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a b s t r a c t

As a powerful method of solving the nonlinear optimal control problem, the iterative adaptive dynamic
programming (IADP) is usually established on the known controlled system model and is particular
for affine nonlinear systems. Since most nonlinear systems are complicated to establish accurate
mathematical models, this paper provides a novel data-based approximate optimal control algorithm,
named iterative neural dynamic programming (INDP) for affine andnon-affine nonlinear systems by using
system data rather than accurate systemmodels. The INDP strategy is built within the framework of IADP,
where the convergence guarantee of the iteration is provided. The INDP algorithm is implemented based
on the model-based heuristic dynamic programming (HDP) structure, where model, action and critic
neural networks are employed to approximate the system dynamics, the control law and the iterative
cost function, respectively. During the back-propagation of action and critic networks, the approach of
directly minimizing the iterative cost function is developed to eliminate the requirement of establishing
systemmodels. The neural network implementation of the INDP algorithm is presented in detail and the
associated stability is also analyzed. Simulation studies are conducted on affine and non-affine nonlinear
systems, and further on the manipulator system, where all results have demonstrated the effectiveness
of the proposed data-based approximate optimal control method.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Since nonlinear systems are widely existed in most industrial
fields, the optimal control problem of nonlinear systems has at-
tracted great attention in recent several decades. The nonlinear
optimal control problem is usually formulated as coping with the
nonlinear Hamilton–Jacobi–Bellman (HJB) equation, which is of-
ten difficult to be solved (Bellman, 1957; Lewis & Syrmos, 1995; Si,
Barto, Powell, & Wunsch, 2004). As is known to all, when the op-
timal control problem of linear systems is studied, the linear HJB
equation can be evolved as the algebraic Riccati equation. The fa-
mous iterative solution strategy was proposed by converting the
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algebraic Riccati equation to a series of linear Lyapunov equations
(Kleinman, 1968). Along this direction, the iterative solution strat-
egy was extended to solve the approximate optimal control of a
trainable manipulator in Saridis and Lee (1979). However, this it-
erative solution method only fits this kind of HJB equations that
are linear partial differential equations. Motivated by these suc-
cess, there has been a great deal of research developed to approx-
imately solve the HJB equation with the great improvement of
intelligent computation (Beard, Saridis, & Wen, 1997; Mu, Sun,
Song, & Yu, 2016; Si et al., 2004; Wang, Liu, Wei, Zhao, & Jin,
2012; Werbos, 1992). In Werbos (1992), an adaptive/approximate
dynamic programming (ADP) algorithm was proposed to ap-
proximately solve optimal control problems in forward time by
involving neural networks for function approximation. The gen-
eralized HJB equation was formulated to solve the optimal con-
trol problem from a view of successive approximation (Beard
et al., 1997). For continuous-time nonlinear systems, a nearly
constrained-optimal state feedback control method using a neural
network HJB approach was given in Abu-Khalaf and Lewis (2004),
and was extended to synchronous policy iteration in Vamvoudakis
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and Lewis (2010). Simultaneously, for discrete-time nonlinear sys-
tems, the iterative adaptive dynamic programming (IADP) strategy
was improved to obtain the approximate solution of the nonlinear
HJB equations by using neural networks (Al-Tamimi, Lewis, & Abu-
Khalaf, 2008; Dierks, Thumati, & Jagannathan, 2009;Wang, Jin, Liu,
& Wei, 2011; Wang, Mu, & Liu, 2017; Zhang, Luo, & Liu, 2009). The
value-iteration-based ADP algorithm was developed with several
convergence results of both inner-loop and outer-loop iterations in
Heydari (2014). In addition, there are several latest developments
related to ADP, including approximation-error-based adaptive op-
timal control (Heydari, 2016), event-triggered optimal control de-
sign (Vamvoudakis, Mojoodi, & Ferraz, 2017; Wang, Mu, He, & Liu,
in press; Wang, Mu, Liu, & Ma, in press), ADP-based variable struc-
ture or switching control design (Fan & Yang, 2016; Heydari & Bal-
akrishnan, 2014b; Mu, Ni, Sun, & He, 2017), cooperative control of
multi-agent systems (Heydari & Balakrishnan, 2014a; Zhang, Liang,
Wang, & Feng, 2017), and so on.

In the industrial field, two prominent features are presented
with the technological innovation and progress. One is that more
and more real systems are facing the difficulty in establishing
process models to support the control design due to increasing
scales and complex operations. The other is that vast volume
of data is stored during the industrial process but does not get
used efficiently. Thus, the problem of data-based optimal control
for nonlinear systems is significant and challenging. Recently,
several data-based approximate optimal control approaches have
been reported. For example, an online direct heuristic dynamic
programming method was proposed by Si and Wang without
requiring the controlled system model (Si & Wang, 2001), or
was more specifically called neural dynamic programming (NDP),
which was further developed to the tracking control problem
of nonlinear systems (Yang, Liu, Wang, & Wei, 2014; Yang, Si,
Tsakalis, & Rodriguez, 2009). The data-based online policy iteration
approach was proposed to obtain adaptive optimal controllers for
continuous-time linear systems with unknown system dynamics
(Jiang & Jiang, 2012). A model-free approximate policy iteration
method was developed based on a least-square weight updating
for affine nonlinear continuous-time optimal control design (Luo,
Wu, Huang, & Liu, 2015). Based on the identification of neural
networks, a data-driven robust approximate optimal control was
designed for the tracking control of continuous-time general
nonlinear systems (Zhang, Cui, Zhang, & Luo, 2011). The robust
ADP was studies for the robust optimal control design for a class of
uncertain nonlinear systems (Jiang & Jiang, 2014). The approach of
goal representation adaptive dynamic programmingwas proposed
by adapting reinforcement signal (He, Ni, & Fu, 2012), which has
been applied to tracking control problem (Mu, Ni, Sun, & He, 2016),
maze navigation (Ni, He, Wen, & Xu, 2013) and power systems
(Tang, Mu, & He, 2016).

Compared with the NDP algorithm, this proposed method is an
off-line algorithmby integrating the cost function iteration and the
control law iteration into the NDP approach, while the NDP algo-
rithm is with the merit of online learning and control. Compared
with the iterative adaptive dynamic programming (IADP) method,
the proposed method has built the data-based learning control
framework by using a model network, while the IADP strategy is
usually established on the known controlled system model and
is particularly effective for affine nonlinear systems even a model
network is utilized in this method (Wang et al., 2012; Wang, Liu,
Zhang, & Zhao, 2016). The contribution of this paper is summarized
as follows. First, we propose the ε-optimal iterative ADP algorithm
based on a prescribed error bound, where the convergence of the
iterative algorithm as well as the equivalence of stopping crite-
rion is proved from the view of theoretical analysis. Second, the
INDP approach based on a HDP structure is developed to imple-
ment the data-based optimal control via estimating both the iter-
ative control law and the iterative cost function. The novel design
on the weight updating of the action neural network makes the
implementation can be operated by only using system data, which
has greatly improved the realization of the algorithm without in-
volving the accurate systemmodel. Third, by using a Lyapunov ap-
proach, the uniformly ultimately boundedness (UUB) stability is
provided for the INDP controller.

This paper is organized as follows. In Section 2, the optimal
control problem is formulated for general discrete-time nonlinear
systems. Section 3 presents the ε-optimal INDP algorithm and
the iteration convergence analysis. The implementation strategy
of INDP algorithm and the associated stability proof are provided
in Section 4. In Section 5, three simulation examples are given to
demonstrate the effectiveness of the proposed data-based INDP
approximate optimal control scheme. Finally, we summarize this
paper in Section 6.

2. Problem statement and preliminaries

In this paper, the studied discrete-time nonlinear systems are
generally described by

xt+1 = F(xt , ut), t = 0, 1, 2, . . . (1)

where xt = [x1t , x2t , . . . , xnt ]T ∈ Rn is the state vector at time
step t , and ut = [u1t , u2t , . . . , umt ]

T
∈ Rm is the control vector at

time step t . The system function F(xt , ut) is Lipschitz continuous
onΩx ⊆ Rn and F(0, 0) = 0.

Definition 1 (Werbos, 1992; Zhang et al., 2009). A nonlinear
dynamical system is said to be stabilizable on a compact setΩx ⊆

Rn, if for any initial condition x0 ∈ Ωx, there exists a control
sequence u0, u1, u2, . . . , ut ∈ Rm, such that the state xt → 0 as
t → ∞.

For the optimal control of discrete-time nonlinear system (1), it
is expected to obtain an optimal control law ut , which enables all
the states of system (1) to stabilize at the origin andminimizes the
following cost function J(xt),

J(xt) =

∞
k=t

βk−tR(xk, uk), (2)

where R(xk, uk) is the utility function, R(xk, uk) ≥ 0 for any xk
and uk, and R(0, 0) = 0. β is the discount factor with 0 < β ≤

1. Generally speaking, the utility function can be chosen as the
quadratic form of the states and the control variables, which is as
follows:

R(xk, uk) = xTkPxk + uT
kQuk, (3)

where P and Q are symmetric positive definite matrices with
appropriate dimensions.

A feedback control is used in this paper, such that ut =

u(xt). The admissible control is introduced for the optimal control
problem, which stabilizes system (1) at the origin and guarantees
that the total cost function (2) is finite.

Definition 2 (Prokhorov, Santiago, & Wunsch, 1995; Si et al.,
2004). A feedback control ut defined onΩx is said to be admissible
with respect to (2) if ut is continuous on a compact set Ωu ⊆

Rm, u(0) = 0, ut stabilizes system (1) on Ωx, and J(x0) is finite
∀x0 ∈ Ωx.

Note that the infinite-horizon cost function can be rewritten in a
recursive form, then Eq. (2) is rewritten as

J(xt) = xTt Pxt + uT
t Qut + β

∞
k=t+1

βk−t−1R(xk, uk)

= xTt Pxt + uT
t Qut + βJ(xt+1). (4)
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According to Bellman’s optimality principle, the optimal cost
function, denoted as J∗(xt), is time invariant and satisfies the
discrete-time HJB equation, i.e.,

J∗(xt) = min
ut


xTt Pxt + uT

t Qut + βJ∗(xt+1)

. (5)

In Eq. (5), it is observed that J∗(xt) is obtained by an optimal control
law, denoted as u∗

t , which is able tominimize the total cost function
J(xt) as J∗(xt). Based on this, the optimal control law u∗

t is solved
by the gradient of the right-hand side of Eq. (5) along ut as

∂

xTt Pxt + uT

t Qut


∂ut
+ β


∂xt+1

∂ut

T
∂ J∗(xt+1)

∂xt+1
= 0. (6)

Then, the optimal control feedback law u∗
t is formulated as

u∗

t = −
β

2
Q−1


∂xt+1

∂ut

T
∂ J∗(xt+1)

∂xt+1
. (7)

We substitute Eq. (7) into Eq. (6), then the discrete-time HJB
equation is obtained as

J∗(xt) = xTt Pxt +
β2

4


∂ J∗(xt+1)

∂xt+1

T
∂xt+1

∂ut
Q−1

×


∂xt+1

∂ut

T
∂ J∗(xt+1)

∂xt+1
+ βJ∗(xt+1), (8)

where J∗(xt) is the optimal cost function associated to the optimal
control law u∗

t . From Eq. (7), it can be observed that the optimal
cost function J∗(xt+1) is necessary for solving the optimal control
u∗
t . However, it is impossible to obtain xt+1 as well as the optimal

cost function J∗(xt+1) at the current time step t . Therefore, on this
occasion, it is admired that the approximate optimal solution of
HJB equation is perused instead of the analytical optimal solution.
In the following, we introduce the derivative of the INDP algorithm
to approximately solve this kind of optimal control problems.

3. ε-optimal INDP algorithm and iteration convergence analy-
sis

3.1. Derivative of ε-optimal INDP algorithm

The idea of iterative calculation for approximate solutions of
HJB equationwas presented in Al-Tamimi et al. (2008), Dierks et al.
(2009), Wang et al. (2012), Wang et al. (2016) and Zhang et al.
(2009). Based on Bellman’s principle of optimality, the ε-optimal
INDP algorithm is given as follows.

In the above iterative algorithm, we first assume that the initial
cost value J (0)(·) = 0 is known, and then start calculating the
control law based on the known cost value. This algorithm is called
as the value iteration, where i is the iteration index and t is the
time index related to system states. The iterative cost function
and the iterative control law are updated until ∥ J (i+1)(xt) −

J (i)(xt) ∥≤ ε is satisfied. ∥ · ∥ denotes the 2-norm for a vector and
the absolute value for a scalar through the paper. In the following,
the convergence of the iterative algorithm between equations (11)
and (12) will be addressed.

3.2. Convergence analysis of ε-optimal INDP algorithm

Before starting the convergence analysis, we first review two
lemmas.

Lemma 1 (Wang et al., 2012; Zhang et al., 2009). For the iterative
cost function J(i)(xt), as defined in equation (12), if system (1) is
controllable, then there exists an upper bound Θ such that 0 ≤

J (i)(xt) ≤ Θ for any i.
Algorithm 1 ε-optimal INDP Algorithm
1: Choose a small positive number ε. Initialize the iteration index

i = 0 and the cost function J (0)(·) = 0, respectively.
2: Start calculating the initial control u(0)t by

u(0)t = argmin
ut


xTt Pxt + uT

t Qut + βJ (0)(xt+1)

. (9)

3: Once the control vector u(0)t is obtained, update the iterative
cost function as
J (1)(xt) = min

ut


xTt Pxt + uT

t Qut + βJ (0)

F(xt , ut)


= xTt Pxt + (u(0)t )

TQu(0)t . (10)

4: Solve the control function by

u(i)t = argmin
ut


R(xt , ut)+ J (i)


F(xt , ut)


. (11)

5: Update the cost function by
J (i+1)(xt) = min

ut


R(xt , ut)+ J (i)


F(xt , ut)


= R(xt , u

(i)
t )+ J (i)


F(xt , u

(i)
t )


. (12)

6: If ∥ J (i+1)(xt)− J (i)(xt) ∥≤ ε, stop and obtain the approximate
optimal control law u(i)t ; else, set i = i + 1 and go to step 4.

Lemma 2 (Wang & Liu, 2013). Assume that µ(i)t is an arbitrary
control vector, and u(i)t is the iterative control vector according to
equation (11). The cost function associated with µ(i)t is defined as
Ξ (i)(xt) with the following expression

Ξ (i+1)xt = xTt Pxt +

µ
(i)
t

TQµ(i)t + βΞ (i)F(xt , µ(i)t ), (13)

and the iterative cost function associated with u(i)t is denoted as
J (i)(xt), which can be formulated according to equation (12). If
J (0)(xt) = 0 andΞ (0)(xt) = 0, then J (i+1)(xt) ≤ Ξ (i+1)(xt) for any i.

Theorem 1. For the iterative cost function J (i)(xt) with J (0)(xt) = 0,
defined in equation (12) and the iterative control law u(i)t defined in
equation (11), if the iterations are updated between equations (11)
and (12), then as i → ∞, J (i)(xt) converges to the optimal cost
function defined in Eq. (5) and u(i)t converges to the optimal control
law defined in Eq. (7), i.e., J (i)(xt) → J∗(xt) and u(i)t → u∗

t as i → ∞.

Proof. Based on Lemma 2, the cost function Ξ (i)(xt) is defined in
Eq. (13) withΞ (0)(xt) = 0, which is related to an arbitrary control
vector µ(i−1)

t .
Now we show the relationship between J (i)(xt) and J (i+1)(xt)

by mathematical induction. TakeΞ (i)(xt) as the auxiliary variable.
First, for i = 0, as

J (1)(xt)− Ξ (0)(xt) = xTt Pxt + (u(0)t )
TQu(0)t ≥ 0,

it is obvious that J (1)(xt) ≥ Ξ (0)(xt). Second, for i − 1, we assume
that J (i)(xt) ≥ Ξ (i−1)(xt) holds for all xt . Then, for i, it is able to
obtain

J (i+1)(xt)− Ξ (i)(xt) = β

J (i)(xt+1)− Ξ (i−1)(xt+1)


≥ 0.

Therefore, in terms of mathematical induction, for all i, we can
obtain J (i+1)(xt) ≥ Ξ (i)(xt). Combining with Lemma 2 that states
J (i)(xt) ≤ Ξ (i)(xt), we have

J (i+1)(xt) ≥ Ξ (i)(xt) ≥ J (i)(xt).

That is to say, J (i)(xt) is nondecreasing satisfying J (i)(xt) ≤ J (i+1)(xt)
for any i.
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Considering Lemma 1, there exists an upper bound Θ for 0 ≤

J (i)(xt) ≤ Θ . It means that the limit of the iterative cost function
exists, which is expressed as limi→∞ J (i)(xt) = J (∞)(xt). Then we
will prove that J (∞)(xt) satisfies the following equation

J (∞)(xt) = min
ut


xTt Pxt + uT

t Qut + βJ (∞)(xt+1)

.

For any ut and i, according to (12), the cost function J (i)(xt) can be
written as

J (i)(xt) ≤ xTt Pxt + uT
t Qut + βJ (i−1)(xt+1). (14)

Since J (i)(xt) ≤ J (∞)(xt) for any i, based on Eq. (14), it can be
deduced as

J (i)(xt) ≤ xTt Pxt + uT
t Qut + βJ (∞)(xt+1), ∀i. (15)

Accompanying with i → ∞, the following relationship can be
derived from inequality (15)

J (∞)(xt) ≤ xTt Qxt + uT
t Rut + βJ (∞)(xt+1).

Due to ut being an arbitrary control vector, it implies that J (∞)(xt)
satisfies

J (∞)(xt) ≤ min
ut


xTt Qxt + uT

t Rut + βJ (∞)(xt+1)

. (16)

Simultaneously, according to equation (12) in the iterative
algorithm, J (i)(xt) is formulated as

J (i)(xt) = min
ut


xTt Qxt + uT

t Rut + βJ (i−1)(xt+1)

, ∀i.

Since J (i)(xt) ≤ J (∞)(xt), then we have the following inequality

J (∞)(xt) ≥ min
ut


xTt Qxt + uT

t Rut + βJ (i−1)(xt+1)

, ∀i.

Similarly, by letting i → ∞, we can get

J (∞)(xt) ≥ min
ut


xTt Qxt + uT

t Rut + βJ (∞)(xt+1)

. (17)

Considering (16) and (17), it can be concluded that J (∞)(xt) satisfies

J (∞)(xt) = min
ut


xTt Qxt + uT

t Rut + βJ (∞)(xt+1)

. (18)

Obviously, J (∞)(xt) is the solution of the discrete-time HJB
equation. Considering the unique solution of the discrete-time
HJB equation, it means that J (∞)(xt) in Eq. (18) and J∗(xt) in
Eq. (5) are really the same. That is to say, limi→∞ J (i)(xt) = J∗(xt).
Accordingly, according to (7) and (18), we can conclude that the
corresponding control law also converges to the optimal one as
i → ∞. Thus, the proof is completed.

Remark 1. Though Theorem 1 provides the convergence analysis
of the iteration algorithm, it is impossible to conduct i →

∞. Therefore, the ε-optimal criterion is given in the following
theorem, which states that the ε-optimal criterion is equivalent to
the infinite-horizon optimal criterion.

Theorem 2. If system (1) is controllable and starts from an arbitrary
state xt , the iterative cost function J (i)(xt) is defined by (12) and J∗(xt)
is the optimal cost function, then after a finite iteration number i, the
following ε-optimal iteration criterion

∥ J (i+1)(xt)− J (i)(xt) ∥≤ ε (19)

is equal to the infinite-horizon optimal iteration criterion

∥ J (i)(xt)− J∗(xt) ∥≤ ε, (20)

where ε > 0 is a preset iterative tolerable error.
Fig. 1. The implementation architecture of the INDP algorithm with the HDP
structure.

Proof. This proof wants to show the above two conditions are
equivalent. In terms of the analysis that J (i)(xt) is nondecreasing
in Theorem 1, the basic inequalities are listed as follows:

J (∗)(xt) ≥ J (i+1)(xt) ≥ J (i)(xt). (21)

On one hand, if ∥J (∗)(xt)− J (i)(xt)∥ ≤ ε is established, according to
inequalities (21), then we can obtain

J (∗)(xt)− J (i)(xt) ≤ ε.

By introducing J (i+1)(xt) into the above inequality, it has

J (i)(xt) ≤ J (i+1)(xt) ≤ J (∗)(xt) ≤ J (i)(xt)+ ε.

That means that J (i+1)(xt) satisfies the relation

J (i)(xt) ≤ J (i+1)(xt) ≤ J (i)(xt)+ ε.

Therefore, we have

∥ J (i+1)(xt)− J (i)(xt) ∥≤ ε. (22)

On the other hand, if the condition ∥J (i+1)(xt) − J (i)(xt)∥ ≤ ε is
established, since J (i)(xt) is nondecreasing, then we have

J (i)(xt) ≥ J (i+1)(xt)− ε. (23)

Based on inequalities (21) and (23), the relationship between J∗(xt)
and J (i+1)(xt) can be indicated as

J∗(xt) ≥ J (i+1)(xt)− ε.

Simultaneously, it is obvious that J (i+1)(xt)− J∗(xt) ≤ ε. Therefore,
we have the following derivation from the above inequality

∥ J∗(xt)− J (i+1)(xt) ∥≤ ε. (24)

Based on the analysis from the two sides, it can be concluded that

∥J (i+1)(xt)− J (i)(xt)∥ ≤ ε ⇐⇒ ∥J (i)(xt)− J∗(xt)∥ ≤ ε,

which thus implements the proof.

Considering that J∗(xt) is not really known in the implementation,
the ε-optimal iteration criterion provides an operable condition
which is related to the preset tolerant error. Then, we will clearly
present the implementation of the INDP algorithm.

4. ε-optimal INDP algorithm based on the HDP structure and
system data

In the above iterative algorithm, u(i)t and J (i)(xt) are usually
obtained by using the function approximation approach. This
algorithm is implemented by neural networks based on the HDP
structure which can be operated without the accurate system
model. Therefore, it is a data-driven approximate optimal control
algorithm. Fig. 1 shows the implementation architecture for the
INDP algorithm. It contains four neural networks: one model
network, one action network, and two critic networks. Note that
the two critic networks presented in the figure show the time
difference during the algorithmic procedure, and they actually are
the same network.
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4.1. The model neural network

The dynamics of the controlled system are assumed to be
unknown. A three-layer neural network is used to identify the
system dynamics based on the input–output data. Before starting
the ε-optimal iterative algorithm, themodel neural network is first
trained.

Considering the general nonlinear system in Eq. (1), at the time
step t , the current system states xt and control inputs ut are used
as the inputs of the model network, then the estimation of xt+1
is outputted. With hm hidden layer neurons, the input-to-hidden
weights sm ∈ R(n+m)×hm are randomly initialized and then are kept
unchanged, while the optimal hidden-to-output weight vector is
denoted as ν ∈ Rhm×n. A bounded activation functionϑm(κ) ∈ Rhm

is used, where κ expresses a general independent-variable of the
activation function. Based on the universal approximation theory
of neural networks, the system state vector of the next time step
xt+1 can be formulated by

xt+1 = νTϑm

sTmθt


+ ζmt , (25)

where θt = [xTt , u
T
t ]

T is the input vector, and ζmt is the reconstruc-
tion error of themodel neural network. Letσt = sTmθt ∈ Rhm , there-
fore Eq. (25) can be simplified as xt+1 = νTϑm(σt)+ ζmt .

Since the optimal weight vector ν is not really known, we
use the approximate weight vector ν̂t to approximate the optimal
weight vector ν, such that the next system state vector can be
estimated as

x̂t+1 = ν̂Tt ϑm(σt), (26)

where ν̂t is updated by minimizing the identification error to
approach ν as much as possible.

The identification error of the model network is defined as
x̃t+1 = x̂t+1 − xt+1. According to Eqs. (25) and (26), x̃t+1 can be
deduced as

x̃t+1 = ν̂Tt ϑm(σt)− νTϑm(σt)− ζmt

= ν̃Tt ϑm(σt)− ζmt = ξmt − ζmt , (27)

where ν̃t = ν̂t − ν, ξmt = ν̃Tt ϑm(σt). Based on the definition of
identification error, the model network error is denoted as

Emt =
1
2
x̃Tt+1x̃t+1. (28)

The gradient-based descent approach is used for weight updating
during the back-propagation process, which is

ν̂t+1 = ν̂t − ηm


∂Emt

∂ν̂t


= ν̂t − ηmϑm(σt)x̃Tt+1, (29)

where ηm > 0 is the learning rate of the model neural network.

Lemma 3. In terms of the property of matrix trace, the useful
equalities are given as follows:

(1) A matrix X and its transpose have the same trace, i.e. tr{X} =

tr{XT
};

(2) The matrices in a trace of a product can be switched: if A is an
m1 × n1 matrix, B is an n1 × m2 matrix, C is an m2 × n1 matrix
and D is an n1 × m1 matrix, then the trace is invariant under
cyclic permutations, i.e., tr{ABCD} = tr{BCDA} = tr{CDAB} =

tr{DABC}.

Lemma 4 (Dierks et al., 2009). For vectors a and b, the Cauchy–Schwarz
inequality can be applied as

(a + b)T (a + b) ≤ 2(aTa + bTb).
Assumption 1. Both the activation function ϑm(·) and the recon-
struction error ζmt are bounded, i.e., ∥ϑm(·)∥ ≤ ϑM and ∥ζmt∥ ≤

ζM , where ϑM and ζM are positive constants.

The following theorem clarifies the stability of the identification
error x̃t+1 for the model network.

Theorem 3. For the model network described by Eq. (26), if Assump-
tion 1 is satisfied and the weight vector ν̂t is updated as Eq. (29), then
the identification error x̃t are uniformly ultimately bounded.

Proof. Choose a positive Lyapunov function as

L1(t) = x̃Tt x̃t + η−1
m tr{ν̃Tt ν̃t}. (30)

The first difference of L1(t) is denoted as∆L1(t) = L1(t+1)−L1(t),
then∆L1(t) is

∆L1(t) = x̃Tt+1x̃t+1 − x̃Tt x̃t + η−1
m tr{ν̃Tt+1ν̃t+1 − ν̃Tt ν̃t}. (31)

Eq. (29) provides the relation between ν̃t+1 and ν̃t , which can be
substituted into Eq. (31) to obtain

∆L1(t) = x̃Tt+1x̃t+1 − x̃Tt x̃t + tr{ηmx̃t+1ϑ
T
m(σt)

× ϑm(σt)x̃Tt+1 − ν̃Tt+1ϑm(σt)x̃Tt+1 − x̃t+1ϑ
T
m(σt)ν̃t+1}.

(32)

By applying the trace operation in Lemma3,we have tr{ν̃Tt+1ϑm(σt)

x̃Tt+1} = tr{x̃t+1ϑ
T
m(σt)ν̃t+1}, tr{x̃t+1ϑ

T
m(σt)ϑm(σt)x̃Tt+1} = tr{ϑT

m
(σt)ϑm(σt)x̃t+1x̃Tt+1}, then∆L1(t) can be derived as

∆L1(t) = x̃Tt+1x̃t+1 − x̃Tt x̃t + ηmϑ
T
m(σt)ϑm(σt)

× tr{x̃t+1x̃Tt+1} − 2tr{x̃t+1ϑ
T
m(ϕt)ν̃t+1}. (33)

By introducing x̃t+1 = ξmt − ζmt , applying the Cauchy–Schwarz in-
equality in Lemma 4 to the term x̃Tt+1x̃t+1, and using Assumption 1,
∆L1(t) can be further deduced as

∆L1(t) ≤ x̃Tt+1x̃t+1 − x̃Tt x̃t − 2tr{(ξmt − ζmt)ξ
T
mt}

+ 2ηmϑT (ϕt)ϑ(ϕt)tr{ξ Tmtξmt + ζ T
mtζmt}

= ξ Tmtξmt − 2ξ Tmtζmt + ζ T
mtζmt − x̃Tt x̃t

− 2ξ Tmtξmt + 2ξ Tmtζmt + 2ηmϑT
m(ϕt)ϑm(ϕt)

× (ξ Tmtξmt + ζ T
mtζmt)

≤ −ξ Tmtξmt + ζ T
mtζmt − x̃Tt x̃t + 2ηmϑ2

Mξ
T
mtξmt

+ 2ηmϑ2
Mζ

T
mtζmt

≤ −(1 − 2ηmϑ2
M)ξ

T
mtξmt + (1 + 2ηmϑ2

M)ζ
2
M − x̃Tt x̃t . (34)

From inequality (34), if ηm satisfies 0 < ηm < 1/2ϑ2
M , then we

have

∆L1(t) ≤(1 + 2ηmϑ2
M)ζ

2
M − x̃Tt x̃t . (35)

Therefore,∆L1(t) ≤ 0 if

∥x̃t∥ ≥


1 + 2ηmϑ2

MζM

with 0 < ηm < 1/2ϑ2
M . Based on the Lyapunov stability theorem,

the identification error x̃t is uniformly ultimately bounded. Thus
the theorem is proved.

4.2. The critic neural network

The critic network is used to approximate the iterative
cost function. The three-layer neural network is employed to
implement the critic network, which includes n input neurons,
hc hidden layer neurons and one output neuron. The activation
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function ϑc(κ) ∈ Rhc is used in the critic network. In the ith
iteration, two critic networks have the same input-to-hidden and
hidden-to-output weight vectors, denoted as sc ∈ Rn×hc and υ̂t ∈

Rhc , where sc is unchanged and only υ̂t is updated. For the first
critic network, it takes xt as the input vector and outputs Ĵ (i+1)(xt)
as

Ĵ (i+1)(xt) = υ̂T
t ϑc(sTc xt) = υ̂T

t ϑc(zt), (36)

where zt = sTc xt . Ĵ
(i+1)(xt) is the estimated iterative cost function

to approach J (i+1)(xt).
The model network outputs x̂t+1, which is used as the input

vector of the second critic network. The hidden-to-output weight
vector υ̂t is transmitted from the first critic network and then is
used to calculate Ĵ (i)(x̂t+1) as

Ĵ (i)(x̂t+1) = υ̂T
t ϑc(sTc x̂t+1). (37)

With the estimated Ĵ (i)(x̂t+1) and ût , the target iterative cost
function be calculated by

J (i+1)(xt) = xTt Pxt + ûT
t Q ût + β Ĵ (i)(x̂t+1), (38)

then the error function of the critic network is defined as Ect , and
the critic network is trained by the following objective function

min
υ̂t

Ect = min
υ̂t

1
2
eTctect ,

ect = Ĵ (i+1)(xt)− J (i+1)(xt). (39)

Based on Eq. (39), using the gradient-based adaptation algorithm,
the weight updating rule for the critic network is given as follows:

υ̂t+1 = υ̂t − ηc
∂Ect
∂υt

, (40a)

∂Ect
∂υt

=
∂Ect
∂ect

∂ect
∂ Ĵ (i+1)(xt)

∂ Ĵ (i+1)(xt)
∂υ̂t

= ectϑc

sTc xt


, (40b)

where ηc > 0 is the learning rate of the critic network. The above
weight updating rule is only applied for the first critic network, the
weight vector of the second critic network is transmitted from the
first one without the weight updating calculation.

4.3. The action neural network

In the HDP implementation, the action network with ha hidden
layer neurons is constructed to approach the iterative control law.
In the ith iteration, the input-to-hidden weight vector is randomly
initialized as sa ∈ Rn×ha and is kept unchanged, and the hidden-to-
outputweight vector is denoted asωt ∈ Rha×m. The action network
takes xt as the inputs, and outputs ût to approximate u(i)t . With the
bounded activation function ϑa(κ) ∈ Rha , ût is expressed as

ût = ω̂T
t ϑa


sTaxt


= ω̂T

t ϑa(ςt), (41)

where ςt = sTaxt ∈ Rha .
The action network is trained through minimizing the network

error between the ultimate objective UC and the estimated
iterative cost function Ĵ (i)(x̂t+1). The weight vector ω̂t is regulated
by the error back propagation method. The objective function of
the action network is defined as

min
ω̂t

Eat = min
ω̂t

1
2
eTateat ,

eat = Ĵ (i)(x̂t+1)− UC , (42)
whereUC = 0 is the ultimate cost objective for all i and t . Similarly,
according to the gradient-based adaptation strategy and the chain
derivation rule, the weight vector of the action network is updated
as

ω̂(t+1) = ω̂t − ηa
∂Eat
∂ω̂t

, (43a)

∂Eat
∂ω̂t

=
∂Eat
∂eat

∂eat
∂ Ĵ (i)(x̂t+1)

∂ Ĵ (i)(x̂t+1)

∂ x̂t+1

x̂t+1

∂ ût

∂ ût

ω̂t
, (43b)

where ηa > 0 is the learning rate of the action network. If the
tangent function is used as the activation function for all the three
networks, i.e., ϑm(σt), ϑc(zt) and ϑa(ςt) are all tansig functions.
κj means one component of the general independent-variable κ .
Accordingly, it can be replaced as σt,j for the model network, zt,j
for the critic network and ςt,j for the action network. In order to
uniformly describe all the activation functions of three networks, a
general subscript ℓ is introduced, such that any component of the
activation functions can be uniformly expressed as

ϑℓ(κj) =
1 − e−κj

1 + e−κj
, (44)

where ℓ is replaceable by m, c and a for model, critic and action
networks, respectively. The derivative of ϑℓ(κj) is

dϑℓ(κj)
dκj

=
1
2


1 − ϑ2

ℓ (κj)

, (45)

then ∂ Ĵ (i)(x̂t+1)/∂ x̂t+1 and ∂ x̂t+1/∂ û
(i)
t can be separately obtained

as

∂ Ĵ (i)(x̂t+1)

∂ x̂t+1
= υ̂T

t
∂ϑc(zt+1)

∂zt+1

∂zt+1

∂ x̂t+1
= υ̂T

t ϕt+1sTc , (46a)

∂ x̂t+1

∂ ût
= ν̂Tt

∂ϑm(σt)

∂σt

∂σt

∂θt

∂θt

∂ ût
= ν̂Tt ψtsTmρ, (46b)

where zt+1 = sTc xt+1. ϕt+1 ∈ Rhc×hc , ψt ∈ Rhm×hm and ρ ∈

R(n+m)×m are expressed as

ϕt+1 =
1
2

1 − ϑ2
c (zt+1,1) · · · 1 − ϑ2

c (zt+1,hc )
...

. . .
...

1 − ϑ2
c (zt+1,1) · · · 1 − ϑ2

c (zt+1,hc )

 ,

ψt =
1
2

1 − ϑ2
m(σt,1) · · · 1 − ϑ2

m(σt,hm)
...

. . .
...

1 − ϑ2
m(σt,1) · · · 1 − ϑ2

m(σt,hm)

 , ρ =


0n×m
Im×m


.

Therefore, ∂Eat/∂ω̂t can be specifically formulated as

∂Eat
∂ω̂t

= ϑa(ςt)eat υ̂T
t ϕtsTc ν̂

T
t ψtsTmρ

= ϑa(ςt)υ̂
T
t ϑc(zt+1)υ̂

T
t ϕtsTc ν̂

T
t ψtsTmρ

= ϑa(ςt)υ̂
T
t ϑc(zt+1)υ̂

T
t ϕtπ, (47)

whereπ = sTc ν̂
T
t ψtsTmρ, π ∈ Rhc×m and is kept as a constantmatrix

after the model network is well trained.

4.4. Algorithm procedure

The ε-optimal INDP algorithm based on the HDP structure is
summarized as follows.
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Algorithm 2 Implementation Outline for ε-optimal INDP Algo-
rithm Based on the HDP Structure
1: Set the parameters ε, εm, εa, εc, ηm, ηa, ηc , Ni,Nm,Na,Nc, β, P

and Q .

2: Randomly initializeweight vectormatrices sm, sc, sa, ν̂0, υ̂0 and
ω̂0 in given intervals.

3: Train the model network

(1) Construct a three-layer neural network as the model
network with the initial weight vectors sm and ν̂0.

(2) Train the model network with measured system data for
maximal Nm steps or until Emt ≤ εm is satisfied.

(3) Obtain the trained weight vector ν̂t and sm, and then
maintain them during the algorithm.

4: Set the iterative index i = 0 and the initial iterative cost
function J (0)(·) = 0. According to equation (9), calculate the
initial control u(0)t .

5: Use sc and υ̂0 as the input-to-hidden and hidden-to-output
weight vectors of the critic network, compute Ĵ (1)(xt) and
J (1)(xt) by equations (36) and (38), respectively. Train the critic
network for maximal Nc steps with equation (40) or until Ect ≤

εc is satisfied. Set i = 1.

6: While i ≤ Ni, do

7: Train the action network

(1) Use the input-to-hidden and hidden-to-output weight
vectors sa and ω̂t , compute ût by equation (41).

(2) Take ût and xt into the model network to obtain the next
system states x̂t+1.

(3) Compute Ĵ (i)(x̂t+1) by equation (37).
(4) Train the action network for maximal Na steps by equation

(43) or until Eat ≤ εa is satisfied.

8: Train the critic network

(1) Use the input-to-hidden and hidden-to-output weight
vectors sc and υ̂t , compute Ĵ (i+1)(xt) and J (i+1)(xt) by
equations (36) and (38), respectively.

(2) Obtain the error function Ect by equation (39).
(3) Train the critic network via weight updating rule (40) for

maximal Nc steps or until Ect ≤ εc is satisfied.

9: If ∥Ĵ (i+1)(xt) − Ĵ (i)(xt)∥ ≤ ε, end While and obtain the
approximate optimal controller; else, i = i + 1, go to step 6.

4.5. Stability analysis

It has been proved that if the input-to-hidden weight vector
is randomly initially chosen and is unchanged, then the neural
network estimation error can be made arbitrarily small with the
sufficiently large number of hidden layer neurons and bound
activation functions (Igelnik & Pao, 1995). Therefore, in the
proposed INDP algorithm, only the hidden-output weight vectors
in all neural networks are designed. The stability of the proposed
algorithm is now investigated.

For simple representation, let ϑat ∈ Rha and ϑct ∈ Rhc

denote activation functions for the action network and the critic
network without arguments, respectively, ∥ϑat∥

2
= ϑT

atϑat and
∥ϑct∥

2
= ϑT

ctϑct . The estimated weights are denoted as ω̂t and υ̂t
for the action network and the critic network, respectively, while
the associated optimal weight vectors are denoted as ω and υ .
Correspondingly, the weight errors are defined as ω̃t = ω̂t − ω
and υ̃t = υ̂t − υ . In the INDP algorithm, J (i+1)(xt) in Eq. (38) is
regarded as the target iterative cost function, therefore it can be
expressed by

J (i+1)(xt) = υTϑct + ζct , (48)

where ϑct = ϑc(zt), ζct denotes the arbitrarily small reconstruc-
tion error. In the following, the Lyapunov stability analysis is used
to prove the UUB stability of weight estimation errors υ̃t and ω̃t
under some reasonable assumptions.

Assumption 2. The optimal weight vectors ω and υ are bounded,
separately for action and critic networks, such that ∥ω∥ ≤

ωM , ∥υ∥ ≤ υM , where ωM , υM ∈ R are positive constants.

Assumption 3. The activation functions ϑct and ϑat as well as the
reconstruction errors ζct are bounded, i.e., ∥ϑct∥ ≤ ϑcM , ∥ϑat∥ ≤

ϑaM , and ∥ζct∥ ≤ ζcM , where ϑcM , ϑaM and ζcM are positive
constants.

Theorem 4. Considering the controlled system in Eq. (1) with
unknown system dynamics, if all system states xt and control inputs
ut are measurable, then the INDP approximate optimal controller can
be obtained by Algorithm 2, the weight vectors of critic and action
neural networks are regulated by Eqs. (40) and (43), respectively.
The associated weight estimation errors υ̃t and ω̃t are uniformly
ultimately bounded by Assumptions 2 and 3.

Proof. As defined above, the weight estimation errors are υ̃t =

υ̂t −υ and ω̃t = ω̂t −ω for critic and action networks, respectively.
The selected Lyapunov function is denoted as

L(t) =
1
ηc

tr

υ̃T
t υ̃t


+

1
ηa

tr

ω̃T

t ω̃t

, (49)

where L2(t) = η−1
c tr


υ̃T
t υ̃t


and L3(t) = η−1

a tr

ω̃T

t ω̃t

. Firstly, we

investigate the difference of L2(t), which is formulated as

∆L2(t) = L2(t + 1)− L2(t)

= η−1
c tr


υ̃T
t+1υ̃t+1 − υ̃T

t υ̃t


= η−1
c tr


(υ̂t+1 − υ)T (υ̂t+1 − υ)− υ̃T

t υ̃t


= η−1
c tr


(υ̂T

t − ηcectϑT
ct − υT )(υ̂t − ηcectϑct

− υ)− υ̃T
t υ̃t


= η−1

c tr

(υ̃T

t − ηcectϑT
ct)(υ̃t − ηcectϑct)− υ̃T

t υ̃t


= tr

ηce2ctϑ

T
ctϑct − 2ect υ̃T

t ϑct

. (50)

Considering Eqs. (36) and (48), ect = Ĵ (i+1)(xt) − J (i+1)(xt) =

υ̃T
t ϑct − ζct . Let ξct = υ̃T

t ϑct . By applying the Cauchy–Schwarz
inequality in Lemma 4, then we derive∆L2(t) as

∆L2(t) = tr

ηc


ϑctξct − ϑctζct

T 
ϑctξct − ϑctζct


− 2ξct(ξct − ζct)


≤ 2ηc


(ϑctξct)

Tϑctξct + (ϑctζct)
Tϑctζct


− 2∥ξct∥2

+ 2ξctζct
≤ 2ηc∥ϑct∥

2
∥ξct∥

2
+ ∥ζct∥

2
− ∥ξct∥

2
+ ∥ζct∥

2

= −(1 − 2ηc∥ϑct∥
2)∥ξct∥

2
+ (1 + 2ηc∥ϑct∥

2)× ∥ζct∥
2.
(51)

Secondly, we consider the difference of L3(t), which can be
obtained as

∆L3(t) =
1
ηa

tr

ω̃T

t+1ω̃t+1 − ω̃T
t ω̃t


. (52)
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With the updating rule of ω̂t+1, it gets

ω̃t+1 = ω̂t+1 − ω

= ω̃t − ηaϑat υ̂
T
t ϑc(zt+1)υ̂

T
t ϕtπ.

Substituting the above equation into (52) and using the trace
property in Lemma 3, we get

∆L3(t) =
1
ηa

tr

(ω̃t − ηaϑat υ̂

T
t ϑc(zt+1)υ̂

T
t ϕtπ)

T

× (ω̃t − ηaϑat υ̂
T
t ϑc(zt+1)υ̂

T
t ϕtπ)− ω̃T

t ω̃t


= tr

−2ω̃T

t ϑat υ̂
T
t ϑc(zt+1)υ̂

T
t ϕtπ + ηaπ

TϕT
t

× υ̂tϑ
T
c (zt+1)υ̂tϑ

T
atϑat υ̂

T
t ϑc(zt+1)υ̂

T
t ϕtπ


. (53)

Define ξat = ω̃T
t ϑat , then Eq. (53) can be simplified as

∆L3(t) = tr

−2υ̂T

t ϕtπξat υ̂
T
t ϑc(zt+1)+ ηaπ

TϕT
t υ̂t

ϑT
c (zt+1)υ̂tϑ

T
atϑat υ̂

T
t ϑc(zt+1)υ̂

T
t ϕtπ


= tr


−


π TϕT

t υ̂t υ̂
T
t ϕtπ − ηaπ

TϕT
t υ̂tϑ

T
at

× ϑat υ̂
T
t ϕtπ


ϑT
c (zt+1)υ̂t υ̂

T
t ϑc(zt+1)

− π TϕT
t υ̂tξatξ

T
at υ̂

T
t ϕtπ +


υ̂T
t ϑc(zt+1)

− υ̂T
t ϕtπξat

T
(υ̂T

t ϑc(zt+1)− υ̂T
t ϕtπξat)

+ υ̂T
t ϑc(zt+1)ϑ

T
c (zt+1)υ̂t υ̂

T
t ϕtππ

TϕT
t υ̂t

− ϑT
c (zt+1)υ̂t υ̂

T
t ϑc(zt+1)


. (54)

Considering ϑat ∈ Rha , ξat ∈ Rm, υ̂T
t ϑc(zt+1) ∈ R and υ̂T

t ϕtπ ∈

R1×m, the following inequality can be derived from Eq. (54), which
is

∆L3(t) = −

∥υ̂T

t ϕtπ∥
2
− ηa∥υ̂

T
t ϕtπ∥

2
∥ϑat∥

2
× ∥υ̂T

t ϑc(zt+1)∥
2
− ∥υ̂T

t ϕtπξat∥
2
+ ∥υ̂T

t

× ϑc(zt+1)− υ̂T
t ϕtπξat∥

2
+ ∥υ̂T

t ϑc(zt+1)∥
2

× ∥υ̂T
t ϕtπ∥

2
− ∥υ̂T

t ϑc(zt+1)∥
2. (55)

Using the Cauchy–Schwarz inequality in Lemma 4, Eq. (55) can be
deduced as

∆L3(t) ≤ −

∥υ̂T

t ϕtπ∥
2
− ηa∥υ̂

T
t ϕtπ∥

2
∥ϑat∥

2
× ∥υ̂T

t ϑc(zt+1)∥
2
− ∥υ̂T

t ϕtπξat∥
2
+ 2∥υ̂T

t

× ϑc(zt+1)∥
2
+ 2∥υ̂T

t ϕtπξat∥
2
+

1
2
∥υ̂T

t

× ϑc(zt+1)∥
4
+

1
2
∥υ̂T

t ϕtπ∥
4
− ∥υ̂T

t ϑc(zt+1)∥
2

= −

∥υ̂T

t ϕtπ∥
2
− ηa∥υ̂

T
t ϕtπ∥

2
∥ϑat∥

2
× ∥υ̂T

t ϑc(zt+1)∥
2
+

1
2
∥ξat∥

4
+ ∥υ̂T

t ϑc(zt+1)∥
2

+
1
2
∥υ̂T

t ϑc(zt+1)∥
4
+ ∥υ̂T

t ϕtπ∥
4. (56)

Based on Eqs. (51) and (56), we can conclude that the difference of
L(t) satisfies

∆L(t) ≤ −(1 − 2ηc∥ϑct∥
2)∥ξct∥

2
−


∥υ̂T

t ϕtπ∥
2
− ηa

× ∥υ̂T
t ϕtπ∥

2
∥ϑat∥

2
∥υ̂T

t ϑc(zt+1)∥
2
+ D2, (57)
Table 1
Used parameter values in the INDP algorithm.

para. value para. value para. value para. value

β 1 ηm 0.1 ηa 0.1 ηc 0.1
Ni 200 Nm 2000 Na 2000 Nc 2000
ε 10−6 εm 10−6 εa 10−12 εc 10−12

where D2 defines as

D2
= (1 + 2ηc∥ϑct∥

2)∥ζct∥
2
+ ∥υ̂T

t ϑc(zt+1)∥
2

+
1
2
∥ξat∥

4
+

1
2
∥υ̂T

t ϑc(zt+1)∥
4
+ ∥υ̂T

t ϕtπ∥
4

≤ (1 + 2ηcϑ2
cM)ζcM + (υT

MϑcM)
2
+

1
2


(ωT

MϑaM)
4

+ (υT
MϑcM)

4
+ 2(υT

MϕMπ)
4

= D2
M ,

where υM , ϑcM , ζcM , ϕM , ωM and ϑaM are the upper bounds of
υt , ϑct , ζct , ϕt , ωt and ϑat , respectively. Therefore, if

0 < ηc <
1

2ϑ2
cM
, 0 < ηa <

1
ϑ2
aM
,

∥ξct∥ >


D2
M

1 − 2ηcϑ2
cM
,

then the first difference ∆L(t) ≤ 0 holds according to inequality
(56). Based on the Lyapunov extension theorem, this demonstrates
that υ̃t and ω̃t are uniformly ultimately bounded, which thus
completes the proof.

5. Simulation studies

In this section, the proposed INDP algorithm has been applied
on three representative examples. There is no prior knowledge
about the controlled plants but only system data in our method.
Simulations are presented to show the implementation and the
control performance of this proposed algorithm.
Case 1 Consider the discrete-time affine nonlinear system:

xt+1 =

 x1tx2t
x21t − 0.5 sin(x2t)

x3t

 +

 0
1

−1


ut , (58)

where xt = [x1t , x2t , x3t ]T ∈ R3 and ut ∈ R are the state vector
and the control variable, respectively, x0 = [−0.5, 0.5, 1]T . The
utility function is chosen as the quadratic form R(xt , ut) = xTt Pxt +
uT
t Qut , where P and Q are both identity matrices with appropriate

dimensions.
Three-layer feedforward neural networks are used to con-

struct the model network, the critic network, and the action net-
work with structures 4–8–3, 3–8–1, and 3–8–1, respectively. The
INDP algorithm is applied at time step t = 0. The input-to-
hidden weight vectors of the three networks are randomly set in
[−0.5, 0.5] and then is kept unchanged, and the hidden-to-output
weight vectors are randomly initialized in [−0.5, 0.5]. 1000 mea-
sured data samples are used to train the model neural network
under the learning rate ηm = 0.1. Once the training process is
completed, the hidden-to-output weight vector is also kept un-
changed in the subsequent programming. Based on the uniformly
ultimately bounded stability, the used parameter values of the
INDP algorithm are listed in Table 1, and the meaning of the pa-
rameters can refer to Algorithm 2.
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Fig. 2. The norm of weight vectors for action and critic networks with INDP and
IADP methods.

Fig. 3. The convergence curves of cost functions with INDP and IADP methods.

Fig. 4. The control curves of INDP and IADP methods.
Fig. 6. The values of utility functions with INDP and IADP methods.

With these parameters, we adapt the INDP method to stabilize
the controlled system. The critic network and the action network
are trained for 11 iterations (i.e., for i = 1, 2, . . . , 11) with
2000 inner-loop training steps for each iteration to make sure the
tolerant error ε = 10−6 can be reached. In order to facilitate
the comparison with the IADP method, we set the same settings
on parameter values and the structures of neural networks for
the two methods. As a result, the IADP method carries out 16
iterations with 2000 inner-loop training steps in each iteration to
reach the tolerant error ε = 10−6. During training processes, the
norm of weight vectors for critic and action networks together
with the iterative cost function, are all convergent, as shown
in Figs. 2 and 3. It can be observed that the two iterative cost
function sequences converge in a monotonically increasing way
to the optimal cost function, which coincides with Theorem 1 and
indicates the validity of the INDP algorithm only based on system
data.

After training, the approximate optimal control laws based
on IADP and INDP methods are derived from the trained weight
vectors. Then the derived control laws are applied to the controlled
system for 45 time steps to present control performance. The
control curves are presented in Fig. 4. The system states are
stabilized to zero under this control, as illustrated in Fig. 5. During
the regulation, the curves of utility functions are shown in Fig. 6.
The simulation results demonstrate that the approximate optimal
control law derived by the INDP algorithm is effective only based
on measured system data, and it is able to provide the excellent
control performance.
Case 2 In this example, we consider the following non-affine
discrete-time nonlinear system:

xt+1 = 1.2xt + sin(0.8x2t + tanh(ut)), (59)

where xt and ut are the state vector and the control variable,
respectively, x0 = 0.6. The utility function is chosen the same
formulation as in case 1.
Fig. 5. The control performance with INDP and IADP methods, (a) the trajectories of x1 , (b) the trajectories of x2 , (c) the trajectories of x3 .
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Fig. 7. The updating process of weights for the critic network, (a) the weight
updating with the iteration steps increasing, (b) the weight updating with both
inner-loop steps and iteration steps increasing.

Since the control variable cannot be explicitly expressed in
xt+1, it is very difficult to apply the IADP method which needs an
explicit control matrix gt or its estimation ĝt . Even if the model
network is used for this kind of nonlinear system, it is obviously
inaccurate because the explicit relation between ut and xt+1 cannot
be guaranteed. The proposed INDP method has the ability to deal
with this kind of nonlinear systems.

The model, critic and action networks are chosen with
structures 2–6–1, 1–6–1 and 1–6–1, respectively. All the weight
vectors of three networks are randomly initialized in [−0.1, 0.1],
then the input-to-hidden weight vectors are kept unchanged, and
only the hidden-to-output weight vectors are updated. All used
parameters can refer to Table 1. Before starting the INDP algorithm,
we first train the model network by using 1000 measured system
data samples derived from the non-affine nonlinear system, and
then remain its weight vector during the whole implementation of
the INDP algorithm.

The INDP algorithm starts from i = 0 and t = 0 with an initial
iterative cost function J (0)(·) = 0, the associated iterative control
input u(0)(·) = 0 and the initial state x0 = 0.6. Let i = 1, 2, . . . ,Ni,
using the input-to-hidden weight vector sc and hidden-to-output
weight vector υ̂t , Ĵ (i+1)(xt) and J (i+1)(xt) can be calculated by
Eqs. (36) and (38), respectively. υ̂t is updated via 2000 inner-loop
steps by Eq. (40) on basis of the error function Ect . The updating
process of weights for the critic network is shown in Fig. 7, where
Fig. 7(a) provides weight convergence curves as the iteration steps
increase and Fig. 7(b) specifically presents that the weights are
updated in the inner loops by minimizing the error function of
critic network. Meanwhile, the control input ût is calculated by
the action network with the weight vectors sa and ω̂t . ût and xt
are transmitted into the model network to produce x̂t+1. Ĵ (i)(x̂t+1)
is calculated by Eq. (37). Then ω̂t in the action network can be
updated by employing Eq. (43) via 2000 inner-loop steps based on
Eat . Similarly, the weights regulation are presented in Fig. 8, where
Fig. 8. The updating process of weights for the action network, (a) the weight
updating with the iteration steps increasing, (b) the weight updating with both
inner-loop steps and iteration steps increasing.

Fig. 8(a) illustrates the weights are updated as the iteration steps
increase and Fig. 8(b) depicts the detailed weight updating in the
inner loops to minimize the error function of action network. We
check the condition ∥Ĵ (i+1)(xt)− Ĵ (i)(xt)∥ ≤ ε to examine whether
it can be satisfied or not.When i = 18, this condition holds and the
convergence curve of iterative cost function is shown in Fig. 9(a).
Thereforewe obtain the approximated optimal control lawwith υ̂t
and ω̂t and apply it to control the non-affine nonlinear system for
30 time steps. The state curve is in Fig. 9(b) and the control curve
is in Fig. 9(c), where the state of the non-affine nonlinear system
is stabilized to zero. It verifies the effectiveness of this proposed
method to deal with the control problem of this kind nonlinear
systems.

Case 3 In this case, we apply the proposed INDP algorithm to the
dynamical system of single-link manipulator, whose mechanical
model is shown in Fig. 10, which is also discussed in Wu and
Cai (2006) and Zhong, Ni, and He (2016) The mathematical
description of this system is formulated as the following second-
order differential equation:

dθ
dt

= w,

dw
dt

= G−1ut − MgL sin(θ)− fd
dθ
dt


,

(60)

where M = 1 kg is the mass of manipulator, and L = 0.5 m is
the length of manipulator. The system states are the current angle
θ and the associated angular velocity w. Let G = 5 kg · m2, fd =

2 kg ·m2 and g = 9.81 m/s2 be the moment of inertia, the viscous
friction and the acceleration of gravity, respectively.

The Eulermethodwith the sampling interval∆t = 0.1 s is used
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Fig. 9. The control performance of INDP algorithm for case 2, (a) the convergence curve of the iterative cost function, (b) the trajectory of the state, (c) the control input.
Fig. 10. The mechanical model of the single-link manipulator.

Fig. 11. The control performance of the INDPmethod for case 3, (a) the convergence
curve of the iterative cost function, (b) the trajectories of the states, (c) the control
curve, (d) the utility function.

to discretize this system as (Chapra & Canale, 1998;Wei, Lewis, Liu,
Song, & Lin, in press)

xt+1 =


x1t + 0.1x2t

0.2

−0.49 sin(x1t)− 0.2x2t + x2t

 +


0

0.02


ut ,

where x1 = θ and x2 = w. The initial state vector of the controlled
system is x0 = [−1, 1]T . The model network, the critic network
and the action network are with the structures of 3–8–2, 2–8–1
and 2–8–1. The tolerant error of INDP algorithm is set as ε = 10−4.
All other parameters are kept the same settings as in Table 1.

The model network are first sufficiently trained based on 1000
data samples, then the trained ν̂t and the given sm are fixed for the
INDP algorithm. We then train the critic network and the action
network for maximal 200 iteration steps with 2000 internal loops
for each iteration. When i = 31, the iterative cost function Ĵ (31) =

0.1181713 and Ĵ (32) = 0.1182044, it means that ∥Ĵ (i+1)
− Ĵ (i)∥ ≤ ε

holds, and the tolerance error ε = 10−4 is achieved when i = 31.
Fig. 11(a) shows the convergence curve of the iterative cost func-
tion. After that, the obtained approximate optimal control law is
Fig. 12. The phase trajectory under the INDP controller for the single-link
manipulator.

applied to the single-linkmanipulator for 500 time steps. Fig. 11(b)
presents two state trajectories of angle θ and angular velocity w.
Fig. 11(c) gives the control curve and Fig. 11(d) provides the util-
ity function during the control process. Fig. 12 illustrates the phase
trajectory of the single-linkmanipulator under the INDP controller
over time. All control performance including the state trajectories,
the phase trajectory, the control curve and the utility curve demon-
strates that the INDP controller can provide the effective approxi-
mate optimal control law to make the manipulator stay in the ori-
gin after a transient regulation, while the associated control law is
produced only based on all measurable system data.

6. Conclusion

In this paper, an effective INDP algorithm is proposed to obtain
the approximate optimal controller for unknown affine and non-
affine nonlinear discrete-time systems. The INDP algorithm solves
the discrete-time HJB equation within the framework of IADP
and its implementation is dependent on measured system data
without inquiring the system mathematic model. The iteration
convergence analysis and the uniformly ultimately boundness for
the algorithm implementation are both provided. Three example
studies are presented to show the control performance derived
from the proposed INDP algorithm, which illustrate that the
proposed scheme is a data-driven control strategy and it can
stabilize general discrete-time nonlinear system by learning from
system data. For further research work, the INDP approach based
on a DHP/GDHP structure can be developed with the associated
stability analysis. Also, we will explore this INDP approach to
uncertain systems and constrained systems.
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