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Abstract—In this paper, we construct an event-driven adaptive
robust control approach for continuous-time uncertain nonlin-
ear systems through a neural dynamic programming (NDP)
strategy. Through system transformation and theoretical anal-
ysis, the robustness of the original uncertain system can be
achieved by designing an event-driven optimal controller with
respect to the nominal system under a suitable triggering con-
dition. In addition, it is also observed that the event-driven
controller has a certain degree of gain margin. Then, the NDP
technique is employed to perform the main controller design
task, followed by the uniform ultimate boundedness stability
proof with the feedback action of the event-driven adaptive
control law. The comparative effect of the present control
strategy is also illustrated via two simulation examples. The
established method provides a new avenue of combining adap-
tive dynamic programming-based self-learning control, event-
triggered adaptive control, and robust control, to investigate
the nonlinear adaptive robust feedback design under uncertain
environment.

Index Terms—Adaptive dynamic programming (ADP), adap-
tive robust control, critic neural network, event-driven con-
trol, neural dynamic programming (NDP), uncertain nonlinear
systems.
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I. INTRODUCTION

IN MANY areas, such as power, transportation, and
aerospace applications, there always exist system uncer-

tainties between mathematical models and practical dynamics,
which may bring in degradations of control performance.
Under this circumstance, the designed feedback control law
should possess a certain degree of robustness with respect
to the dynamic uncertainties. As one of the core contents of
modern control theory, the optimal regulation problem arises
in designing a control law in order to minimize a predefined
cost function with respect to a specified plant. The key of
utilizing optimal control theory is to establish a method to
adjust the design parameters to achieve the desired perfor-
mance and the stability of controlled plant, and simultaneously,
to attain the robustness [1]. Consequently, the robustness and
the related optimality of complex systems have been studied
by many researchers for a long time [2]–[13]. For instance,
Chen et al. [3] proposed an advanced robust tracking control
method for uncertain multi-input and multioutput nonlinear
systems with input saturation. He et al. [6], [7] adopted adap-
tive neural network techniques to handle the system uncertain-
ties and disturbances, so as to control the robotic plant with
various nonlinearities, such as input saturation and deadzone.
Cheng et al. [9] studied the integrated design of the machine
body and control algorithm for enhancing the robustness of
a closed-chain five-bar machine. Mu and Sun [10] designed
a new super-twisting sliding mode observer to achieve the
unknown system states of the second order nonlinear plant
with bounded uncertainties and disturbances. Significantly,
Lin [11] pointed out that the robust control can be designed
by solving the corresponding optimal control problem, which
provided a novel channel to derive the robust controller
and thus led to a great attention of the optimal control
design [12], [13].

The adaptive or approximate dynamic programming (ADP)
method was originally proposed by Werbos [14] as an effec-
tive avenue with adaptive and self-learning ability, in order to
conquer the phenomenon of “curse of dimensionality” arising
in optimal control problems [15]. It is implemented by solv-
ing the Hamilton–Jacobi–Bellman (HJB) equation through the
function approximation structures, usually referring to neural
networks. Hence, the ADP also can be called neural dynamic
programming (NDP) [16], thereby emphasizing the learning
property of neural networks. Si and Wang [16] focused on
building a thorough framework to develop a generic online
learning control system through the fundamental principle
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of NDP. By virtue of the fast development of machine
learning technique, the combined research of reinforcement
learning and ADP has acquired much attention as stated
in [17] and [18]. Among that, the novel ideas of ADP
have been frequently utilized for designing feedback con-
troller with optimality, such as optimal control of continuous-
time systems [19]–[21], constrained-input systems [22]–[24],
discrete-time systems [25]–[27], uncertain systems [28]–[30],
etc. Among the results, Vamvoudakis and Lewis [19] gave
an online adaptive critic algorithm to solve the continuous-
time affine nonlinear optimal control problem by integrating
the idea of adaptive control. Bian et al. [20] proposed a
new optimal control strategy for continuous-time nonaffine
nonlinear systems with unknown dynamics under the ADP
framework. Xu et al. [26] developed a novel reinforcement-
learning-based neural network output feedback control scheme
for single-input and single-output nonlinear systems in the
pure-feedback form by using deterministic learning tech-
nique. Sokolov et al. [27] provided new stability results
for action-dependent ADP, by employing a control algorithm
that iteratively improved an internal model of the exter-
nal world in the autonomous system through its continuous
interaction with the environment. Wang et al. [30] coped
with the robust decentralized stabilization of continuous-time
nonlinear systems with multicontrol stations and dynamics
uncertainties by using an online ADP approach. Recently,
Jiang and Jiang [31] developed a new global ADP mech-
anism for nonlinear adaptive optimal control design, where
the difficulty of solving the HJB equation was relaxed to
an optimization problem and the neural network approxi-
mation was also avoided, thereby bringing in a significant
computational improvement. Luo et al. [32], [33] proposed the
promising off-policy reinforcement learning methods for con-
trol design, which was easy to implement and overcome the
inefficient exploration problem by evaluating the value func-
tion of a target policy with the use of exploratory behavior
policies. However, the above results are obtained under the tra-
ditional time-driven formulation, which is time-consuming in
general.

Unlike the time-triggered control methods, in the event-
triggered control mechanism, the sampling instant for updating
the feedback controller is determined by a certain triggering
condition, rather than relying on a fixed sampling interval.
This always results in a significant reduction on computation
and communication resources. Recently, the combination of
event-triggering mechanism and ADP method has achieved
considerable attention [34]–[38]. Note that under the new
mechanism, the ADP-based controller is only updated when
an event is triggered, and hence, the computational burden of
learning and updating can be greatly saved. Vamvoudakis [35]
originally proposed an optimal adaptive event-triggered con-
trol method for nonlinear continuous-time systems based on
the actor-critic framework and neural network approxima-
tion. Then, Zhong and He [37] developed an event-triggered
ADP control approach for continuous-time affine nonlinear
systems with unknown internal states by measuring the input-
output data. Zhang et al. [38] investigated the H∞ optimal
control problem for a class of continuous-time affine nonlinear

systems by virtue of an event-triggered formulation. However,
it is apparent to find that the dynamical uncertainties and
the robustness of the controlled plant are not always con-
sidered in the existing work of ADP-based event-triggered
feedback design, which motivates our research of this paper
greatly.

Consequently, in this paper, we investigate the event-driven
adaptive robust control for continuous-time affine nonlinear
systems with uncertainties using NDP technique. The main
idea is inspired by how to embody human brain learning ability
and make better use of communication resources when solv-
ing the nonlinear adaptive robust control problem, as shown
in the aforementioned materials of Section I. Problem state-
ment and basic transformation are presented in Section II. The
robust feedback control problem is proven to be related to
perform the event-triggered optimal regulation of the nomi-
nal system with a certain triggering condition in Section III.
Therein, the NDP strategy is employed to facilitate the con-
troller design by constructing a critic neural network. In
addition, the uniformly ultimately bounded (UUB) stability of
the closed-loop system is also analyzed. The excellent perfor-
mance of the present control strategy is verified via simulation
and comparison studies in Section IV. Concluding remarks
with future work discussions and prospects are provided
in Section V.

II. PROBLEM STATEMENT AND TRANSFORMATION

Let us study a class of input-affine continuous-time nonlin-
ear systems with the form

ẋ(t) = f (x(t)) + g(x(t))u(t) + Z(x(t)) (1)

where Z(x(t)) is the uncertain dynamics satisfying

Z(x) = G(x)d(ϕ(x)) (2a)

dT(ϕ(x))d(ϕ(x)) ≤ hT(ϕ(x))h(ϕ(x)). (2b)

In system (1), x(t) ∈ R
n is the state vector and u(t) ∈ R

m

is the control vector, f (·) and g(·) are differentiable in their
arguments with f (0) = 0. In (2a) and (2b), the terms G(·) ∈
R

n×r with ‖G(x)‖ ≤ Gmax and ϕ(·) with ϕ(0) = 0 are fixed
functions reflecting the structure of uncertainty, d(·) ∈ R

r is an
uncertain function satisfying ‖d(ϕ(x))‖ ≤ dM(x) and d(0) = 0,
and h(·) ∈ R

r is a known function satisfying h(0) = 0.
In this paper, we will study how to stabilize the uncertain

system (1) adaptively. When without considering the uncer-
tainty, the controlled plant turns to its nominal version, which
plays an important role in the design process. The nominal
system corresponding to (1) is

ẋ(t) = f (x(t)) + g(x(t))u(t). (3)

Similar as the classical literature of nonlinear optimal control,
we let x(0) = x0 be the initial state vector and assume that
f +gu is Lipschitz continuous on a set � in R

n containing the
origin and that the system (3) is controllable.

The following lemma presents the achievement of robust-
ness of uncertain system (1), which can be proved by using
the similar framework as [5], [13], and [30].
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Lemma 1: Assume that there exist a continuously differ-
entiable and radially unbounded cost function V(x) which
satisfies V(x) > 0 for all x �= 0 and V(0) = 0, a bounded func-
tion �(x) satisfying �(x) ≥ 0, as well as a feedback control
function u(x), such that

(∇V(x))TZ(x) ≤ �(x) (4a)

U(x, u) + (∇V(x))T( f (x) + g(x)u) + �(x) = 0 (4b)

where ∇(·) � ∂(·)/∂x is employed to denote the gradient
operator, U(x, u) = Q(x) + uTRu, and Q(x) = xTQx with
Q = QT ≥ 0 and R = RT > 0. Under the action of the
control input u(x), there exists a neighborhood of the original
state, such that system (1) is locally asymptotically stable. In
addition, define the cost function of system (3) as

J(x0, u) =
∫ ∞

0
{U(x(τ ), u(x(τ ))) + �(x(τ ))}dτ (5)

which ensures that J(x0, u) = V(x0) holds.
Note that the quadratic utility given here is a classical choice

for convenience of analysis, as many of the ADP literature
have exhibited (see [19], [21], [25], [30], [35], [37], [38]). In
addition, the importance of the function �(x) lies in that it
presents an upper bound to the uncertain term (∇V(x))TZ(x),
thereby facilitating us to design the robust control of nonlin-
ear system possessing dynamical uncertainty. The following
Lemma 2 shows us a specific form of �(x), which verifies
inequality (4a) obviously.

Lemma 2 [30]: For any continuously differentiable func-
tion V(x), if we define

�(x) = hT(ϕ(x))h(ϕ(x))+ 1

4
(∇V(x))TG(x)GT(x)∇V(x)

then, the inequality (∇V(x))TZ(x) ≤ �(x) holds.
Remark 1: According to Lemma 1, the cost function V(x),

the bounded function �(x), and the feedback control u(x)
satisfying (4a) and (4b) can guarantee the robust stabiliza-
tion of system (1). Note that the optimal cost function and
optimal control law of system (3) are actually represented as
the specific forms of the cost function and feedback control.
Hence, in the sequel, we should minimize J(x0, u) with respect
to u, so as to derive the optimal cost function and optimal con-
trol law. This serves as the design fundamental of the adaptive
robust stabilization of this paper.

Now, we focus on solving the optimal control problem
of system (3) with V(x0) taken as the cost function. The
designed optimal feedback control must be admissible, as
stated in [19] and [23]. For system (3), it can be observed that

V(x0) =
∫ T

0
{U(x, u) + �(x)}dτ + V(x(T)) (6)

is equivalent to (4b). Then, (4b) is an infinitesimal version of
the cost (6) and is the nonlinear Lyapunov equation.

In what follows, for consistency, we generally take J(x)
to denote the cost function, instead of V(x). In light of the
classical optimal control theory, we define the Hamiltonian of
the transformed problem as

H(x, u,∇J(x)) = U(x, u) + (∇J(x))T( f + gu) + �(x).

Let � be a compact subset of R
n and �(�) be the set of

admissible controls on �. The optimal cost function, denoted
by J∗(x0), of the nominal system (3) is defined as

J∗(x0) = min
u∈�(�)

J(x0, u).

Note that the optimal cost J∗(x) satisfies the continuous-time
HJB equation of the form

0 = min
u∈�(�)

H
(
x, u,∇J∗(x)

)
. (7)

Hence, the optimal control of system (3) is obtained by

u∗(x) = −1

2
R−1gT(x)∇J∗(x). (8)

Using the optimal control u∗(x) and the specific form of the
bounded function �(x), the HJB equation becomes

0 = U
(
x, u∗(x)

) + (∇J∗(x)
)T(

f (x) + g(x)u∗(x)
)

+ hT(ϕ(x))h(ϕ(x)) + 1

4

(∇J∗(x)
)T

G(x)GT(x)∇J∗(x)

with J∗(0) = 0. Based on (8), the HJB equation can be also
written as

0 = Q(x) + (∇J∗(x)
)T

f (x) + hT(ϕ(x))h(ϕ(x))

− 1

4

(∇J∗(x)
)T

g(x)R−1gT(x)∇J∗(x)

+ 1

4

(∇J∗(x)
)T

G(x)GT(x)∇J∗(x) (9)

with J∗(0) = 0.
Since it is always difficult to solve the nonlinear optimal

control analytically, kinds of ADP-based methods combin-
ing the idea of reinforcement learning have been proposed
to get the approximate solution [17]–[19]. However, nearly
all of the existing methods are implemented predicated on
the time-driven formulation, which generally speaking, is
time-consuming. In other words, there is a huge room for
improvement when considering to make better use of com-
munication resources and reduce the computational burden.
Thus, in what follows, we turn to the event-driven adaptive
robust controller design through NDP technique.

III. EVENT-DRIVEN ADAPTIVE ROBUST CONTROLLER

DESIGN THROUGH NDP TECHNIQUE

In this part, the main controller design method is developed,
including the introduction of event-driven formulation, the
implementation of neural network learning, and the achieve-
ment of robust stabilization.

A. Robust Stabilization With Event-Triggering Mechanism

Let N = {0, 1, 2, . . .} denote the set of all non-negative
integers. In order to employ the event-triggering method to
control the sampled-data system, we first define a monotoni-
cally increasing time sequence of triggering instants as {sj}∞j=0
with s0 = 0 such that sj < sj+1, j ∈ N. Assume that the
nominal system (3) is sampled at the triggering instants sj,
which results in the sampled state vector x(sj) � x̂j for all
t ∈ [sj, sj+1), j ∈ N. Then, the event-triggered controller
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μ(x̂j) is updated based on the sampled state x̂j rather than
the current state x(t). That is to say, the controller μ(x̂j) is
executed at every triggering instants. By using a zero-order
hold, the corresponding control sequence {μ(x̂j)}∞j=0 becomes
a continuous-time input signal μ(x̂j, t), that is

μ
(
x̂j, t

) = u
(
x̂j

) = u
(
x
(
sj
))

,∀t ∈ [
sj, sj+1

)
, j ∈ N. (10)

For simplicity, we use the notation μ(x̂j) instead of μ(x̂j, t).
Define the event-triggered error between the sampled state and
current state as

ej(t) = x̂j − x(t),∀t ∈ [
sj, sj+1

)
, j ∈ N. (11)

Thus, the event-triggered optimal control problem can be
formulated, where the corresponding sampled-data system is

ẋ(t) = f (x) + g(x)μ
(
x(t) + ej(t)

)
. (12)

Based on (8) and (10), the event-triggered optimal controller
can be given by

μ∗(x̂j
) = −1

2
R−1gT(

x̂j
)∇J∗(x̂j

)
,∀t ∈ [

sj, sj+1
)

(13)

where ∇J∗(x̂j) = (∂J∗(x)/∂x)|x=x̂j . Under the framework of
the event-triggering mechanism, the HJB equation (9) can be
rewritten as

H
(
x, μ∗(x̂j

)
,∇J∗(x)

)
= U

(
x, μ∗(x̂j

)) + (∇J∗(x)
)T(

f (x) + g(x)μ∗(x̂j
))

+ hT(ϕ(x))h(ϕ(x)) + 1

4

(∇J∗(x)
)T

G(x)GT(x)∇J∗(x)

= Q(x) + (∇J∗(x)
)T

f (x) + hT(ϕ(x))h(ϕ(x))

− 1

2

(∇J∗(x)
)T

g(x)R−1gT(
x̂j

)∇J∗(x̂j
)

+ 1

4

(∇J∗(x̂j
))T

g
(
x̂j

)
R−1gT(

x̂j
)∇J∗(x̂j

)

+ 1

4

(∇J∗(x)
)T

G(x)GT(x)∇J∗(x) (14)

with J∗(0) = 0. Note that unlike the time-triggered HJB equa-
tion (9), the new formula (14) is in fact the event-triggered
HJB equation.

To reveal the relationship between the continuous-time input
signals μ∗(x̂j) and u∗(x), we recall the following assumption.

Assumption 1 [35]: The control law μ(x) is Lipschitz
continuous with respect to the event-triggered error, i.e.,
‖μ(x(t)) − μ(x̂j)‖ ≤ L‖ej(t)‖, where L is a positive real
constant and μ(x) = u(x).

Inspired by the excellent work of [35], we present the fol-
lowing lemma that can be derived by conducting a similar
proof, where the structure of matrix R should be noticed.

Lemma 3: Suppose that the Assumption 1 holds and let
R = rTr. Then, we have

H
(
x, μ∗(x̂j

)
,∇J∗(x)

) − H
(
x, u∗(x),∇J∗(x)

)
= (

u∗(x) − μ∗(x̂j
))T

R
(
u∗(x) − μ∗(x̂j

))
≤ L2‖r‖2

∥∥ej(t)
∥∥2

. (15)

For the event-triggered control problem, a triggering con-
dition should be designed to determine the event-triggering

instants and guarantee the stability of the closed-loop system.
Now, we need to derive an appropriate triggering condition for
the robustness of the original uncertain system (1) with the
event-triggered optimal controller (13), which can guarantee
the asymptotic stability of system (1).

Theorem 1: For the nominal system (3), suppose that J∗(x)
is the solution of the HJB equation (7) and μ∗(x̂j) is the event-
triggered optimal controller. For all t ∈ [sj, sj+1), j ∈ N, if the
triggering condition is defined as

∥∥ej(t)
∥∥2 ≤

(
1 − η2

1

)
λmin(Q)‖x‖2 + ∥∥rμ∗(x̂j

)∥∥2

L2‖r‖2

� ‖eT‖2 (16)

where eT denotes the threshold, λmin(Q) is the minimal eigen-
value of Q, and η1 ∈ (0, 1) is a designed sample frequency
parameter, then the closed-loop form of system (1) with the
event-triggered controller (13) is asymptotically stable.

Proof: Choose L1(t) = J∗(x(t)) as the Lyapunov function.
The derivative of L1(t) along the system trajectory (1) with
the controller (13) can be formulated as

L̇1(t) = (∇J∗(x)
)T(

f (x) + g(x)μ∗(x̂j
) + Z(x)

)
. (17)

From (8), we can get

gT(x)∇J∗(x) = −2Ru∗(x). (18)

Since J∗(x) satisfies (4a) and (4b), we have
(∇J∗(x)

)T
Z(x) ≤ �(x) (19a)(∇J∗(x)

)T
f (x) = −Q(x) + u∗T(x)Ru∗(x) − �(x). (19b)

Through making a combination of (18), (19a), and (19b), the
derivative (17) becomes

L̇1(t) ≤ (∇J∗(x)
)T

f (x) + (∇J∗(x)
)T

g(x)μ∗(x̂j
) + �(x)

≤ −Q(x) + u∗T(x)Ru∗(x) − 2u∗T(x)Rμ∗(x̂j
)
. (20)

Adding and subtracting a quadratic term μ∗T(x̂j)Rμ∗(x̂j), it
follows from (20) that

L̇1(t) ≤ −Q(x) − μ∗T(
x̂j

)
Rμ∗(x̂j

)
+ (

u∗(x) − μ∗(x̂j
))T

R
(
u∗(x) − μ∗(x̂j

))
. (21)

According to Lemma 3, (21) can be deduced to

L̇1(t) ≤ −xTQx + L2‖r‖2
∥∥ej(t)

∥∥2 − ∥∥rμ∗(x̂j
)∥∥2

≤ −η2
1λmin(Q)‖x‖2 +

(
η2

1 − 1
)
λmin(Q)‖x‖2

+ L2‖r‖2
∥∥ej(t)

∥∥2 − ∥∥rμ∗(x̂j
)∥∥2

.

Hence, if the triggering condition (16) is satisfied, we obtain
L̇1(t) ≤ −η2

1λmin(Q)‖x‖2 < 0 for any x(t) �= 0, t ∈ [sj, sj+1).
This proves that the triggering condition (16) can ensure the
asymptotic stability of the uncertain system (1).

Remark 2: In the triggering condition (16), the sample fre-
quency parameter η1 should be selected to ensure that the term
‖eT‖2 is positive. Actually, it is easy to attain the goal because
η1 is constrained to be located in an interval (0, 1).
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For the continuous-time nonlinear system with the event-
triggered control input, the minimal intersample time smin =
minj∈N{sj+1−sj} might be zero and the accumulations of event
times may occur (i.e., the Zeno behavior). To exclude the Zeno
behavior, we present the following lemma.

Lemma 4: Considering the uncertain system (1) with the
event-triggered control law (13), the minimal intersample time
smin determined by (16) is lower bounded by a nonzero
positive constant such that

smin ≥ 1

K ln
(
1 + Sj,min

)
> 0

which illustrates the exclusion of the Zeno behavior, where

Sj,min = min
j∈N

{∥∥ej
(
sj+1

)∥∥∥∥x̂j
∥∥ + π

}
> 0

and ej(sj+1) = x̂j − x(sj+1), K is a positive constant, and π is
a small positive constant satisfying ‖f (x) + g(x)u + Z(x)‖ ≤
K‖x‖ + Kπ .

The proof of Lemma 4 is similar with [38] and thus it is
omitted here. Note that the constants K and π are existing
since f +gu is Lipschitz continuous and the term Z(x) is upper
bounded as ‖Z(x)‖ ≤ GmaxdM(x).

Incidently, it is important to note that the event-triggered
controller μ∗(x̂j) has a certain degree of gain margin, as shown
in the following corollary. This result can be obtained easily
as Theorem 1 and hence the proof is omitted here.

Corollary 1: For system (3) with J∗(x) and μ∗(x̂j), if the
triggering condition is given by

∥∥ej(t)
∥∥2 ≤

(
1 − ή2

1

)
λmin(Q)‖x‖2 + ξ

∥∥rμ∗(x̂j
)∥∥2

ξL2‖r‖2

�
∥∥éT

∥∥2
,∀t ∈ [

sj, sj+1
)
, j ∈ N (22)

where ξ is a constant satisfying ξ ≥ 1, éT is the threshold,
and ή1 ∈ (0, 1) is the sample frequency parameter, then the
closed-loop system (1) with event-triggered controller ξμ∗(x̂j)

is asymptotically stable.
Next, the idea of NDP is employed to approximate the

optimal cost function J∗(x) and the optimal control law
μ∗(x̂j) with event-driven formulation, which is named as the
event-driven NDP algorithm.

B. Event-Driven NDP Design With Implementation

In the event-based NDP algorithm, only a single critic neural
network with three-layer structure is required to approximate
the cost function, which actually, reduces the implementation
complexity of building both the critic network and the action
network [19], [24], [35]. According to the universal approxi-
mation property, J(x) can be reconstructed by a neural network
on a compact set � as

J(x) = ωT
c σc(x) + εc(x)

where ωc ∈ R
l is the ideal weight vector, σc(x) ∈ R

l is the
activation function, l is the number of neurons in the hid-
den layer, and εc(x) is the approximation error of the neural
network. Then

∇J(x) = (∇σc(x))
Tωc + ∇εc(x). (23)

Under the framework of ADP, since the ideal weight vector
is unavailable, a critic neural network needs to be constructed
with respect to the estimated weight elements as the form

Ĵ(x) = ω̂T
c σc(x)

to approximate the cost function. Then, we have

∇ Ĵ(x) = (∇σc(x))
Tω̂c. (24)

According to (13) and (23), we describe the event-triggered
optimal control law as follows:

μ
(
x̂j

) = −1

2
R−1gT(

x̂j
)((∇σc

(
x̂j

))T
ωc + ∇εc

(
x̂j

))
.

By combining (13) with (24), the event-triggered approximate
optimal control law can be formulated as

μ̂
(
x̂j

) = −1

2
R−1gT(

x̂j
)(∇σc

(
x̂j

))T
ω̂c. (25)

As for the Hamiltonian, when taking the neural network
expression (23) into account, it becomes

H
(
x, μ

(
x̂j

)
, ωc

) = U
(
x, μ

(
x̂j

)) + hT(ϕ(x))h(ϕ(x))

+ ωT
c ∇σc(x)

(
f (x) + g(x)μ

(
x̂j

))

+ 1

4
ωT

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tωc

� ecH (26)

where

ecH = −(∇εc(x))
T(

f (x) + g(x)μ
(
x̂j

))

− 1

2
ωT

c ∇σc(x)G(x)GT(x)∇εc(x)

− 1

4
(∇εc(x))

TG(x)GT(x)∇εc(x)

represents the residual error due to the neural network approx-
imation. Using (25), the approximate Hamiltonian can be
obtained by

Ĥ
(
x, μ

(
x̂j

)
, ω̂c

) = U
(
x, μ

(
x̂j

)) + hT(ϕ(x))h(ϕ(x))

+ ω̂T
c ∇σc(x)

(
f (x) + g(x)μ

(
x̂j

))

+ 1

4
ω̂T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̂c

� ec. (27)

By letting the error of estimating the critic network weight be
ω̃c = ωc − ω̂c and combining (26) with (27), we find that

ec = −ω̃T
c ∇σc(x)

(
f (x) + g(x)μ

(
x̂j

))

+ 1

4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c

− 1

2
ωT

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c + ecH (28)

which shows the relationship between the terms ec and ecH .
For the purpose of critic learning, it is desired to train ω̂c

to minimize the objective function Ec = 0.5eT
c ec. Note that

the approximated control law (25) is often used for conduct-
ing the learning stage because of the unavailability of the
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż =

⎡
⎢⎢⎣

f (x) + g(x)μ̂
(
x̂j

)
0

−αc

(
φTω̃c − 1

4
ω̃T

c Bω̃c + 1

2
ωT

c Bω̃c − ecH

)(
φ + 1

2
Bωc − 1

2
Bω̃c

)
⎤
⎥⎥⎦, t ∈ [

sj, sj+1
)

z(t) = z
(
t−

) +
⎡
⎣ 0

x − x̂j

0

⎤
⎦, t = sj+1

(31)

‖ω̃c‖ >

√√√√√2
∥∥R−1

∥∥2
g2

max∇σ 2
c max + λ4 +

√(
2
∥∥R−1

∥∥2
g2

max∇σ 2
c max + λ4

)2 + 2λ3

(
4
∥∥R−1

∥∥2
g2

max∇ε2
c max + α2

c e2
cH max

)

2λ3
(33)

optimal control law μ(x̂j). At present, we adopt the stan-
dard steepest descent algorithm to adjust the weight vector
as ˙̂ωc = −αc(∂Ec/∂ω̂c), which, based on (27), is in fact

˙̂ωc = −αcec

(
∂ec

∂ω̂c

)

= −αc

(
U

(
x, μ̂

(
x̂j

)) + hT(ϕ(x))h(ϕ(x)) + φTω̂c

+ 1

4
ω̂T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̂c

)

×
(

φ + 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tω̂c

)
(29)

where φ = ∇σc(x)( f (x) + g(x)μ̂(x̂j)) and αc > 0 is the
designed learning rate of the critic network. Then, recalling
˙̃ωc = − ˙̂ωc and (28), we can further derive that the error
dynamical equation of approximating the cost function by the
critic network is

˙̃ωc = αcec

(
∂ec

∂ω̂c

)

= −αc

(
φTω̃c − 1

4
ω̃T

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c

+ 1

2
ωT

c ∇σc(x)G(x)GT(x)(∇σc(x))
Tω̃c − ecH

)

×
(

φ + 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tωc

− 1

2
∇σc(x)G(x)GT(x)(∇σc(x))

Tω̃c

)
. (30)

Actually, we can observe that the closed-loop sampled-
data system is an impulsive dynamical system with flow
dynamics for all t ∈ [sj, sj+1) and jump dynamics for all

t = sj+1, j ∈ N. When defining an augmented state vector as
z = [xT, x̂T

j , ω̃c]T and based on (11), (12), and (30), the dynam-
ics of the impulsive system can be described by (31), shown at
the top of the page, where B � ∇σc(x)G(x)GT(x)(∇σc(x))T,
z(t−) = lim�→0 z(t − �), and the term “0” represents a null
vector with appropriate dimension.

C. Closed-Loop Stability With Event-Triggered Control

In this part, we turn to the stability issue of the
closed-loop system. At present, we focus on the UUB
stability, as most literature of the ADP field have done

(see [19], [22], [24], [28]–[30], [37], [38]). Before proceeding,
the following assumptions are needed, as often used in ADP
like [19], [24], [34], and [38].

Assumption 2: For the system dynamics g(x), we have the
following two assumptions.

1) The dynamics g(x) is Lipschitz continuous such that
‖g(x)−g(x̂j)‖ ≤ A‖ej(t)‖, where A is a positive constant.

2) The dynamics g(x) is upper bounded such that ‖g(x)‖ ≤
gmax, where gmax is a positive constant.

Assumption 3: Assume that the following bounded condi-
tions hold on a compact set �.

1) The ideal weight vector, i.e., ωc is upper bounded such
that ‖ωc‖ ≤ ωc max.

2) The derivative of the activation function, i.e., ∇σc(x) is
Lipschitz continuous such that ‖∇σc(x) − ∇σc(x̂j)‖ ≤
B‖ej(t)‖, where B is a positive constant.

3) The derivative term ∇σc(x) is upper bounded such
that ‖∇σc(x)‖ ≤ ∇σc max, where ∇σc max is a positive
constant.

4) The derivative of the approximation error, i.e., ∇εc(x)
is upper bounded such that ‖∇εc(x)‖ ≤ ∇εc max, where
∇εc max is a positive constant.

5) The residual error term, i.e., ecH is upper bounded by a
positive constant ecH max.

Theorem 2: Suppose that Assumptions 2 and 3 hold. The
tuning law for the critic network is given by (29). Then, the
closed-loop system (12) is asymptotically stable and the critic
weight estimation error is guaranteed to be UUB if the adaptive
triggering condition

∥∥ej(t)
∥∥2 ≤

(
1 − η2

2

)
λmin(Q)‖x‖2 + ∥∥rμ̂

(
x̂j

)∥∥2

2�2
∥∥ω̂c

∥∥2∥∥R−1
∥∥

�
∥∥êT

∥∥2 (32)

where η2 ∈ (0, 1) is the parameter to be designed reflecting
the sample frequency and �2 = A2∇σ 2

c max + B2g2
max and the

inequality (33), shown at the top of the page, where λ3 and
λ4 are given in (41a) and (41b), respectively, are satisfied for
the critic network.

Proof: Considering the impulsive dynamical system (31),
we choose a Lyapunov function candidate composed of three
terms as follows:

L2(t) = L21(t) + L22(t) + L23(t) (34)
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where

L21 = J∗(x(t))
L22 = J∗(x̂j

)

L23 = 1

2
ω̃T

c (t)ω̃c(t).

Note that the proof should be divided into two parts, focusing
on the continuous and the jump dynamics, respectively. Hence,
two cases are analyzed in the sequel, including events are not
triggered and events are triggered.

1) For the Case That Events Are Not Triggered, i.e., ∀t ∈
[sj, sj+1): Taking the time derivative of the Lyapunov function
along the trajectory of system (31) yields

L̇2(t) = L̇21(t) + L̇22(t) + L̇23(t).

Observing L̇2(t), the second term is L̇22 = 0 while the first
and third terms are

L̇21 = (∇J∗(x)
)T(

f (x) + g(x)μ̂
(
x̂j

))
and

L̇23 = −αcω̃
T
c

(
φ + 1

2
Bωc − 1

2
Bω̃c

)

×
(

φTω̃c − 1

4
ω̃T

c Bω̃c + 1

2
ωT

c Bω̃c − ecH

)

respectively.
For the first term L̇21, based on (18) and (19b), we have

L̇21 = (∇J∗(x)
)T

f (x) + (∇J∗(x)
)T

g(x)μ̂
(
x̂j

)
= −Q(x) + u∗T(x)Ru∗(x) − �(x) − 2u∗T(x)Rμ̂

(
x̂j

)
= −xTQx − �(x) − ∥∥rμ̂

(
x̂j

)∥∥2 + ‖r‖2
∥∥u∗(x) − μ̂

(
x̂j

)∥∥2
.

(35)

Note that the following inequality holds:

‖r‖2
∥∥u∗(x) − μ̂

(
x̂j

)∥∥2

= ‖r‖2
∥∥∥∥1

2
R−1gT(

x̂j
)(∇σc

(
x̂j

))T
ω̂c

− 1

2
R−1gT(x)(∇σc(x))

Tω̂c

− 1

2
R−1gT(x)

(
(∇σc(x))

Tω̃c + ∇εc(x)
)∥∥∥∥

2

≤ ‖r‖2
∥∥∥R−1

(
gT(

x̂j
)(∇σc

(
x̂j

))T − gT(x)(∇σc(x))
T
)
ω̂c

∥∥∥2

+
∥∥∥R−1gT(x)

(
(∇σc(x))

Tω̃c + ∇εc(x)
)∥∥∥2

. (36)

According to Assumptions 2 and 3, we have
∥∥∥gT(

x̂j
)(∇σc

(
x̂j

))T − gT(x)(∇σc(x))
T
∥∥∥2

= ∥∥∇σc
(
x̂j

)
g
(
x̂j

) − ∇σc(x)g(x)
∥∥2

= ∥∥(∇σc
(
x̂j

) − ∇σc(x)
)
g
(
x̂j

) + ∇σc(x)
(
g
(
x̂j

) − g(x)
)∥∥2

≤ 2
∥∥(∇σc

(
x̂j

) − ∇σc(x)
)
g
(
x̂j

)∥∥2

+ 2
∥∥∇σc(x)

(
g
(
x̂j

) − g(x)
)∥∥2

≤ 2
(

A2∇σ 2
c max + B2g2

max

)∥∥ej(t)
∥∥2

. (37)

Based on (36) and (37), (35) can be rewritten as

L̇21 ≤ −xTQx − ∥∥rμ̂
(
x̂j

)∥∥2

+ 2
∥∥∥R−1

∥∥∥∥∥ω̂c
∥∥2

(
A2∇σ 2

c max + B2g2
max

)∥∥ej(t)
∥∥2

+ 2
∥∥∥R−1

∥∥∥2
g2

max∇σ 2
c max‖ω̃c‖2

+ 2
∥∥∥R−1

∥∥∥2
g2

max∇ε2
c max. (38)

When expanding the third term L̇23, we find that

L̇23 = −1

8
αc

(
ω̃T

c Bω̃c

)2 − αcω̃
T
c φφTω̃c + αcω̃

T
c φecH

− αc

(
ω̃T

c Bωc

)(
φTω̃c

)
+ 3

4
αc

(
ω̃T

c Bω̃c

)(
φTω̃c

)

+ 3

8
αc

(
ω̃T

c Bωc

)(
ω̃T

c Bω̃c

)
− 1

4
αc

(
ω̃T

c Bωc

)2

+1

2
αc

(
ω̃T

c Bωc

)
ecH − 1

2
αc

(
ω̃T

c Bω̃c

)
ecH . (39)

By applying the Young’s inequality to the terms αcω̃
T
c φecH

and (1/2)αc(ω̃
T
c Bωc)ecH , letting λ0m > 0 and λ0M > 0

be the lower and upper bounds of the norm of matrix B,
and taking account of the bounded conditions ‖Bωc‖ ≤
∇σ 2

c maxG2
maxωc max � λ1 and ‖φ‖ ≤ λ2, we can obtain

that (39) can be derived as

L̇23 ≤ −λ3‖ω̃c‖4 + λ4‖ω̃c‖2 + 1

2
α2

c e2
cH max (40)

where

λ3 = 1

8
αcλ

2
0m − 3

8ϑ2
1

αcλ
2
0M − 3

16ϑ2
2

αcλ
2
0M (41a)

λ4 = αcλ1λ2 + 3ϑ2
1

8
αcλ

2
2 + 3ϑ2

2

16
αcλ

2
1 + 1

4
λ2

1

+ 1

2
αcλ0MecH max − (αc − 1)λmin

(
φφT

)
(41b)

and ϑ1 and ϑ2 are nonzero constants selected during the design
process. Though there exist both positive and negative compo-
nents in λ3 and λ4, we can guarantee that they are eventually
positive values by choosing appropriate parameters such as ϑ1
and ϑ2. For (41b), note that if the persistence of excitation like
condition is satisfied, we have λmin(φφT) > 0 [19].

By combining (38) with (40), we can obtain

L̇2(t) ≤ −xTQx − ∥∥rμ̂
(
x̂j

)∥∥2

+ 2
∥∥∥R−1

∥∥∥∥∥ω̂c
∥∥2

(
A2∇σ 2

c max + B2g2
max

)∥∥ej(t)
∥∥2

− λ3‖ω̃c‖4 +
(

2
∥∥∥R−1

∥∥∥2
g2

max∇σ 2
c max + λ4

)
‖ω̃c‖2

+ 2
∥∥∥R−1

∥∥∥2
g2

max∇ε2
c max + 1

2
α2

c e2
cH max. (42)

Introducing η2 and considering the fact that

−xTQx ≤ −η2
2λmin(Q)‖x‖2 +

(
η2

2 − 1
)
λmin(Q)‖x‖2

if the triggering condition (32) and the inequality (33) are
satisfied, we can conclude that the time derivative inequal-
ity (42) becomes L̇2(t) ≤ −η2

2λmin(Q)‖x‖2 < 0. In other
words, the derivative of the Lyapunov function candidate is
negative during the flow for all t ∈ [sj, sj+1).
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2) For the Case That Events Are Triggered, i.e., ∀t =
sj+1: Considering the difference of the Lyapunov function
candidate (34) yields

�L2(t) = L2
(
x̂j+1

) − L2

(
x
(

s−
j+1

))
= �L21 + �L22 + �L23.

According to (32), (33), and (42), we know that L̇2(t) < 0 for
all t ∈ [sj, sj+1). Since the system state and cost function are
continuous, we can obtain the following two inequalities:

�L21 = J∗(x̂j+1
) − J∗(x

(
s−

j+1

))
≤ 0

and

�L23 = 1

2
ω̃T

c

(
x̂j+1

)
ω̃c

(
x̂j+1

) − 1

2
ω̃T

c

(
x
(

s−
j+1

))
ω̃c

(
x
(

s−
j+1

))

≤ 0.

Hence, we can further find that

�L2(t) ≤ �L22 = J∗(x̂j+1
) − J∗(x̂j

) ≤ −ν
(∥∥ej+1

(
sj
)∥∥)

where ν(·) is a class-κ function [39] and ej+1(sj) = x̂j+1 − x̂j.
This implies that the Lyapunov function candidate (34) is also
decreasing at the triggering instants ∀t = sj+1.

By combining the above two cases, if the triggering con-
dition (32) and the inequality (33) hold, we can derive the
conclusion that the closed-loop impulsive system is asymp-
totically stable and the weight estimation error of the critic
network is UUB. The proof is completed.

Remark 3: Note that the error in Ĥ(x, μ(x̂j), ω̂c) is intro-
duced by the neural network approximation and the time-
triggered/event-triggered transformation from (8) to (13).
Actually, we can acquire the nearly optimal performance for
the nominal system with the event-triggered approximate con-
trol law (25) by adjusting the parameter η2 in (32). In fact,
the choice of the parameter η2 affects the value of ‖êT‖2

and further affects the triggering condition. When the trigger-
ing condition is changed, the sampling frequency will exhibit
different property. Thus, it is one of the parameters that deter-
mine how frequent that the system states are sampled. In
other words, there exists a tradeoff between the approxima-
tion accuracy and computation reduction that is determined
by the sampling frequency.

IV. SIMULATION STUDIES

We conduct two simulation experiments to demonstrate
the effectiveness of the nonlinear adaptive robust control
method.

Example 1: In this experiment, we consider an input-affine
continuous-time nonlinear system including an uncertain term

ẋ =
[ −x1 − 2x2

x1 − x2 − cos x1 sin x2
2

]
+

[
1

−1

]
u(x) +

[
p1x1 sin x2

2
0

]

(43)

where x = [x1, x2]T ∈ R
2 and u(x) ∈ R are the state

and control vectors, while Z(x) = [p1x1 sin x2
2, 0]T (with

p1 ∈ [−2, 2]) represents the uncertainty. Letting ϕ(x) = x
and considering the uncertain structure, we can select G(x) =
[1, 0]T, d(ϕ(x)) = p1x1 sin x2

2, and h(ϕ(x)) = 2x1 sin x2
2.

Let Q(x) = 2xTx and R = I (I denotes an identity matrix

Fig. 1. Convergence process of weight vector of the critic network.

Fig. 2. State trajectory during the learning phase.

with suitable dimension). We employ the event-driven NDP
method to solve the transformed optimal control problem of
the nominal system

ẋ =
[ −x1 − 2x2

x1 − x2 − cos x1 sin x2
2

]
+

[
1

−1

]
u(x). (44)

Denote the weight vector of the critic network as ω̂c =
[ω̂c1, ω̂c2, ω̂c3]T. The activation function of the critic network
is selected as σc(x) = [x2

1, x1x2, x2
2]T. This setting fashion

reflects an experimental choice after considering a tradeoff
between control accuracy and calculation complexity. Besides,
we let the learning rate of the critic network be αc = 0.1 and
the initial state of system (44) be x0 = [1,−1]T.

As indicated in [12], [19], [22], [24], and [28] the system
state of the controlled plant should be persistently excited long
enough, to make sure that the critic network can approxi-
mate the optimal cost function as accurate as possible. As
a result, we add a probing noise to guarantee the persistency
of excitation condition. We experimentally choose η2 = 0.6
and � = 12. In addition, the sampling time is chosen as
0.1 s. During simulation, we observe that the weight vector of
the critic network converges to [0.8013,−0.2200, 0.7583]T as
shown in Fig. 1. In fact, we can observe that the convergence
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Fig. 3. Evolution of the triggering condition with ‖ej(t)‖ and ‖êT‖.

Fig. 4. Sampling period during the learning process of the control input.

trend of the weight vector has appeared after 300 s. Then,
the probing signal is removed. The evolution of the state tra-
jectory during the learning phase is presented in Fig. 2. We
see that the state vector converges to zero after the probing
noise is turned off. In addition, the evolution of the trigger-
ing condition is shown in Fig. 3, from which we can find
that the event-triggered error ej(t) and the threshold êT con-
verge to zero as the state vector approaches zero. In addition,
the event-triggered error is forced to zero when the triggering
condition is not satisfied, which implies that the system states
are sampled at the triggering instants. The sampling period
during the event-triggered learning process of the control law
is depicted in Fig. 4. We find that the event-triggered controller
only needs 1640 samples of the state while the time-triggered
controller uses 3500 samples, which means fewer transmis-
sions are required between the plant and the controller under
the event-triggering framework.

Next, we choose p1 = −2 to evaluate the robust control
performance with the obtained control law μ∗(x̂j) and the trig-
gering condition (16). Let L = 12 and η1 = 0.5. The sampling
time is chosen as 0.02 s for the uncertain system (43). From
Fig. 5, we can observe the state trajectory of (43) can converge
to the equilibrium point under the near-optimal control law

Fig. 5. State trajectory reflecting the robust stabilization.

Fig. 6. Event- and time-triggered control inputs.

TABLE I
INCREASE OF SAMPLE NUMBERS

and the triggering condition (16). Particularly, Fig. 6 compares
the performance of control inputs obtained under the event-
triggered and the time-triggered frameworks. The event-driven
controller is found to approach the time-driven controller grad-
ually. Additionally, Fig. 7 displays the evolution of triggering
condition during the robust control implementation.

Moreover, it also should be mentioned that the sample
frequency of sampled-data system can be adjusted by the
parameter η1. When η1 is closer to 1, the system states are
sampled more frequently and the same for the controller updat-
ing, which also brings in an increase of the computational
burden. As for this simulation, the number of samples, Ns, is
largening with the increase of the parameter η1, which can be
illustrated by several case studies in Table I.

At last, we select ξ = 3 and conduct the simulation again.
Figs. 8 and 9 display the state response of (43) and the
evolution of triggering condition during the adaptive robust
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Fig. 7. Evolution of the triggering condition with ‖ej(t)‖ and ‖eT‖.

Fig. 8. State trajectory reflecting the robust stabilization in case that ξ = 3.

control implementation in case that ξ = 3. It can be apparently
observed an improvement of the closed-loop stability when
compared with the performance of the norm case (i.e., ξ = 1
reflected in Fig. 5). Obviously, the above results demonstrate
the effectiveness and superiority of the event-driven adaptive
robust control method by virtue of the NDP strategy.

Example 2: A robotic arm is a kind of mechanical compo-
nent possessing similar abilities to a human arm. It may be
the sum total of the mechanism or may be a part of a complex
robot. In this experiment, we consider a single link robot arm
chosen in [36] with the dynamics

θ̈ (t) = −MḡH̄

Ḡ
sin(θ(t)) − D

Ḡ
θ̇ (t) + 1

Ḡ
u(t) (45)

where θ(t) is the angle position of the robot arm and u(t) is
the control input. Other parameters of the robot arm are given
in Table II. If we define x = [x1, x2]T, where x1 = θ and
x2 = θ̇ , then the dynamics (45) can be rewritten as[

ẋ1
ẋ2

]
=

[
x2

−4.905 sin x1 − 0.2x2

]
+

[
0

0.1

]
u. (46)

We make a modification to the plant (46) by introduc-
ing an uncertain term Z(x) = [−1, 1.5]Tp2x1x2 sin x1 cos x2

Fig. 9. Evolution of the triggering condition with ‖ej(t)‖ and ‖éT‖ in case
that ξ = 3.

Fig. 10. Convergence process of weight vector of the critic network.

TABLE II
PARAMETERS OF THE ROBOT ARM

with p2 ∈ [−1, 1]. Then, we can select G(x) =
[−1, 1.5]T, d(ϕ(x)) = p2x1x2 sin x1 cos x2, and h(ϕ(x)) =
x1x2 sin x1 cos x2. Other parameters are initialized the same as
example 1.

Next, we utilize the NDP strategy to solve the event-
driven optimal control problem of the nominal system and
then derive the adaptive robust control law of the uncertain
system. Through the learning phase, the weight vector of
the critic network converges to [0.1528,−0.2570, 0.0158]T,
as illustrated in Fig. 10. Via simulation, it is observed that the
time-driven controller uses 3000 samples of the state while
the event-driven controller only needs 1314 samples, thereby
giving rise to a great reduction of the data transmission.
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Fig. 11. State trajectory reflecting the robust stabilization.

Fig. 12. Event- and time-triggered control inputs.

At last, the robust stabilization performance is investigated
by choosing p2 = 1 and applying the obtained event-driven
control law to the uncertain plant for 100 s. Then, the sys-
tem response is depicted in Fig. 11, while the comparison of
control inputs between the event-driven and time-driven cases
is presented in Fig. 12. Besides, the evolution of triggering
condition is displayed in Fig. 13 during the adaptive robust
stabilization. It is clear to find that the above results verify
the effectiveness of the event-driven nonlinear adaptive robust
control method based on the NDP technique.

V. CONCLUSION

A novel event-driven formulation is developed to design the
adaptive robust control for a class of continuous-time uncer-
tain nonlinear systems with a suitable triggering condition. An
artificial neural network is constructed for implementing the
NDP technique and establishing the event-driven approximate
optimal control law with closed-loop stability analysis as well
as simulation experiments.

It is worth mentioning that the controlled plant we studied in
this paper represents a class of nonlinear systems with known
affine nominal dynamics and unknown unmatched uncertainty.

Fig. 13. Evolution of the triggering condition with ‖ej(t)‖ and ‖eT‖.

The present method provides a channel for solving the adaptive
robust stabilization problem for this kind of uncertain systems.
Note that this formulation emphasizes the robustness of the
NDP-based control approach. In other words, unlike the basic
regulation design with optimality, this paper provides an adap-
tive robust control strategy for uncertain nonlinear systems by
virtue of the problem transformation and the NDP technique.

The future work contains extending the present approach to
adaptive robust feedback design of more complex nonlinear
systems. Additionally, it is noticed that although the system
uncertainty has been taken into consideration in this paper, a
meaningful cost function with respect to the original uncertain
system is not defined and discussed. From this point of view,
the future work also includes investigating the optimality of
the adaptive robust control law under event-driven formulation.
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