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Sparse representation has been applied in many domains, such as signal processing, image processing
and machine learning. In this paper, a redundant dictionary with each column composed of a Voigt-like
lineshape is constructed to represent the pure spectrum of the sample. With the prior knowledge that the
baseline is smooth and sparse representation coefficient for a pure spectrum, a method simultaneously
fitting the pure spectrum and baseline is proposed. Since the pure spectrum is nonnegative, the represen-
tation coefficients are also made to be nonnegative. Then through alternating optimization, a surrogate
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function based algorithm is used to obtain the sparse coefficients. Finally, we adopt one simulated data
set and two real data sets to evaluate our method. The results of quantitative analysis show that our
method successfully estimates the baseline and pure spectrum and is superior compared to other base-
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1 Introduction

Infrared spectroscopy is a simple and reliable technique
widely used in general chemistry and specifically in organic
chemistry. It can be used to detect the structure of measured
samples and is particularly useful to measure the concen-
tration of various compounds in different food products.’
According to the Beer-Lambert Law, absorbance of the infra-
red spectrum of the sample is proportional to the concen-
tration of the sample with the thickness of the sample being
controlled, thus resulting in the foundation for inverse cali-
bration models such as Partial Least Squares (PLS) regression
for the prediction of the concentration of analytes of interest.
However, because of instrumental measurement effects, a
baseline is usually superimposed on the pure spectrum of the
investigated sample. In general, the collected spectroscopic
data consist of the pure spectrum of the sample, a baseline
and associated noise. From the frequency domain perspective,
a baseline is a slow varying background belonging to the low
frequency domain and noise is in the high frequency domain.
Since the baseline will deteriorate the quantitative calibration
results of the samples, one of the fundamental problems in
the analysis of spectroscopic data is the separation of useful
information contained in the peaks of the pure spectrum from
unnecessary background and noise.*
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line correction and preprocessing methods.

In the past few years, numerous techniques for baseline
estimation have been proposed.® For a signal composed of a
low-frequency component and a sparse-derivative component,
a low pass filter has been designed which has successfully esti-
mated the baseline of the signal.* One disadvantage is that the
derivative of the signal must be sparse. Since the baseline is a
smooth slow varying background, polynomials and splines
have been used to fit the baseline. An improved iterative poly-
nomial fitting with automatic threshold (IIPFAT) has been pro-
posed to estimate the baseline,” but it does not perform
sufficiently in low signal to-noise and signal-to-background
ratio signals. Recently, a baseline correction method based on
asymmetric least squares (asLS) has been proposed,® which
has shown effectiveness for both simulated and real data sets.
Subsequently, two modified methods with the ability of updat-
ing the asymmetric weight automatically have also been
designed, which are termed adaptive iteratively reweighed
penalized least squares (airPLS)” and asymmetrically
reweighed penalized least squares (asPLS),® respectively.
Furthermore, a multiple spectral baseline correction algorithm
using asymmetric least squares was also proposed® to exploit
the common information in the spectra. According to the stat-
istical learning theory, two different probability distributions
were firstly imposed on the baseline points and peak points,
respectively. Then an EM algorithm was used to separate the
baseline points and peak points. Finally the P-splines were
used to fit the baseline."® The Corner-Cutting (CC) method
was derived from the techniques used in computer aided
design and provided an efficient baseline calculation through
an iterative process.'’ Also, a method based on exponential
smoothing (ATEB) was proposed recently to correct the base-
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line of a high resolution spectral profile."> These methods can
all estimate the baseline successfully, but they still cannot sep-
arate the pure spectrum from noise. Using the peak infor-
mation, a method known as Statistics-sensitive Nonlinear
Iterative Peak-clipping (SNIP) was proposed.'® Although the
peak height was crucial to the calibration result, sometimes
the estimated baseline was not accurate. In order to directly
evaluate the calibration performance of the baseline correction
method, a baseline correction combined partial least squares
(BCC-PLS) algorithm was introduced,™ but it is known only to
be effective for a polynomial type baseline.

Theoretically, the final lineshape of the spectrum can be
attributed to three factors: Doppler broadening, radiation
damping and collision broadening. Doppler broadening
gives the Gaussian lineshape, while radiation damping and
collision broadening result in the Lorentzian lineshape.’
Since these effects act only on molecules, the true lineshape
called Voigt lineshape is the convolution of these two line-
shapes. In order to avoid the cumbersome computation, the
linear combination of these two lineshapes has been used
in practice. An alternative approach for obtaining the
Voigt-like lineshape was suggested'® and adopted'” for
hyperspectral curve fitting. Instead of formulating the curve
fitting method as a nonlinear least squares problem and
solved by the Levenberg-Marquardt scheme,'® we con-
structed a redundant dictionary with each column consist-
ing of a Voigt-like lineshape to represent the pure
spectrum. Considering that the number of peaks is much
smaller than the columns of the dictionary, the representa-
tion of spectroscopic data under this dictionary is under-
determined. To surmount the uncertainty of the representa-
tion coefficient, the sparsest one will be considered. Sparse
representation has been extensively used in recent years and
a significant amount of research focus has been made on
sparse models and their applications."® Moreover, the base-
line estimation wusing sparsity has been proposed
elsewhere.”’

In the former methods, the baseline estimation and pure
spectrum fitting were conducted separately. In this paper, with
smooth constraint of the baseline and the sparse representa-
tion coefficient of the pure spectrum under the constructed
dictionary, we can estimate the baseline and pure spectrum
simultaneously. The outline of this paper is organized as
follows. In section two, we propose our method and an algor-
ithm to solve it. Experiments on one simulated data set and
two real data sets are conducted to justify the performance of
our method in section three, and we draw some conclusions in
the final part.

2 Problem formulation

Throughout this paper, we use ||x||, and ||x|]; to denote the
number of non-zeros and sum of absolute values for elements
in x respectively, ||x|l, being the Euclidean norm. Since the
baseline is discrete in manner, in order to describe the
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smoothness of the baseline, a difference matrix is employed.
Assume that the length of the spectrum is N, then the k-th
order difference matrix will be of size N x (N — k). The second
order difference matrix is displayed as follows:

(1)
-2 1
Effectively, each measured spectrum x consists of the pure

spectrum s of the sample, a baseline z and noise n. Assuming
that they satisfy additive property:

X=SsS+z+n.

(2)

Since each pure spectrum can be approximated by a linear
combination of Gaussian, Lorentzian or Voigt-like lineshapes,
we constructed a dictionary @ with each column composed of
a Voigt-like lineshape which can fully represent the spectrum.
Analogous to ref. 16, each Voigt-like lineshape can be rep-
resented as

3)

where

L~ I—1

l//(l) - \/EO'

(4)

i =1, 2,.,N, i is the peak location and ¢ is the width of the
lineshape, ¢ denotes the normalization constant, and f is the
tunable parameter for achieving a more Gaussian-like or a
Lorentzian-like lineshape. When f = 1, we obtain a Lorentzian
shape:

c

(i—ip)*’
1 -~ 7
* 202

s(i) = (5)

Taking the logarithm of s and by the Taylor’s expansion of
In(1 + x), we can show that s will approximate a Gaussian
shape as f approximates 0:

(i—ip)”

- (6)

s(i) = ce”

Matching pursuit*! was introduced to decompose a signal
as a linear combination of members in a specified family of
basis. For the infrared spectroscopic data, the family of basis
is the Gaussian, Lorentzian or Voigt-like lineshapes. In order
to obtain different redundant dictionaries, different sampling
methods can be employed for the peak location i, and the
width of the lineshape o. Analogous to ref. 21, assume that
each spectrum is of length N, let ¢ = @, Au=a"t and i, =
pdAu, where 0 < j < log, N and 0 < p < N-27"! to generate a
redundant dictionary. For the real data sets, we set f = 0.5 to
obtain an equally mixed Lorentzian-Gaussian curve to rep-
resent the pure spectrum.
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Since each pure spectrum can be represented by the dic-
tionary @, there is a representation coefficient a such that:

s = da. (7)

Moreover, the baseline is smooth and the pure spectrum is
positive, so we can use the formula

arg min||x — ®a —z||> + A4||Dz|[3, a>0 (8)
zZ,a

to measure the fidelity of the fitting of the measured spectrum
and the roughness of the baseline, where D denotes the differ-
ence matrix whose order is usually set as two or three. Since
the dictionary is redundant, the solution to a is not unique.
One alternative is to add a constraint ||«||, in (8) to find the
sparsest one. However, in most cases, the /,-norm problem is
N-P hard, and the convex relax: /;-norm is adopted. Finally our
method is described as follows:

argmin|x — 0@ — 2|3 + 4Dz} + Lllal;, @0, (9)

As we can see, when 1, approaches infinity, the representa-
tion coefficient @ becomes zero, this is just the Whittaker
Smoother®” used for de-trending. To solve (9), we optimize z
and « alternatively. Taking the partial derivative of (9) with
respect to z and setting it to zero, we obtain

z= I+ M4D"D)(x — Da). (10)

Since « is regularized by the /;-norm, several methods can
be adopted to solve it, such as ADMM (Alternating Direction
Method of Multipliers),”® IRLS (Iteratively Reweighted Least
Squares),** surrogate function®® and so on. Note that the proxi-
mity operator of il|all, is 3 (a — v)> + 1|al|;, whose solution is
the soft threshold function: S;(v) = max(v — 4,0) — max(—v —
2,0). In the following, we use the surrogate function method to
obtain the solution for a.

@(x,x0) is called a surrogate function of f(x) if the following
holds:

(i) @(x,x0) = f(x) for all x;

(i) g(x0,%0) = flxo)-

The k-th iteration of z and « is denoted as z® and a(k),
respectively, and let

La) =[x = da—2® [ + 2| D29 + o] @ 1. (11)

Since the second term on the right hand side in (11) is
independent of a, the optimal value of a is the same as L(a)
without it. For simplicity, considering t® = x — 2, we use the
equation:

L@) =||Pa — V|3 + A |l (12)

For constructing a surrogate function for L(a), we use the
equation:

Qla,a®™) = ||@a —t W3 + Llals + cf a—a™ 3

13
— || ®a— @a V|3, 1)
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where ¢ is larger than the squared spectral radius of @.
Opening the various terms in Q(a,a*™") and re-organizing
them, we can obtain a new formula,

2

»  (14)

¢T¢a(k_1> _ ®Tt(k)
Cc

a—at 4

+ Az||e||, + const.

The constant in the above expression is independent of o
and

a® .= arg min Q(a, a* V). (15)
Using soft thresholding, we can obtain
q)Tt(k) _ T (k—1)
at =5, <a<’H> + ; ¢ ) (16)

since a® is positive, it is projected on its positive part. It is
known that the /,-norm and /;-norm are separable element-
wise, and therefore, our method can process multiple spectra
simultaneously. With the alternating optimization of z and «,
the final estimated z is used as the estimated baseline and s =
®a is the estimation of the pure spectrum. In our algorithm,
the terminal criterion will be a maximum iteration number
achieved or the relative error of the baseline is below some
specified threshold; we can thus summarize the algorithm as
follows:

Algorithm 1: Simultaneous spectrum fitting and baseline
correction using sparse representation (SSFBCSP)

Step 1. Input single spectrum or spectral matrix x, diction-
ary @, regularizers 4, and ,, order of difference matrix d, and
maximum iteration number Iter;

Step 2. Initialize a = 0, relative error ¢ and Preprocessing:

2.1 Mat =1+ A,D"D;

2.2 Cholesky decomposition of Mat: L = chol(Mat);

234=0".

Step 3. Update z and a:

3.1 20 =17'L7"(x — @k,

T(x — z0) — Agk—1)
3200 =5, (O,(k—l) L P x=2Y) —4a ):
br c ;

3.3 Project o on its positive part.

Step 4. Check stopping criterion:

if 120 — 2&)/)12% Y| < ¢ or k > Iter, then stop;

else k < k+ 1 and go to Step 3.

Step 5. Output baseline z, representation coefficient a.

3 Experiments

One simulated and two real spectral data sets were used to
evaluate the performance of the proposed method. The pro-
grams were written in house in Matlab Version R2014a (The
MathWorks, Inc.) and run on a personal computer with a 3.60
GHz Intel Core on a Windows 7 operating system.
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3.1 Simultaneous spectrum fitting and baseline correction
on simulated data

The simulated data consists of six Gaussian peaks, one type of
baseline (sinusoidal baseline or exponential baseline) and one
kind of noise (Gaussian noise or a uniform random noise). The
mean and the standard deviation of Gaussian noise is taken as
zero and 1% of the intensity of the spectrum, respectively, while
the uniform noise does not fluctuate greater than 1% of inten-
sity of the spectrum. Since we have known that the pure spec-
trum consists of Gaussian lineshapes, a dictionary with a
column consisting of a Gaussian lineshape has been con-
structed where @ = 3. When d = 2, 1, = 10° and 4, = 0.01, the out-
comes of sinusoidal and exponential baselines with Gaussian
noise or uniform noise are shown in Fig. 1-4 respectively.

In order to carefully view the performance for the baseline
correction and spectrum estimation of our algorithm, the com-

Spectrum with sinusoidal baseline and Gaussian noise
0.5 T T T T T
original spectrum
estimated spectrum
estimated baseline |1

1000

0 200 400 600 800
wave length/nm

1200

Fig.1 The estimated baseline and estimated spectrum for the spec-
trum with sinusoidal baseline and Gaussian noise by SSFBCSP.

Spectrum with sinusoidal baseline and uniform noise
0.5 T T T T

original spectrum
estimated spectrum
estimated baseline |

_02 L L L L
0 200 400 600 800

wave length/nm

1000 1200

Fig. 2 The estimated baseline and estimated spectrum for the spec-
trum with sinusoidal baseline and uniform noise by SSFBCSP.
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Fig. 3 The estimated baseline and estimated spectrum for the spec-
trum with exponential baseline and Gaussian noise by SSFBCSP.

Spectrum with exponential baseline and uniform noise
0.35 T T T T T
—— original spectrum
estimated spectrum
estimated baseline

0 200 400 600 800 1000

wave length/nm

1200

Fig. 4 The estimated baseline and estimated spectrum for the spec-
trum with exponential baseline and uniform noise by SSFBCSP.

parison between the estimated baseline and the true baseline
and the comparison between the estimated spectrum and the
true spectrum for the spectrum with sinusoidal baseline and
Gaussian noise are shown in Fig. 5 and 6, respectively. The
results for other cases are similar and are omitted here for
briefness.

To show the sparsity of the representation coefficient, the
case of the sinusoidal baseline with uniform noise is shown in
Fig. 7. Considering that the length of the representation coeffi-
cient is 1531 and the number of non-zeros is 204, it shows that
the representation is sparse. When the parameters 1; = 2 x 107
and 1, = 0.1, the representation coefficient displayed in Fig. 8
is much sparser but almost does not influence the fitting
result significantly.

From the figures displayed above, we can see that our algor-
ithm has successfully estimated the baseline and spectrum,
and even the representation coefficient as being sparse. For
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Estimated baseline under Gaussian noise and sinusoidal baseline
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Fig. 5 Comparison of the true baseline and estimated baseline for the
spectrum with sinusoidal baseline and Gaussian noise.

Estimated spectrum under Gaussian noise and sinusoidal baseline
T

T T T

estimated spectrum
true spectrum

600 800 1000
wave length/nm

0 200 400 1200
Fig. 6 Comparison of the true spectrum and estimated spectrum for

the spectrum with sinusoidal baseline and Gaussian noise.

Representation coefficient under sinusoidal baseline and uniform noise
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Fig. 7 Representation coefficient of the estimated spectrum for the
spectrum with sinusoidal baseline and Gaussian noise. The parameters
are 1, = 10% and 1, = 0.01.
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Representation coefficient under sinusoidal baseline and uniform noise
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Fig. 8 Representation coefficient of estimated spectrum for the spec-
trum with sinusoidal baseline and Gaussian noise. The parameters are
J1=2x107and 2, = 0.1

the simulated data set, the true baseline and spectrum are
known. In order to evaluate our method quantitatively, the
root mean square error (RMSE) of the estimated baseline has
been adopted. Six other baseline correction methods (asLS,
airPLS, SNIP, IIPFAT, CC and ATEB) are compared with our
method and the optimal parameters for these methods are
selected by grid search. The results are listed in Table 1.

From Table 1, it can be observed that our method outper-
forms other methods in all cases, while airPLS, ATEB and CC
are the second better on GNSB and UNEB, UNSB and GNEB,
respectively. Moreover, asLS is just slightly inferior compared
to airPLS since the latter method can update the asymmetrical
weight adaptively. The other two methods don’t show any
promising results compared with these methods.

In order to thoroughly compare our method with asLS and
airPLS, CC and ATEB, the RMSE of the corrected spectrum is
also computed as shown in Table 2. It can be seen again that
our method is still better than other methods. The reason may
be that our method has considered the noise while other
methods need an extra step to denoise.

Finally, for the convergence analysis of our algorithm, we
can refer to ref. 25. To get a feeling of the convergence of our

Table 1 RMSE of the estimated baseline

GNSB* UNSB“ GNEB“ UNEB*
asLS 0.0062 0.0054 0.0051 0.0038
airPLS 0.0052 0.0030 0.0051 0.0023
SNIP 0.0071 0.0043 0.0057 0.0042
IIPFAT 0.0104 0.0089 0.0121 0.0094
CC 0.0094 0.0082 0.0024 0.0064
ATEB 0.0056 0.0029 0.0066 0.0031
SSFBCSP  7.83 x107* 6.29x107* 6.06 x 107* 5.55x 107*

“GNSB, UNSB, GNEB, and UNEB denote Gaussian noise sinusoidal
baseline, uniform noise sinusoidal baseline, Gaussian noise exponen-
tial baseline and uniform noise exponential baseline, respectively.
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Table 2 RMSE of the estimated spectrum

UNSB* GNSB* GNEB“ UNEB“
asLS 0.0072 0.0057 0.0061 0.0042
airPLS 0.0064 0.0037 0.0060 0.0029
CC 0.0043 0.0090 0.0030 0.0017
ATEB 0.0068 0.0046 0.0062 0.0038
SSFBCSP 0.0018 0.0015 0.0017 0.0015

“GNSB, UNSB, GNEB, and UNEB denote Gaussian noise sinusoidal
baseline, uniform noise sinusoidal baseline, Gaussian noise exponen-
tial baseline and uniform noise exponential baseline, respectively.

The value of loss function for each iteration process
1.4 T T T T

0.8 b

0.4 4

0.2 b

0 100 200 300 400 500
iterations

Fig. 9 The value of the loss function L in each iteration.

algorithm, the loss function for the case of the spectrum with
sinusoidal baseline and Gaussian noise is shown in Fig. 9. The
other cases are similar and are omitted here. We can see that
our algorithm can converge in a few iterations.

3.2 Experiments on real data sets

The first real data set is the corn data set which consists of 80
NIR spectra of corn measured on spectrometers mp5 and
mp6, and the mp5 data set is used to conduct the experiment.
The spectra were recorded in the region of 1100-2498 nm. This
data set is available at http:/www.eigenvector.com.

The second real data set is the marzipan data set; NIR and
IR spectroscopy were applied for a compositional analysis of
32 marzipan samples. Traditional moisture and sugar analysis
was performed on all samples. This data set is available at
http:/www.models.life.ku.dk.

3.2.1 Results of the corn data set. The corn data set is
useful for standardization and preprocessing benchmarking.
The original spectra of the corn data set, the estimated base-
lines and the estimated pure spectra by applying our algorithm
with 4, = 2 x 10° and 1, = 0.02 are shown in Fig. 10 and 11,
respectively. We can see that the original spectra deviate from
the zero baseline seriously and our methods have successfully
estimated that the baselines and the estimated spectra are on
the zero baseline. For the corn data set, the constructed dic-
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Fig. 10 The green lines are the estimated baselines by SSFBCSP and
the spectra above them are the original spectra of the corn data set.
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1500 2000 2500

wavelength/nm

Fig. 11 The estimated spectra of the corn data set by SSFBCSP.

tionary has 1402 columns. Considering that the length of the
representation coefficients is 1402 and the average number of
non-zeros for all spectra is about 250, the representation is
still sparse. An alternative to obtain a sparser representation is
to construct a dictionary which can update the location and
width of the peaks for the spectra adaptively. To justify the per-
formance of our algorithm, several standardization and pre-
processing methods such as Multiplicative Scatter Correction
(MSC),*®  Regularized Multiplicative ~Scatter ~Correction
(RMSC)*” and Standard Normal Variate transformation (SNV)*®
have been included. Also, baseline correction methods:
Multiple Spectra Baseline Correction (MSBC) algorithm,’
Corner Cutting (CC)"" and Two-side Exponential Baseline cor-
rection algorithm (ATEB)'> were used to compare with our
method. After the preprocessing process, the corrected spectra
were used for quantitative analysis. Just like in ref. 9, each cali-
bration model on corn samples was built on response vari-
ables such as moisture, oil, protein and starch, respectively.
The corn samples were first sorted by their corresponding
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responses and the third one of every fifth sample was assigned
to the test set, while the remaining samples were prepared for
the calibration set. Partial least squares regression was
adopted to build calibration models, the data set was mean
centered and the number of latent variables was chosen by
leave one out cross validation. To evaluate the performance of
each preprocessing method, the accuracy and robustness of
the calibration results were measured by root mean square
error of prediction (RMSEP) and coefficient of determination
(R?). The optimal parameters in all algorithms were deter-
mined by grid research. The results are shown in Tables 3 and
4, respectively. The calibration results with no preprocessing
(NO) are served as a benchmark.

From Tables 3 and 4, we can see that all preprocessing
methods except ATEB do not gain an improvement on oil
response, but our method is slightly inferior to the no prepro-
cessing method. For protein response, CC has the best result,
while for the moisture and the starch response, our method is
better than other methods. Moreover, the large coefficients of
determination in our algorithm show that our method is more
robust than other methods and is comparable to the ATEB
method.

3.2.2 Results of the marzipan data set. The marzipan data
set has been used in ref. 29, where the root mean square error
of cross-validation (RMSECV) was recorded to compare various
infrared and near infrared set-ups and sampling techniques.
By applying our algorithm and setting 4; = 2 x 10” and 1, =
0.08, the estimated baselines and fitted spectra are shown in
Fig. 12 and 13, respectively. The situation of the representation
coefficient for each spectrum is similar to the corn data set.
Besides preprocessing methods: SNV, MSC, Extended inverse

Table 3 RMSEP for each preprocessing method for the corn data set

Moisture 0Oil Protein Starch
NO 0.1223(9)" 0.0868(8) 0.1636(13) 0.4002(11)
MSC 0.1855(9) 0.1024(6) 0.1499(8) 0.3803(9)
RMSC 0.1605(10) 0.0965(7) 0.1658(8) 0.3602(8)
SNV 0.2305(6) 0.1024(6) 0.1501(8) 0.3688(9)
MSBC 0.1203(8) 0.0932(8) 0.1305(15) 0.3359(8)
cC 0.1179(8) 0.0936(9) 0.1146(10) 0.3942(10)
ATEB 0.1163(9) 0.0864(7) 0.1198(9) 0.3982(9)
SSFBCSP 0.1108(9) 0.0944(7) 0.1303(8) 0.3329(8)

“The values in parentheses refer to the number of latent variables.

Table 4 R?for each preprocessing method for the corn data set

Moisture Oil Protein Starch
NO 0.9556 0.8990 0.9511 0.8974
MSC 0.8881 0.8471 0.9675 0.8956
RMSC 0.9177 0.8710 0.9617 0.9034
SNV 0.8082 0.8466 0.9674 0.8989
MSBC 0.9520 0.8798 0.9668 0.9082
CC 0.9627 0.8641 0.9766 0.8992
ATEB 0.9646 0.9158 0.9797 0.8915
SSFBCSP 0.9726 0.8974 0.9751 0.9218
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Fig. 12 The green lines are the estimated baselines by SSFBCSP and the
spectra above them are the original spectra of the marzipan data set.
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Fig. 13 The estimated spectra of the marzipan data set by SSFBCSP.

scatter correction (EISC) and RMSC which can alleviate the
scatter effect of spectra, some other baseline correction
methods have been included. The asymmetric least squares
(asLS), CC, ATEB and BCCPLS were used for comparison. After
the preprocessing procedure, PLS was performed on the cor-
rected spectra and leave one out cross validation was used to
obtain the RMSECV. In order to avoid overfitting, the optimal
number of latent variables was chosen by the F-test at the 95%
confidence level.*® The final results are listed in Table 5 in
detail.

From Table 5 we can see that for moisture response, the
RMSC method gives the best result, this is probably because
the spectra have a severe nonlinear effect with the concen-
tration. BCCPLS which combines the calibration result with
baseline correction is slightly more consistent than our
suggested method. But for sugar, the RMSECV in our method
achieves a significant improvement than other methods. In
addition to these methods, asLS obtains improvement com-
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Table 5 RMSECYV for each preprocessing method on the marzipan data
set

Moisture Sugar

NO 0.592(7) 2.242(6)
SNV 0.608(9) 1.944(6)
MSC 0.610(9) 1.943(6)
EISC 0.655(8) 1.889(6)
RMSC 0.4975(9) 1.99(6)
asLs 0.573(7) 2.075(7)
cC 0.6238(7) 1.9455(6)
ATEB 0.5954(7) 2.0845(6)
BCCPLS 0.532(7) 2.044(6)
SSFBCSP 0.536(8) 1.689(7)

“The values in parentheses refer to the number of latent variables.

pared to the no preprocessing method both in moisture and
sugar responses. It is known that asLS has problem dealing
with spectra with broad peaks, and its performance is inferior
compared to our method.

3.3 Discussion of the processing speed and the selection of
hyper-parameters

Our method has achieved the desired results on both simu-
lated data set and real data sets; one may wonder how efficient
this method is and how its parameters can be tuned. The
execution times in the two cases of the simulated data set and
two real data sets are shown in Table 6. The execution times in
the other two cases of the simulated data set are similar and
are omitted here. It can be seen that our method is not
efficient compared with other baseline correction methods
whose execution times are less than one second. However, one
merit of this method is that it can be applied successfully to
the noisy data set. Since our method estimates the baseline
and pure spectrum simultaneously, the noise can be corrected
implicitly. Furthermore, multiple spectra can be processed
simultaneously. For instance, for the corn data set containing
80 samples, the average execution time taken for each spec-
trum is just about 0.25 second. One solution for the bottleneck
of the execution time is to design another optimization
method which is more expedient than the surrogate function
method to solve the /;-norm problem.

Two parameters in our method need to be set. For the
roughness parameter 4,, there are some intuitions in other
baseline correction methods such as asLS. For the sparsity
parameter 4,, one consideration is to approximately set it as
the ratio between the standard error of noise and the standard
deviation of the expected non-zeros in the solution of the rep-
resentation coefficient. For our simulated data set, since the
standard error of noise and the standard deviation of the

Table 6 Execution time of the SSFBCSP algorithm for each data set

GNSB UNSB Corn Marzipan

Time 6.66(s) 6.46(s) 22.94(s) 20.64(s)
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expected non-zeros are known, the value of 1, is set to about
0.1 firstly, and then the second parameter is adjusted. We
found that good fitting results can be obtained. By tuning the
parameters finely, we can even achieve better results. For the
real data set, an initial guess for 4, such as 0.1, the same as for
the simulate data set, is fixed firstly and then the rest of the
process is the same as that of the simulated data set.
Fortunately, there is no dependence on these parameters and
there are many pairs of parameters which can give the desired
results.

4 Conclusions

This paper addresses the problem of estimating the baseline
and pure spectrum simultaneously. The performance of base-
line correction and peak estimation is evaluated on one simu-
lated data set and two real data sets; the experiment results
show that our method has some improvement compared to
other single baseline correction methods and scatter correc-
tion methods. In particular, the large coefficient of determi-
nation in the corn data set shows that our method is robust.
Since the dictionary must be constructed beforehand in our
method, how to obtain an adaptive dictionary which can give a
sparser representation coefficient of the pure spectrum is con-
sidered in our following studies.
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