990 [15]. Yang et al. [16]
analyzed the reliability of OD estimation based on link flows.
They put forward the maximum possible relative error (MPRE)
as the evaluation indicator between estimated and actual flows.
If a particular OD pair is not covered by the observations,
the resulting MPRE will be infinite as well. This leads to the
proposition of covering rule which tries to guarantee that a por-
tion of each demand flow is observable. Bianco et al. gave an
iterative two-stage procedure and several priority-based greedy
heuristics to determine the sensor locations [17]. For the screen
line-based traffic-counting location problem, Yang et al. [18]
further extended the MPRE concept and considered how

to decide the minimum number of counting stations with
their optimal locations. Bierlaire [19] presented a similar
“total demand scale (TDS)” metric to calculate the difference
between the maximum and minimum possible total demand
estimates in a polyhedron constrained by traffic measurements.
Chen et al. [20] adopted the TDS metric to evaluate the quality
of estimated OD demand and to calculate the possible traffic
counting station locations. Yang and Zhou [21] further defined
four location rules in terms of geographical connectivity.
Yim and Lam [22] tested a number of rules in several large
traffic networks. Based on the entropy measure proposed
by Van Zuylen and Willumsen [23], Chung [24] introduced
an optimum sampling framework to take into account the
information content of the prior OD estimate. Furthermore,
Ehlert et al. [25] proposed a second-best location procedure
to select informative links in a traffic network with partial
detector coverage. Eisenman et al. [26] proposed a Kalman
filtering-based conceptual framework to characterize the error
propagation dynamics in estimation, and they developed a
simulation-based approach to numerically assess the value of
point sensors for real-time network traffic estimations and
predictions in a large scale network. In general, principles of
sensor location deployment are summarized as follows [27].
R1: (OD covering rule [16]) Sensors should be located on

links so that some positive fraction of trips between any
OD pair is observed. In words, each OD pair is covered
by the observation set.

R2: (Maximal flow fraction rule [21]) Sensors should be
located on links so that, for each covered OD pair,
the flow fraction between this OD pair out of flows on
these links is as large as possible.

R3: (Route covering rule [18], [28]) Sensors should be
located on links so that, for each OD pair, all the routes
connecting this OD should be covered.

R4: (Maximal flow intercepting rule [21]) Sensors should be
located on links so that the observed flow is as much as
possible.

R5: (Maximal OD demand fraction rule [29]) Sensors should
be located on links that maximize the sum of intercepted
OD demand fraction. This rule is similar to R2 but the
demand fraction is computed as the ratio between the
route flow on an observed link of an OD pair and
the number of trips of the OD pair itself, rather than
against the flow on the observed link.

R6: (Maximal net route flow captured rule [21]) Sensors
should be located on links so that, for a given number of
observations, the best location set is the one that captures
the largest net OD route flows.

R7: (Maximal net OD flow captured rule [22]) Sensors
should be located on links so that, for a given number of
observations, the best location set is the one that captures
the largest number of net OD trips.

R8: (Link independence rule [21]) Sensors should be located
on links so that the resultant traffic flows on the chosen
links should be linearly independent.

R9: (Minimal observation rule [30]) Sensors should be as
few as possible on the premise that the feasibility and
accuracy of OD estimation are satisfied.
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It should be noted that these rules may not be obeyed
simultaneously for a specific network. Some of them are
even contradictory in certain cases. In practice, which rules
to be satisfied depends on the focus of the flow estimation
model. Yang et al. calculated the minimum observation set
that covered all the OD pairs and captured the maximal
net route flow, considering R1 and R6 [16], [21]. Similarly,
Yang and Ma established the constraints for R3 and selected
the observed links covering all routes [18], [28]. When the
number of available sensors is not enough to cover all the OD
pairs, the objective could be the maximization of the total
number of OD pairs that can be covered, as discussed by
Elhert et al. [25]. Yim and Lam [22] maximized the total net
flow captured (R7) by locating k counting sensors on the
links. Larsson et al. [31] adopted a constrained optimization
model to locate at most k counting sensors on the links so
that the total intercepted flow is maximized (R4). In their
research, however, no attention was paid to link flow depen-
dencies (R8) and to double counting. For R3, Yang et al. [32]
further incorporated time into the objectives and proposed a
multi-level optimization model as well as its genetic solution
algorithm. Another scholar considered the time dimension is
Fei, who focused on the distinction of travel patterns and
defined the optimal locations in this case [33]. Wang et al. [13]
directly introduced OD estimation error rather than MPRE into
location determination explicitly. In his model, a confidence
level of the priori route flow was designated at first and
the traffic counting links were determined by reducing the
uncertainty of the priori link information.

While significant progress has been made in formulating
and solving the sensor location problem, several challenging
theoretical and practical issues remain to be addressed. CS has
brought an innovative framework for traditional flow estima-
tion. It develops to recover the sparse flow vector from a group
of lower dimensional measurements. This property stimulates
scholars to study its applications on traffic flow estimation.

B. Compressed Sensing

Originally derived from signal processing, Compressed
Sensing (or Compressive Sensing) was first proposed by
Donoho [34]. Its basic thought is to recover original signal
vector directly from an under sampled measurement. Similar
problems are encountered in other fields, and the use of
�1-minimization and related methods was greatly popularized
with the work of Tibshirani on the so-called LASSO (Least
Absolute Shrinkage and Selection Operator) [35]. In CS,
two crucial problems, reconstruction and measurement, have
been received most concentrations. The following two para-
graphs will give a brief summary of them.

Let x ∈ CN be an original signal vector and y ∈ Cm

be an under determined measurement, that is y = Ax with
A called compressed sensing matrix or measurement matrix
(m � N). If x is k-sparse, then it can be calculated through
minx ‖ x ‖0, s.t . Ax = y. Unfortunately, it is NP-hard in gen-
eral [36], [37]. Thus two convex relaxations—�1-minimization
(also called basis pursuit) and greedy algorithms (such as
various matching pursuits)—have been proposed [39] and [41].

Quite surprisingly for both types of approaches, various recov-
ery results are available, which provide conditions on the
matrix A and on the sparsity ‖ x ‖0 such that the recovered
solution coincides with original x . These approaches partially
give a solution of the reconstruction.

The two convex relaxations above are not contradic-
tory to the NP-hardness of �0-minimization, since they are
only effective to a subclass of matrices A. This leads to
another central problem: the design of measurement matrix.
Candès and Tao [41] pointed out that for a real-valued case,
a sufficient condition of sparse recovery is A satisfies
Restricted Isometry Property (RIP). In signal processing, a
particular type of random matrices, such as the Gassian matrix,
Bernoulli Matrix or Partial Fourier Matrix, is often used due
to its RIP satisfaction with high probability [42]. Yet how to
acquire a deterministic and explicit measurement matrix seems
more desirable and complicated.

When CS applied to traffic flow estimation, the measure-
ment matrix cannot be generated randomly. It depends on the
deployment of traffic counting sensors. Moreover, the recon-
struction requires the counting link set to meet some particular
conditions. Consequently, starting from accurate flow recon-
struction, how to determine the optimal traffic sensor locations
is studied in the rest of this paper.

III. CONDITIONS OF ACCURATE FLOW RECONSTRUCTION

BASED ON COMPRESSED SENSING

Consider a road network G(N0, A, Ac). The OD flow
estimation from traffic counts is usually formulated as a group
of under-determined measurements in CS framework:

X = P · V = P · L · W = � · W (1)

where � is called compressed sensing matrix and L is a full
rank transformation basis. When W is sparse, it is believed that
we can reconstruct the original solution via �1-minimization.
However, accurate reconstruction requires � to meet
particular conditions. The proposition below shows a necessary
condition of this.

Proposition 1: Let W be a k-sparse vector, and X = � · W
is a lower dimensional linear measurement. � is an m × N
measurement matrix. If the original W can be accurately
reconstructed from the measurement, then any 2k columns
from � are linearly independent.

Proof: Suppose not. There are 2k linear correlated
columns in �. Denote � = (ϕ̃·1, ϕ̃·2, · · · , ϕ̃·N ). Without loss
of generality, assume the first 2k columns are correlated. Then
∃α1, α2, · · · , α2k ∈ R satisfy

2k∑

i=1

αi · ϕ̃·i = 0 (2)

where α1, α2, · · · , α2k are constants and do not all equal to
zero. Consider two particular vectors:

W (1) = [α1, · · · , αk, 0, · · · , 0]T

W (2) = [0, · · · , 0,−αk+1, · · · ,−α2k]T
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Thus Eq. (2) can be written as

�[α1, · · · , αk , 0, · · · , 0]T = �[0, · · · , 0,−αk+1, · · · ,−α2k]T

⇒ � · W (1) = � · W (2)

Since αi are not all zeros, we have W (1) �= W (2). This
indicates two different k-sparse vectors are mapped into an
identical measurement through �. Thus accurate reconstruc-
tion is impossible, which brings a contradiction.

Prop. 1 shows that if we want to recover an original
k-sparse flow vector exactly, the number of independent
observations should be at least 2k. In general, this condition
is usually not satisfied because compared with the original
flow entries, the independent observable links are much fewer.
More extremely, in case that the original flow vector is
not sparse, we need to search for a transformation basis to
complete a “compress” process. Indeed, in order to achieve
this goal, one may simply store only the k largest coordinates
under the transformation (called the best k-term approxima-
tion), while reconstructing V from its compressed version.
The non-stored coordinates are simply set to zero. It is obvious
that more reconstruction of entries requires more independent
observations.

The sufficient condition of accurate recovery is called RIP,
which concerns about the restricted isometry constant defined
as below [41].

Definition 1: For an m × N measurement matrix �,
the k-restricted isometry constant δk of � is the smallest
quantity such that

(1 − δk)‖W‖2
2 ≤ ‖�W‖2

2 ≤ (1 + δk)‖W‖2
2 (3)

holds for all k-sparse vectors W.
If δk ∈ (0, 1), then we call � satisfies the RIP. A matrix

having a small restricted isometry constant is beneficial for the
reconstruction. This means every subset of k or fewer columns
is approximately an orthonormal system. Note that the RIP
cannot guarantee the unique recovery of original sparse vector
by �1-minimization unless the restricted isometry constant is
small enough. One particular sufficient condition is [43]:

δk + δ2k + δ3k < 1 (4)

Unfortunately, this condition is also an extremely strict
requirement for �, which can hardly be achieved in the trans-
portation application. Nevertheless, it is still the basic princi-
ple of sensor location deployment. Minimizing the restricted
isometry constant can lead to an optimal set of observation
that facilitates the sparse recovery.

IV. TRAFFIC SENSOR LOCATION DETERMINATION

The major problem of sensor location determination is to
search a particular X ⊂ Ac as the observed link set, so that
the sparse recovery by �1-minimization from Eq. (1) becomes
optimal. As mentioned before, limited by the financial budget
practically, distributing large quantities of detectors may not
be possible. The numbers of sensors may vary in different
situations. So we categorize this problem into two cases
below.

Fig. 1. A simple network.

A. Sensor Number Without Restriction

For each link in G, there exists a measurement row vector.
For example, as the simple network shown in Fig. 1, the linear
measurements can be written as
(

xe

x f

)

=
(

αAC αAD αAE βBC βB D βB E

1−αAC 1−αAD 1−αAE 1−βBC 1−βB D 1−βB E

)
V ′

where V ′ = [u AC , u AD, u AE , u BC , u B D, u B E ]T is the
OD vector. The corresponding measurement vector of link e is
[αAC , αAD , αAE , βBC , βB D, βB E ], which represents the flow
proportion assigned to link e from each OD pair. It is clear
that for each link of the road network, a measurement row
vector can be uniquely identified in this way. Generally,
let pi· = [pi1, pi2, · · · , pi N ] be the measurement vector of
link i . And the measurement vector sets associated with
Ac and X can be constructed respectively. We denote the two
sets as Pc and P . When there is no restriction imposed on
sensor number, it means all of the rows in Pc can be selected.

From traffic measurement, we always hope to obtain
maximum original flow information from X . In order to
avoid redundant information, the sensor number should
be Rank(Pc). Because for each P ⊂ Pc that satisfies
Rank(P) = Rank(Pc), the remaining measurement vectors
in Pc are all in the space spanned by P and thus can be
linearly represented. These observations are linear combi-
nations of X . Actually, the rule R8 previously mentioned
in Section II describes this principle. The following
two propositions manifest that each X compatible with
Rank(P) = Rank(Pc) is equivalent in this sense, and the
maximal sensor number without redundant information is
Rank(Pc).

Proposition 2: Let V be a k-sparse N × 1 column vector.
(X1 ⊆ Ac, P1 ⊆ Pc), (X2 ⊆ Ac, P2 ⊆ Pc) are two groups of
observations: X1 = P1 · V , X2 = P2 · V . The dimensions of
X1, X2 and P1, P2 are m × 1 and m × N (m < N). Assume
Rank(P1) = Rank(P2) = Rank(Pc) = m. Then, the sparse
solutions V1 and V2 under �1-reconstruction are equivalent
(V1 = V2).

Proof: It is only required to prove that the reconstructions
from the two groups of observations have identical solution
spaces. From m = Rank(P1) = Rank(Pc), we know that
there is at least one group of m linearly independent row
vectors in P1. And these vectors also belong to Pc according to
P1 ⊆ Pc, thus construct a basis of P1 and Pc both. Therefore,
all the row vectors in Pc can be linearly represented by P1
(otherwise, Rank(Pc) > m). Particularly, P2 can be repre-
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sented by P1 as well for P2 ⊆ Pc. Thus ∃T ∈ Rm×m ,
Rank(T ) = m, that satisfies P1 = T · P2. Based on this,
we have

X1 = P1 · V = T · P2 · V = T · X2

Hence,

V1 = arg min
X1=P1·V

∥
∥V

∥
∥

1 = arg min
T −1 X1=T −1 P1·V

∥
∥V

∥
∥

1

= arg min
X2=P2·V

∥∥V
∥∥

1 = V2

Proposition 3: Let V be a k-sparse N × 1 column vector.
(X1 ⊆ Ac, P1 ⊆ Pc), (X2 ⊆ Ac, P2 ⊆ Pc) are two groups of
observations: X1 = P1 ·V , X2 = P2 ·V . The dimensions of X1,
X2 and P1, P2 are m × 1, n × 1, m × N, n × N(m < n < N),
respectively. Assume Rank(P1) = Rank(P2) = Rank(Pc) = m.
Then, the sparse solutions V1 and V2 under �1-reconstruction
are equivalent (V1 = V2).

Proof: Without loss of generality, the sequence of the
equations in the second observation can be adjusted and
expressed in partitioned blocks as

(
Xm

Xn−m

)
=

(
Pm

2
Pn−m

2

)
· V (5)

Where Rank(Pm
2 ) = m. Therefore, we can eliminate the

redundant equations via Gaussian elimination and get
(

Xm

0n−m

)
=

(
Pm

2
0n−m

)
· V (6)

Obviously, the solution spaces of Eq. (5) and Eq. (6)
are identical. According to Prop. 2, Eq. (6) is equivalent to
X1 = P1 · V . Hence,

V1 = arg min
X1=P1·V

∥
∥V

∥
∥

1 = arg min
X2=P2·V

∥
∥V

∥
∥

1 = V2

Prop. 2 and Prop. 3 indicate that any link set with full rank
can extract equivalent information when the sensor number is
not with any restriction. Yet when the sensor number limited
within a range below Rank(Pc), it will lead to a quite different
situation.

B. Sensor Number With Restriction

As mentioned before, the maximal sensor number that can
be deployed in the network is usually limited due to the
budget constraints. Suppose the maximal number of traffic
sensors is m. If m ≥ Rank(Pc), it is equivalent to the
case without restriction. When m < Rank(Pc), which means
that the maximal non-redundant observations provided by Pc

are not available completely, maximum linearly independent
information is still preferable. Thus a particular set of m
linearly independent links should be selected.

In Section III, minimizing the restricted isometry constant
is set to be the basic principle of sensor location deployment.
Direct study of this constant, however, is relatively complex.
Instead, scholars focus on the coherence which is easier to
handle.

Definition 2 (Coherence [44]): Suppose � ∈ C
m×N , � =

(ϕ̃·1, · · · , ˜ϕ·N ), m ≤ N and ‖ϕ̃·i‖2 = 1(i = 1, 2, · · · , N).
Then the column coherence of � is defined as

μ(�) = max
i �= j

∣
∣ < ϕ̃·i , ϕ̃· j >

∣
∣

The relationship between restricted isometry constant and
coherence is shown by Bourgain et al. [45]:

Theorem 1: Suppose the coherence of � =
(ϕ̃·1, · · · , ˜ϕ·N ) ∈ Cm×N (m ≤ N) is μ. Then, � satisfies
the RIP of order k with the restricted isometry constant
δk ≤ (k − 1)μ.

Obviously, the restricted isometry constant will decrease
when μ becomes smaller, thus facilitates the recovery of W
in Eq. (1). According to this fundamental theoretical basis,
the optimal measurement matrix P should have the smallest
μ(�) and satisfy Rank(P) = m simultaneously. This problem
can be mathematically written as

P∗ = arg min
P

μ(P · L), s.t . P ⊂ Pc

The following algorithm gives an approximate searching
strategy.
Input: abstract road network G(N0, A); observable link set
Ac; sensor number m; sparse transformation basis L.
Output: sensor deployed link set X .
Step 1: calculate the measurement row vector set Pc for Ac

according to the traffic assignment proportions.
Step 2: if a particular row Pi· = 0 in Pc, the i -th link cannot
cover any original flow pair and should be deleted from Pc.
Step 3: if m ≥ Rank(Pc), let m = Rank(Pc).
Step 4: search the link set with minimal μ(�). Since it is
an NP-hard problem, we attempt to acquire a near-optimal
solution in order to avoid the global searching.
Step 4.1: preprocessing. Calculate �c = Pc·L. Establish a new
temporary matrix �ccom , whose columns are the multiplication
in each entry of any two columns from �c. That is

�c =
⎛

⎜
⎝

ϕc11 · · · ϕc1N
...

. . .
...

ϕcM1 · · · ϕcM N

⎞

⎟
⎠

�ccom

=
⎛

⎜
⎝

ϕc11 · ϕc12 · · · ϕc12 · ϕc13 · · · ϕc1(N−1) · ϕc1N
...

. . .
...

. . .
...

ϕcM1 · ϕcM2 · · · ϕcM2 · ϕcM3 · · · ϕcM(N−1) · ϕcM N

⎞

⎟
⎠

where M is the number of rows in Pc. Clearly, �ccom has
M rows as well, and its number of columns is Ncom = (N

2

)

(N is the dimension of L). Here we define another new
temporary matrix �m . This matrix is constructed by selecting
m rows from �ccom . For example, if we choose the first
m rows of �ccom , the �m will be

�m =
⎛

⎜
⎝

ϕc11 · ϕc12 · · · ϕc1(N−1) · ϕc1N
...

. . .
...

ϕcm1 · ϕcm2 · · · ϕcm(N−1) · ϕcmN

⎞

⎟
⎠ (7)

Through the row ordinals (1, 2, · · · , m in current example),



1862 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 7, JULY 2017

this �m determines a measurement matrix and

P = � · L−1 =
⎛

⎜
⎝

ϕc11 · · · ϕc1N
...

. . .
...

ϕcm1 · · · ϕcmN

⎞

⎟
⎠ · L−1 (8)

And the related sensor deployed links are link 1 to m.
According to Def. 2, the column coherence of � can be
denoted as

μ
(
�

) = max
j

∣
∣∣
∣
∑

i

ϕi j

∣
∣∣
∣, ϕi j ∈ �m (9)

Since the rows of �m all come from �ccom , each cell ϕi j in
�m also equals to the corresponding element in �ccom . Note
that our objective is to minimize μ(�). Thus in a general
case, the problem is converted into seeking the optimal �m

that satisfies

�∗
m = arg min

�m⊂�ccom

μ
(
�m

)

Unfortunately, it is NP-hard. The following two steps are an
iterative algorithm to solve this optimization approximately.
Step 4.2: initial solution. For convenience, we denote

ϕmax
i· = max

j

∣
∣ϕi j

∣
∣

which means ϕmax
i· is the maximum cell in the i -th row of �m

or �ccom . The initial solution �m is determined by selecting
the m rows which have minimal ϕmax

i· from �ccom and the �
determined by this �ccom is linearly independent. For example,
without loss of generality, suppose the rows of �ccom satisfy
ϕmax

1· ≤ ϕmax
2· ≤ · · · ≤ ϕmax

M · . The initial �m will start with its
first m rows as Eq. (7) shows. In order to guarantee the linear
independence, the compressed sensing matrix � determined
by the initial �m has to be checked. If it is not full ranked,
we should replace one selected row by increase the total sum
of ϕmax

i· in �m most slightly. That is replacing the m-th row
with the (m + 1)-th row as

�m

=

⎛

⎜
⎜⎜
⎝

ϕc11 · ϕc12 · · · ϕc1(N−1) · ϕc1N
...

. . .
...

ϕc(m−1)1 · ϕc(m−1)2 · · · ϕc(m−1)(N−1) · ϕc(m−1)N
ϕc(m+1)1 · ϕc(m+1)2 · · · ϕc(m+1)(N−1) · ϕc(m+1)N

⎞

⎟
⎟⎟
⎠

(10)

If the � determined by the above �m is still not full ranked,
then repeat the replacement. Since m ≤ Rank(Pc), we will
always get a �m with a full ranked �. It is our initial solution.
After the initial solution acquired, if �ccom has some rows
whose ϕmax

i· is smaller than the maximal ϕmax
i· in �m , then

delete these rows with their correspondence in Pc. This is
because the � containing these rows are proved to be linearly
dependent during our selection process. For convenience,
the new �ccom and Pc after deletions are still denoted by the
original symbol.
Step 4.3: update. On the basis of Eq (9). We further assume

μ
(
�

) = max
j

∣
∣∣
∣
∑

i

ϕi j

∣
∣∣
∣ =

∣
∣∣
∣
∑

i

ϕi j ′

∣
∣∣
∣

which means the coherence is determined by the j ′-th column.
Our central task is to update the rows in �m , so that μ(�)
decreases during the update process. It can be divided into
three cases:
1◦ ∑

i ϕi j ′ = 0. It immediately results in μ(�) = 0 and the
computation terminates;
2◦ ∑

i ϕi j ′ > 0. Swap the row with

maxi,ϕi j ′ >0 ϕi j ′ s.t . ϕi j ′ ∈ �m

from �m and the row with

mini,ϕi j ′ >0 ϕi j ′ s.t . ϕi j ′ ∈ �ccom , ϕi j ′ /∈ �m

from �ccom . In other words, the former formula means the
row in �m that contains the maximal positive cell in the
j ′-th column. While the latter one represents the row in �ccom

but not in �m which contains the minimal positive cell in the
j ′-th column.
3◦ ∑

i ϕi j ′ < 0. Swap the row with

mini,ϕi j ′ <0 ϕi j ′ s.t . ϕi j ′ ∈ �m

from �m and the row with

maxi,ϕi j ′ <0 ϕi j ′ s.t . ϕi j ′ ∈ �ccom, ϕi j ′ /∈ �m

from �ccom . Similarly, the former formula means the row in
�m that contains the minimal negative cell in the j ′-th column.
While the latter one represents the row in �ccom but not in �m

which contains the maximal negative cell in the j ′-th column.
Linear independence of � should also be examined.
The updated matrix is denoted as �

′
m . If μ(�) > μ(�

′
),

then let �m = �
′
m and go to the next round of iteration; else

select the m rows from Pc which are determined by �m as
the output and the computation terminates.

In Step 4.2, the initial solution is based on the following
theoretical estimation. On the one hand, there is

μ
(
�m

) = max
1≤ j≤Ncom

∣
∣
∣∣

m∑

i=1

ϕi j

∣
∣
∣∣ ≥ 1

Ncom

Ncom∑

j=1

∣
∣
∣∣

m∑

i=1

ϕi j

∣
∣
∣∣

≥ 1

Ncom

∣
∣
∣
∣

Ncom∑

j=1

m∑

i=1

ϕi j

∣
∣
∣
∣, (ϕi j ∈ �m)

On the other hand, we have

μ
(
�m

) = max
1≤ j≤Ncom

∣
∣
∣∣

m∑

i=1

ϕi j

∣
∣
∣∣ ≤ max

1≤ j≤Ncom

m∑

i=1

∣
∣ϕi j

∣
∣

≤
m∑

i=1

max
1≤ j≤Ncom

∣
∣ϕi j

∣
∣ =

m∑

i=1

ϕmax
i· , (ϕi j ∈ �m)

As we have selected the m rows with the smallest ϕmax
i· , μ(�)

determined by the initial solution actually possess the minimal
upper bound.

Since the searching is NP-hard, the update process may
not achieve a global optimal solution. However, limited by its
upper bound, the initial μ(�) is relatively small. In the swap
operation, the maxi ϕi j ′ (ϕi j ′ > 0) or mini ϕi j ′ (ϕi j ′ < 0) may
appear in any row of �m . For each case, the row swap will be
conducted (

∣
∣Ac

∣
∣−m) times at most. Thus the maximal number
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Fig. 2. Real road network.

of swap is m(
∣
∣Ac

∣
∣ − m). Therefore, for each 1 ≤ j

′ ≤ Ncom ,
we have m · Ncom · (∣∣Ac

∣
∣ − m) operations at most. Obviously,

the algorithm possesses polynomial complexity.

V. NUMERICAL EXPERIMENTS IN A

MEDIUM REAL NETWORK

As a sub-problem, the sensor location strategy needs to be
evaluated through the flow estimation. In this paper, we choose
OD estimation scenario to complete this evaluation. A simpli-
fied real road network extracted from the area of Tianhe Sports
Center in the city of Guangzhou in China (Fig. 2) is used to
conduct our numerical tests. This area covers about 18.7 km2,
containing 93 directional links and 38 nodes. The length of
each link measured from Google map is marked as well.
15 nodes on the edge are defined as centroid nodes and we
have 210 OD pairs.

Several other experimental parameters should be clearly
specified before the introduction of our results. Firstly, User
Equilibrium (UE) traffic assignment strategy is adopted. This
will simulate more realistic transportation situations, despite
its measurement matrix is much more complicated in contrast
with all-or-nothing assignment whose measurement is simply
a 0-1 matrix. Secondly, four types of OD demands with
different sparse degrees are set to investigate the effects of
sensor location determinations and estimation results. This
mainly aims to test when the original OD is not sparse
enough, how “accurate” can the reconstruction reach through
�1-minimization. As the rank of total measurements is 56,
we set the sparse degrees to be 28, 56, 112 and 168
respectively, and the integer non-sparse entries all come from
a [200, 10000] uniform distribution. In actual transportation
networks, each pair of OD flow rarely equals to zero especially
when the time interval investigated is relatively long. Thus
rather than simply treating the sparse entries as zero, they
are set to be uniformly distributed integers from 0 to 25% of
the non-sparse entries average. Thirdly, in order to simulate
the randomness, perturbations that obey Gassian distribution
are added into each entry of the original sparse OD. The
perturbations, however, have to be limited to a small range that
will not change the feature of original OD. In our experiment,
the maximal amplitude of perturbations does not exceed 20%

Fig. 3. Optimal sensor locations (sensor number=56, sparse degree=28).

Fig. 4. MAPE of non-sparse entries from cm and R2.

of the entries, which means perturb ∼ Norm(0, 0.2 ∗
EntryV alue).

One of optimal sensor location sets generated by our
algorithm is depicted in Fig. 3. Due to space limitation,
full results are not presented here. The comparisons between
the coherence minimization and the sensor location rules
summarized in Section II are also carried out. Since our test
scenario is the OD estimation, we exclude the rules for the path
flows. That is, the rules R3, R5 and R6 are not considered here.
In addition, the OD covering (R1), Link independence (R8)
and Minimal observation (R9) rules are deemed as the basic
rules which are obeyed in all of our experiments. For the rest,
the R4 and R7 can be equivalently interpreted as selecting the
links with its related ‖ x ‖1 maximized mathematically. This
is because transit traffic flow is not employed and all of travel
demands come from the centroid nodes we set. Hence we
need to investigate three sensor location principles: coherence
minimization (CM), R2 and R4/R7.

Fig. 4 gives the mean absolute percent errors (MAPE) of
the non-sparse entries computed by CM and R2 principles,
which is defined as

M AP E = 1

k

∑

v j �=0

|v̂ j − v j |
v j

× 100%
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Fig. 5. MAPE of non-sparse entries from cm and R4/R7.

where v̂ j and v j are estimated and original OD demand,
respectively. As one can see, the errors of tests are all
below 22%. The general trend is the MAPE decreases with
the sensor number grown. This phenomenon is easy to explain,
because more sensors will no doubt, lead to relatively more
observed information that can be used in the OD recovery.
When the sensor number is too small such as 10 or 20,
both algorithms (especially CM) will bring much higher
reconstruction errors. It indicates that to maintain a certain
number of sensors is essential for reliable OD estimation.
In addition, when the sparse degree becomes larger under
similar conditions, the accuracy gets lower with higher obser-
vations. Yet this pattern seems not applicable to the cases
with fewer observations, which might be caused by the worse
performance of reconstruction algorithms with this type of sit-
uations. At higher observation levels, CM result is particularly
better than R2 for the small sparse degrees. This manifests
the advantage of CM locations lies on the sparse demand
operation.

The comparisons between CM and R4/R7 rules are shown
in Fig. 5. The total error trend is similar with Fig. 4.
And within the same group, it is more clearly that the
MAPE increases during sparse degree growing. Moreover,
CM locations on average outperform R4/R7 in the high
observation groups. In order to evaluate whether the prin-
cipal components of the demands are overwhelmed by the
recovery noise, we need to investigate reconstruction results
correspond to sparse entries. However, it is essential to
slightly modify the MAPE evaluation criterion, due to the
potential zero denominators. The MAPE for sparse entries is
computed as

MAPE =
1

N−k

∑
v j ≈0 |v̂ j − v j |

1
k

∑
v j �=0 v j

=
k

∑
v j ≈0 |v̂ j |

(N − k)
∑

v j �=0 v j
×100%

In general, because of perturbations, the sparse entries are
not strictly equivalent to 0. Thus we use v j ≈ 0 to represent
them. The results of sparse entries are shown in Fig. 6.
The indicators for the four sparse degrees stay at a low level
and are all below 12%, which means the principal demands
can be effectively separated. The MAPE gradually gets lower
in the rise of observations under each sparse degree level.
Another obvious conclusion from Fig. 6 is that, however, with

Fig. 6. MAPE of sparse entries from CM.

TABLE I

STANDARD DEVIATIONS FOR THREE LOCATION RULES

the sparse degrees increase, the reconstruction becomes less
robust, as the MAPE in 28 and 56 sparse degrees are stable
while it fluctuates a little more in 112 and 168.

The standard deviations of each numerical test are listed in
Table I. With sensor number decreases, the standard deviations
of the whole three methods all get larger. It also conforms to
the fact that fewer sensors leads to less accurate recovery.
At each sparse degree level, three groups of deviation values
are generally closed to each other except 10 observations.

In our previous work, row coherence minimization (RM)
is adopted to be the objective to design the selection algo-
rithm [8]. In theory, this condition is weaker than the column
coherence minimization (CM) and cannot strictly give the
upper limit of the restricted isometry constant. In this sense,
column coherence minimization is deemed more suitable for
the sparse reconstruction. For these two methods, we conduct
a group of test as well. As shown in Fig. 7, when the
sensor number is small, the recovery results of CM are closer
to RM. Yet when it gets more observations, the reconstruction
accuracies of the two methods decrease totally and CM is
evidently better than RM. The reduced margins of MAPE
from CM compared to RM are illustrated in Table II. As can
be seen, the average MAPE reduces 0.2%, 1.7% and 1.1%
with 56, 50, 40 observations, whereas it slightly increases at
other sensor number levels.
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Fig. 7. MAPE of non-sparse entries for row and column coherence
minimization.

TABLE II

MAPE REDUCTION BETWEEN CM AND RM (%)

VI. CONCLUSIONS AND DISCUSSIONS

Traffic sensor location is a basic problem in the OD
demand or other traffic flow estimation. Compressed sensing
provides us a new framework for this type of issues.
Oriented to the sparse reconstruction from this framework,
this paper gives theoretical foundations on traffic count
measurements and provides a new algorithm based on column
coherence minimization. The new algorithm can slightly pro-
mote the reconstruction accuracy compared with our previous
work. Numerical tests show the proposed method has a better
result than the current location rules in case that the sparse
degree is somewhat high.

As mentioned in Section IV, m ≥ Rank(Pc) means
any group of m measurements contains redundant equations.
In theory, these redundant equations do not bring useful addi-
tional information that contributes to the sparse reconstruction.
However, in actual transportation networks, a lot of other fac-
tors will impact the traffic count measurements. For example,
the malfunctioned loop detector may provide wrong traffic
count data. The recognition of vehicles by cameras will be
affected seriously in rainy, foggy day or at night, which may
cause a part of vehicles missing from the sensor detection.
All of these potential anomalies cannot be completely avoided
and are bound to bring much noise to our measurements.
So the under-determined system formulated by Eq. (1) is
contaminated and can hardly match the “true” theoretical
model exactly. As a supplement, additional observations may
provide extra information to adjust the coefficients of the equa-
tions. With the under-determined system calibrated in advance,
the flow vector reconstructed from compressed sensing is
expected more accurate. In this sense, more observation is
beneficial.

Objectively, the hypothesis underlying CS based OD estima-
tion is that the true OD has sparsity to some extent. This point,
however, is still in dispute among scholars currently. To our
knowledge, two approaches can be used to acquire a certain
sparse OD demand. One is to shorten the investigated time
interval appropriately. As new technological detectors have
much faster sampling frequencies as well as computational
performances, transportation dynamics seem slower relatively.
For example, Hofleitner et al. [46] adopted probe vehicles
data with 1 minute detection cycle to estimate the primary
link travel time of San Francisco via �1 penalty method,
and achieved a good result. The other is to consider time
dependent traffic pattern so as to generate sparse OD matrix
when the network is automated zoning. For example, it is
expected there to be a few popular demands between office
locations, parking lots, and so on during morning rush hours.
Similarly, we may also expect most origins of flow in a busi-
ness district to come from the suburbs and residential areas.
Recent research from Menon et al. [47] has presented some
achievements about this issue. And he has further assessed
the viability of sparsity assumption in his work concisely.
In summary, the CS based flow estimation as well as its sensor
location needs more analysis and actual application validation.
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