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a b s t r a c t 
Policy iteration and value iteration are two main iterative adaptive dynamic programming 
frameworks for solving optimal control problems. Policy iteration converges fast while re- 
quiring an initial stabilizing control policy, which is a strict constraint in practice. Value it- 
eration avoids the requirement of initial admissible control policy while converging much 
slowly. This paper tries to utilize the advantages of policy iteration and value iteration, 
and avoids their drawbacks at the same time. Therefore, a multi-step heuristic dynamic 
programming (MsHDP) method is developed for solving the optimal control problem of 
nonlinear discrete-time systems. MsHDP speeds up value iteration and avoids the require- 
ment of initial admissible control policy in policy iteration at the same time. The conver- 
gence theory of MsHDP is established by proving that it converges to the solution of the 
Bellman equation. For implementation purpose, the actor-critic neural network (NN) struc- 
ture is developed. The critic NN is employed to estimate the value function and its NN 
weight vector is computed with a least-square scheme. The actor NN is used to estimate 
the control policy and a gradient descent method is proposed for updating its NN weight 
vector. According to the comparative simulation studies on two examples, the effectiveness 
and advantages of MsHDP are verified. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 
The bottleneck of nonlinear optimal control applications is that it depends on the solution of the Bellman equation 

[4,11,17] , which is extremely difficult to obtain analytically or even approximately. In the past few years, adaptive dynamic 
programming (ADP) [2,6,7,9,10,12,13,15,19–30,33,36,39–60] has appeared as a promising method to solve the optimal control 
problems. Policy iteration and value iteration are two important frameworks for developing iterative ADP methods. Generally 
speaking, iterative ADP methods start from an initial condition, and then conduct policy evaluation and policy improvement 
iteratively till the convergence is achieved to design the optimal control policy. For the implementation purpose, some 
approximation structures, such as neural networks, are required to estimate the value function and the control policy. It 
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is noted that the availability of a good initial condition will affect the practicability of the iterative ADP methods to some 
extent. 

Policy iteration is one of the most popular iterative ADP framework for solving optimal control problems, which requires 
to start from an initial admissible control policy. The advantage of policy iteration is that it achieves a fast convergence rate, 
and also it guarantees that all obtained iterative control policies are admissible. In [6] , the Bellman equation was succes- 
sively approximated with a series of generalized Bellman equations, and the control policy update was derived based on the 
small perturbation assumption. For the nonlinear tracking control problem with input constraint [12] , by using a discounted 
performance index and an augmented system, an online policy iteration algorithm was presented to learn the solution of 
tracking control. The convergence and stability properties of the policy iteration algorithm were analyzed for discrete-time 
nonlinear systems in [20] . Generalized policy iteration algorithm was proposed in [47] , where an iterative loop rather than 
one step was employed to evaluate the value function of the current control policy. In the literature, it is noted that most 
of policy iteration methods focused on discrete-time systems. For continuous-time systems, Kleinman [14] proposed the fa- 
mous policy iteration algorithm to solve the algebraic Riccati equation of linear continuous-time systems, and Vrabie et al. 
[38] proved that it is theoretically a Newton method. The algebraic Riccati equation is converted to a sequences of Lyapunov 
equations, which are linear matrix equations. This method was extended to nonlinear systems, where the continuous-time 
Hamilton–Jacobi–Bellman equation was successively approximated with a sequence of linear equations [34] , which were 
solved with Galerkin’s approximation method and its convergence was analyzed in [3] . The policy iteration methods were 
also employed to solve the optimal control problem of constrained systems [1] and partially unknown systems [37,38] . To 
provide an easy-to-check persistence of excitation condition, the experience replay technique was employed in policy iter- 
ation algorithm [31] . Although policy iteration achieves faster convergence, the requirement of an initial stabilizing control 
policy is a strict constraint in practice, which greatly restricts its applications. 

As another iterative ADP framework, value iteration avoids requiring an initial stabilizing control policy. It starts from an 
arbitrary initial positive semi-definite value function, which is easy to obtain and makes the value iteration algorithms much 
more practical. Over the past few years, value iteration has received extensive attention and considerable works have been 
reported [2,8,13,59] . For the linear quadratic tracking (LQT) control problem [13] , both policy iteration and value iteration 
methods were presented by using the data of the input, output and reference trajectory. In [2] , the value iteration algorithm 
is proposed for affine nonlinear discrete-time systems and its convergence is proved rigorously. The actor-critic NN structure 
was used for implementation purpose, where actor and critic NNs were employed to approximate control policy and value 
function, respectively. The value iteration method and its convergence were also studied for the nonlinear Markov jump 
systems [59] . Feng et al. [8] proved that the iterative control laws after finite iterations can guarantee the stability of the 
closed-loop system. However, one serious drawback of the value iteration methods is that it converges much slower than 
policy iteration, and thus it requires great computational effort. 

From the above discussion, it is found that both policy iteration and value iteration approaches have advantages and 
disadvantages. Policy iteration converges fast while suffering from the requirement of an initial admissible control policy. 
Value iteration starts from an easy-to-realize initial value function while it achieves a slow convergence. To overcome their 
drawbacks and utilize their merits at the same time, we develop a promising method, named multi-step heuristic dynamic 
programming (MsHDP), to solve the optimal control problem of nonlinear discrete-time systems. Through experimental sim- 
ulations, the results show that MsHDP achieves much better performance than policy iteration and value iteration. The rest 
of the paper is arranged as follows. Section 2 gives some preliminaries about nonlinear optimal control theory and some 
backgrounds are given in Section 3 . The MsHDP method is developed in Section 4 . Section 5 demonstrates the comparative 
simulation results and Section 6 gives a brief conclusion. 

Notation : R n is the set of n -dimensional Euclidean space and ∥ · ∥ denotes its norm. The superscript T is used for the 
transpose and I denotes the identify matrix of appropriate dimension. For a symmetric matrix M , M > ( ≥ ) 0 means that 
it is a positive definite (semi-definite) matrix. ∥ v ∥ 2 M ! v T Mv for some real vector v and symmetric matrix M > ( ≥ ) 0 with 
appropriate dimensions. Let ! be a compact set and x ∈ !. 
2. Optimal control problem 

Consider the following nonlinear discrete-time system: 
x (k + 1) = f (x (k )) + g(x (k )) u (k ) , (1) 

where x (k ) ∈ R n is the state and u (k ) ∈ R p is the control input. f ( x ) is a continuous nonlinear vector function with f (0) = 0 
and g ( x ) is a continuous nonlinear matrix function with g(0) = 0 . It is assumed that the system (1) is stabilizable on the set 
!. 

The objective of optimal control problem is to design a state feedback control law u (k ) = u (x (k )) , such that the equilib- 
rium point of the closed-loop system (1) is asymptotically stable, and minimize the following infinite horizon performance 
index: 

J u (x (0)) ! ∞ ∑ 
l=0 R (x (l) , u (x (l))) , (2) 
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where R (x (l) , u (x (l))) ! [∥ x (l) ∥ 2 Q + ∥ u (x (l)) ∥ 2 R ] with Q , R > 0. That is, the optimal control problem is formatted as: 

min 
u J u (x (0) = x ) (3) 

and then the optimal control is determined as: 
u ∗(x ) ! arg min 

u J u (x ) (4) 
for all x ∈ !. For all x ( k ) ∈ !, it follows from (2) that 

J u (x (k )) = ∞ ∑ 
l= k R (x (l) , u (x (l))) = R (x (k ) , u (x (k ))) + ∞ ∑ 

l= k +1 R (x (l) , u (x (l))) 
= R (x (k ) , u (x (k ))) + J u (x (k + 1)) , (5) 

where J u (0) = 0 . From the optimal control theory [4,17] , the optimal value function J ∗(x ) ! J u ∗ (x ) is the solution of the 
following Bellman equation 

J ∗(x (k )) = min 
u (x ) {R (x (k ) , u (x (k ))) + J ∗(x (k + 1)) } (6) 

and the optimal control is 
u ∗(x (k )) = arg min 

u (x ) {R (x (k ) , u (x (k ))) + J ∗(x (k + 1)) } 
= arg min 

u (x ) {R (x (k ) , u (x (k ))) + J ∗( f (x (k )) + g(x (k )) u (x (k ))) } . (7) 
Thus, 

∂ 
∂u {R (x (k ) , u (x (k ))) + J ∗(x (k + 1)) } ∣∣

u = u ∗ = 0 . (8) 
According to (7) and (8) , 

u ∗(x (k )) = −1 
2 R −1 g T (x (k )) ∂ J ∗(x (k + 1)) 

∂x ( k + 1) . (9) 
Substituting (9) into (6) , the Bellman equation is given by 

J ∗(x (k )) = J ∗(x (k + 1)) + ∥ x (k ) ∥ 2 Q + 1 
4 ∂ J ∗T (x (k + 1)) 

∂x ( k + 1) g( x ( k )) R −1 g T ( x ( k )) ∂ J ∗( x ( k + 1)) 
∂x ( k + 1) . (10) 

Note that the optimal control (9) depends on the solution J ∗( x ) of (10) . The Bellman equation is a nonlinear difference 
equation, which is extremely difficult to solve analytically or even approximately. 
3. Backgrounds 

It is known that policy iteration [16,20,31,46,47] and value iteration [2,16,18,44,45,60] algorithms are two main frame- 
works for solving the optimal control problems. To analyze the advantages and disadvantages of policy iteration and value 
iteration, it is necessary to have a brief review of the two algorithms. First, the policy iteration algorithm is given as follows. 
Algorithm 1 Policy Iteration . 

" Step 1: Choose an initial admissible control policy u (0) ( x ) and let i = 0 . 
" Step 2: ( Policy evaluation ) Solve the equation 

V (i ) (x (k )) = R (x (k ) , u (i ) (x (k ))) + V (i ) (x (k + 1)) (11) 
for value function V ( i ) ( x ). 

" Step 3: ( Policy improvement ) Update control policy by 
u (i +1) (x (k )) = −1 

2 R −1 g T (x (k )) ∂V (i ) (x (k + 1)) 
∂x ( k + 1) . (12) 

" Step 4: If V (i ) (x ) ≡ V (i −1) (x ) , terminate iteration, else, let i = i + 1 , go back to Step 2 and continue. #
Note that the policy iteration algorithm requires the initial control policy u (0) ( x ) to be admissible, which is a strict con- 

dition. For many complicated practical systems, this condition is difficult to satisfy, which restricts the application of policy 
iteration. Till present, finding an admissible control policy for policy iteration still remains an open issue when studying 
the optimal control problems with ADP method. Even so, policy iteration algorithm still has an important advantage that it 
converges fast once an initial admissible control is determined. 

Next, we give an introduction to value iteration. The procedure of the algorithm is presented as follows. 
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Algorithm 2 Value iteration . 

" Step 1: Choose V (0) ( x ) and let i = 0 . 
" Step 2: ( Policy improvement ) Update control policy by 

u (i ) (x (k )) = −1 
2 R −1 g T (x (k )) ∂V (i ) (x (k + 1)) 

∂x ( k + 1) . (13) 
" Step 3: ( Policy evaluation ) Calculate 

V (i +1) (x (k )) = R (x (k ) , u (i ) (x (k ))) + V (i ) (x (k + 1)) . (14) 
" Step 4: If V (i +1) (x ) ≡ V (i ) (x ) , terminate iteration, else, let i = i + 1 , go back to Step 2 and continue. #
For the value iteration algorithm, its initial condition is easy to satisfy, which makes the algorithm much more practicable 

than the policy iteration algorithm. However, value iteration suffers from the lower convergence speed compared with policy 
iteration. 
4. Development of multi-step heuristic dynamic programming 

First, the MsHDP algorithm is developed to utilize their advantages and avoid disadvantages, where the multi-step 
scheme is employed for policy evaluation. For the implementation of the MsHDP algorithm, the actor-critic structure is 
developed by using actor and critic NNs to approximate control policy and value function, and then the NN weight update 
laws are derived. Subsequently, the developed MsHDP method is simplified for linear quadratic regulation (LQR) problem. 
4.1. Multi-step heuristic dynamic programming 

It is observed that both policy iteration and value iteration algorithms have advantages and disadvantages. Policy iteration 
converges fast while suffering from the requirement of an initial admissible control policy. Value iteration starts from an 
easy-to-realize initial value function while it achieves a slow convergence. Therefore, one natural question is whether it is 
possible to achieve the trade-off between value iteration and policy iteration. In other words, it is desired to find a method 
to achieve the goal that converges faster than value iteration and avoids the requirement of initial admissible control policy 
at the same time. To achieve such goal, the following MsHDP algorithm is proposed. 
Algorithm 3 Multi-step heuristic dynamic programming . 

" Step 1: Give V (0) ( x ) and let i = 0 . 
" Step 2: ( Policy improvement ) Update control policy u ( i ) ( x ) by 

u (i ) (x (k )) = −1 
2 R −1 g T (x (k )) ∂V (i ) (x (k + 1)) 

∂x ( k + 1) . (15) 
" Step 3: ( Multi-step policy evaluation ) Calculate 

V (i +1) (x (k )) = k + β−1 ∑ 
l= k R (x (l) , u (i ) (x (l))) + V (i ) (x (k + β)) . (16) 

" Step 4: If V (i +1) (x ) ≡ V (i ) (x ) , terminate iteration, else, let i = i + 1 , go back to Step 2 and continue. #
It is necessary to have a discussion about the differences among the value iteration, policy iteration and the MsHDP 

algorithm. Moreover, the advantages of using “multi-step” in the MsHDP algorithm and their reasons will be analyzed. From 
Algorithms 1–3 , it is noted that policy iteration, value iteration and MsHDP algorithm use the same scheme for policy 
improvement. That is, for the obtained value function V ( x ), the control policy is improved with: 

µ(x ) = arg min 
u (x ) {R (x (k ) , u (x (k ))) + V (x (k + 1)) } (17) 

i.e., 
µ(x ) = −1 

2 R −1 g T (x (k )) ∂V (x (k + 1)) 
∂x (k + 1) . (18) 
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However, three algorithms behaves differently for their policy evaluation operation. For the policy evaluation in policy iter- 
ation, it follows from (11) that 

V (i ) (x (k )) = R (x (k ) , u (i ) (x (k ))) + V (i ) (x (k + 1)) 
= R (x (k ) , u (i ) (x (k ))) + R (x (k + 1) , u (i ) (x (k + 1))) + V (i ) (x (k + 2)) 

. . . 
= ∞ ∑ 

l=0 R (x (l) , u (i ) (x (l))) . (19) 
This means that V ( i ) ( x ) is the cost function of the control policy u ( i ) ( x ). Note that in (19) , V ( i ) ( x ) is essentially an infinite- 
sum of utility function R (x (l) , u (i ) (x (l))) . That is why the initial control policy u (0) ( x ) and all iterative control policies u ( i ) ( x ) 
in the policy iteration should be stabilizing. Otherwise, V ( i ) ( x ) will go to infinity, and thus it becomes meaningless. For 
the value iteration algorithm, it follows from (14) that V (i +1) (x ) is essentially not the cost function of the control policy 
u ( i ) ( x ). V (i +1) (x ) uses only one-step utility function of the current control policy u ( i ) ( x ), and then uses the previous value 
function V ( i ) ( x ) thereafter. Hence, it is not strange that policy iteration converges faster than value iteration. In this way, for 
the value iteration algorithm, the finiteness of V (i +1) (x ) can be guaranteed for a finite V ( i ) ( x ), and thus the requirement of 
initial admissible control policy is removed. For Algorithm 3 , MsHDP uses multi-step scheme for policy evaluation, which is 
different from that in the value iteration algorithm with one-step scheme for policy evaluation. 

From the discussions above, it is found that the main differences between policy iteration, value iteration and MsHDP 
algorithm are that they use different schemes for policy evaluation. To summarize, in policy iteration, V ( i ) ( x ) is essentially 
an infinite-sum of utility function, i.e., ∑ ∞ 

l=0 R (x (l) , u (i ) (x (l))) . Thus, it has the advantage of fast convergence and have 
disadvantage of the requirement of an initial stabilizing control policy. In value iteration, V ( i ) ( x ) is the sum of the previous 
V (i −1) (x ) and the one-step utility function, i.e., R (x (k ) , u (i −1) (x (k ))) . Then, it has the advantage of without requiring an 
initial stabilizing control policy and has the disadvantage of slow convergence. In the MsHDP algorithm, it uses the same 
iterative scheme as value iteration to avoid requiring an initial stabilizing control policy. Moreover, it sums multi-step utility 
function, i.e., ∑ k + β−1 

l= k R (x (l) , u (i ) (x (l))) , to accelerate the convergence compared with value iteration. Therefore, MsHDP 
algorithm can achieve a trade-off between policy iteration and value iteration. It has the advantage of without requiring an 
initial stabilizing control policy compared with policy iteration, and has the advantage of fast convergence compared with 
value iteration. 

To show the convergence of Algorithm 3 , it is proved in the following Theorem 1 that the generated sequence { V ( i ) ( x )} 
converges to the solution J ∗( x ) of Bellman Eq. (6) . 
Theorem 1. Let the sequence { V ( i ) ( x )} be generated by Algorithm 3 . If the condition V (0) (x (k )) $ min u (x ) {R (x (k ) , u (x (k ))) + 
V (0) (x (k + 1)) } holds, then, 

(1) For all i , 
V (i +1) (x (k )) % min 

u (x ) {R (x (k ) , u (x (k ))) + V (i ) (x (k + 1)) } . % V (i ) (x (k )) (20) 
(2) lim i →∞ V (i ) (x (k )) = J ∗(x ) . 

Proof. With the condition, we have 
V (1) (x (k )) = k + β−1 ∑ 

l= k R (x (l) , u (0) (x (l))) + V (0) (x (k + β)) 
= k + β−2 ∑ 

l= k R (x (l) , u (0) (x (l))) + R (x (k + β − 1) , u (0) (x (k + β − 1))) + V (0) (x (k + β)) 
= k + β−2 ∑ 

l= k R (x (l) , u (0) (x (l))) + min 
u (x ) {R (x (k + β − 1) , u (x (k + β − 1))) + V (0) (x (k + β)) } 

% k + β−2 ∑ 
l= k R (x (l) , u (0) (x (l))) + V (0) (x (k + β − 1)) 

. . . 
% R (x (k ) , u (0) (x (k ))) + V (0) (x (k + 1)) 
= min 

u (x ) {R (x (k ) , u (x (k ))) + V (0) (x (k + 1)) } . (21) 
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Combining the condition and (21) yields that 

V (1) (x (k )) % min 
u (x ) {R (x (k ) , u (x (k ))) + V (0) (x (k + 1)) } % V (0) (x (k )) (22) 

which implies that the conclusion (20) holds for i = 0 . 
Assume that the conclusion (20) holds for index i − 1 , i.e., 

V (i ) (x (k )) % min 
u (x ) {R (x (k ) , u (x (k ))) + V (i −1) (x (k + 1)) } % V (i −1) (x (k )) . (23) 

Then, 
V (i ) (x (k )) = k + β−1 ∑ 

l= k R (x (l) , u (i −1) (x (l))) + V (i −1) (x (k + β)) 
$ k + β−1 ∑ 

l= k R (x (l) , u (i −1) (x (l))) + min 
u (x ) {R (x (k + β) , u (x (k + β))) + V (i −1) (x (k + β + 1)) } 

= k + β∑ 
l= k R (x (l) , u (i −1) (x (l))) + V (i −1) (x (k + β + 1)) 

= R (x (k ) , u (i −1) (x (k ))) + V (i ) (x (k + 1)) 
$ min 

u (x ) {R (x (k ) , u (x (k ))) + V (i ) (x (k + 1)) } . (24) 
By using (16) and (24) , we have 

V (i +1) (x (k )) = k + β−1 ∑ 
l= k R (x (l) , u (i ) (x (l))) + V (i ) (x (k + β)) 

= k + β−2 ∑ 
l= k R (x (l) , u (i ) (x (l))) + R (x (k + β − 1) , u (i ) (x (k + β − 1))) + V (i ) (x (k + β)) 

= k + β−2 ∑ 
l= k R (x (l) , u (i ) (x (l))) + min 

u (x ) {R (x (k + β − 1) , u (x (k + β − 1))) + V (i ) (x (k + β)) } 
% k + β−2 ∑ 

l= k R (x (l) , u (i ) (x (l))) + V (i ) (x (k + β − 1)) 
. . . 

% R (x (k ) , u (i ) (x (k ))) + V (i ) (x (k + 1)) 
= min 

u (x ) {R (x (k ) , u (x (k ))) + V (i ) (x (k + 1)) } . (25) 
Then, the combination of (24) and (25) shows that the conclusion (20) holds for all i . 

2) From (20) , { V ( i ) ( x )} is a nonincreasing sequence and lower bounded by V ( i ) ( x ) ≥ 0. Considering the bounded monotone 
sequence always has a limit, denote the limit by V ( ∞ ) ( x ) ! lim i → ∞ V ( i ) ( x ). Taking limit on (20) yields 

V (∞ ) (x (k )) % min 
u (x ) {R (x (k ) , u (x (k ))) + V (∞ ) (x (k + 1)) } % V (∞ ) (x (k )) 

i.e., 
V (∞ ) (x (k )) = min 

u (x ) {R (x (k ) , u (x (k ))) + V (∞ ) (x (k + 1)) } . (26) 
Note that (26) is essentially the same as the Bellman Eq. (6) , i.e., V (∞ ) (x ) = J ∗(x ) . #

Remark 1. For policy iteration and value iteration of continuous-time systems, Lewis and Vrabie [16] have given the impor- 
tant statement that “The reinforcement learning time interval T need not be the same at each iteration. T can be changed 
depending on how long it takes to get meaningful information from the observations.” The thought of the statement is simi- 
lar to the multi-step policy evaluation in MsHDP to some extent. However, the reference [16] did not give further discussion 
and theoretical analysis about this issue. For the MsHDP developed in this paper, compared with policy iteration and value 
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...

Fig. 1. The actor-critic NN strucute of MsHDP algorithm. 
iteration, the differences and advantages of MsHDP are analyzed properly. Moreover, the convergence theory of MsHDP is 
established by proving that it converges to the solution of the Bellman equation. #
4.2. Implementation of MsHDP with neural networks 

In this subsection, the actor-critic NN structure is developed to implement the MsHDP algorithm. The actor-critic NN 
structure is shown in Fig. 1 . The critic NN is employed to approximate the value function. Let $(x ) ! [ φ1 (x ) , · · · , φL V (x )] T 
be the critic NN activation function vector, where L V is the number of neurons in the critic NN hidden layer. Then, the 
output of the critic neural network is given by 

ˆ V (i ) (x ) = L V ∑ 
j=1 θ (i ) 

V, j φ j (x ) = $T (x ) θ (i ) 
V , (27) 

where θ (i ) 
V ! [ θ (i ) 

V, , · · · , θ (i ) 
V,L V ] T denotes the critic NN weight vector. By using (27) , it follows from (16) that 

$T (x (k )) θ (i +1) 
V = k + β−1 ∑ 

l= k R (x (l) , u (i ) (x (l))) + $T (x (k + β)) θ (i ) 
V . (28) 

To compute the unknown critic NN weight vector θ (i +1) 
V , the least-square method is developed. Let S M ! { x [ j] | x [ j] (k ) ∈ !, j = 

1 , 2 , . . . , M} be the sample set on domain !, where M is the size of S M . For all x [ j ] ( k ), x [ j] (k + β) denotes the β-step forward 
state of the system (1) started from x [ j ] ( k ). For each sample x [ j ] in S M , the Eq. (28) becomes 

$T (x (k )) θ (i +1) 
V = η(i ) 

[ j] , j = 1 , 2 , . . . , M, (29) 
where η(i ) 

[ j] ! ∑ k + β−1 
l= k R (x (l) , u (i ) (x (l))) + $T (x [ j] (k + β)) θ (i ) 

V . Note that (29) is a linear equation with respect to the un- 
known the critic NN weight vector θ (i +1) 

V . Then, θ (i +1) 
V can be computed with the following least-square scheme 

θ (i +1) 
V = (Z T Z ) −1 Z T η(i ) , (30) 

where Z ! [$(x [1] (k )) , · · · , $(x [ M] (k ))] T and η(i ) ! [ η(i ) 
[1] , · · · , η(i ) 

[ M] ] T . 
Next, the actor NN is applied to estimate the control policy. Let ((x ) ! [ ψ 1 (x ) , · · · , ψ L u (x )] T be the actor NN activation 

function vector, where L u is the number of neurons in the actor NN hidden layer. Then, the output of the actor neural 
network is given by 

ˆ u (i ) (x ) = L u ∑ 
j=1 θ (i ) 

u, j ψ j (x ) = (T (x ) θ (i ) 
u , (31) 

where θ (i ) 
u ! [ θ (i ) 

u, , · · · , θ (i ) 
u,L u ] T is the actor NN weight vector. By using the same method for computing the actor NN weight 

vector θ (i +1) 
u in [2] , the gradient descent method for updating θ (i +1) 

u is given by 
θ (i ) 

u | m +1 = θ (i ) 
u | m − α((x (k )) [2 R ̂  u (i ) (x (k ) , θ (i ) 

u | m ) + g T (x (k )) ∂$(x (k + 1)) 
∂x (k + 1) θ (i ) 

V 
]
, (32) 

where α > 0 is the gain. With the increase of m , the actor NN weight vector θ (i ) 
u | m will approach its ideal value θ (i ) 

u . 
For the implementation procedure of the MsHDP algorithm, it requires to compute the critic and actor NN weight vectors 

with (30) and (32) iteratively until the desired convergence accuracy is achieved. The implementation of the MsHDP method 
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Fig. 2. For example 1, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of value iteration (i.e., β = 1 ) . 

Fig. 3. For example 1, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of MsHDP with β = 2 . 
is realized offline by using the set S M pre-collected on domain ! before learning. After the convergence of the MsHDP 
algorithm is achieved, the converged control policy is employed for real-time system control with (31) . The implementation 
of the MsHDP algorithm is presented as follows. 
Algorithm 4 (Implementation Procedure of MsHDP) . 

" Step 1: Collect the sample data set S M . Give V (0) ( x ) and let i = 0 . 
" Step 2: Compute the actor NN weight vector θ (i ) 

u with (32) . 
" Step 3: Compute the critic NN weight vector θ (i +1) 

V with (30) . 
" Step 4: If ∥ θ (i ) 

u − θ (i −1) 
u ∥ % ϵ1 and ∥ θ (i +1) 

V − θ (i ) 
V ∥ % ϵ2 ( ϵ1 and ϵ2 are small positive numbers), terminate the iteration, 

else, let i = i + 1 , go back to Step 2 and continue. #
Remark 2. In machine learning community, the thought of multi-step policy evaluation has been applied in modified policy 
iteration [5,32,35] . Compared with modified policy iteration, the MsHDP method proposed in this paper has the following 
differences and contributions. First, modified policy iteration was mainly for Markov decision processes with discounted 
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Fig. 4. For example 1, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of MsHDP with β = 5 . 

Fig. 5. For example 1, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of MsHDP with β = 10 . 
factor. MsHDP is developed for solving the optimal control problems without discount factor in the performance index. 
The main objective of MsHDP is to overcome the disadvantage of policy iteration requiring the initial admissible control 
policy and accelerate value iteration. Second, the convergence of the developed MsHDP algorithm is proved in Theorem 1 , 
where MsHDP converges to the solution of the Bellman equation of optimal control problem. In addition, although modified 
policy iteration has been well studied in machine learning community, its thought has rarely been introduced to solve 
optimal control problems in control community. In the past few years, many reinforcement learning methods, such as, 
policy iteration and value iteration, have been introduced to handle control design problems. The use of multi-step policy 
evaluation in the MsHDP to solve optimal control problems is still new in control community, and it is meaningful and 
important. #
4.3. MsHDP for special case: the LQR problem 

To help readers understand the developed MsHDP method, it is presented for the LQR problem in this subsection. Con- 
sider the linear version of system (1) 

x (k + 1) = Ax (k ) + Bu (k ) , (33) 
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Fig. 6. For example 1, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of MsHDP with β = 30 . 

Fig. 7. For example 1, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of policy iteration. 
where A ∈ R n ×n and B ∈ R n ×p . For the LQR problem of the system (33) with performance index (2) , its optimal value function 
is J ∗(x ) = x T P x, where P ≥ 0. It follows from (9) that 

u ∗(x (k )) = − R −1 B T P x (k + 1) 
= − R −1 B T P [ Ax (k ) + Bu ∗(x (k ))] . 

Then, 
u ∗(x ) = Kx, (34) 

where K = −(R + B T P B ) −1 B T PA is the optimal control gain. According to (6) and (34) , we have that P satisfies the following 
algebraic Riccati equation: 

P = A T PA + Q − A T P B (R + B T P B ) −1 B T PA. (35) 
For the MsHDP algorithm, the policy improvement (15) is written as 

u (i ) (x ) = K (i ) x, (36) 
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Fig. 8. For example 1, the trajectories of x ( k ) and u ( k ) under the control obtained by policy iteration. 

Fig. 9. For example 1, the trajectories of x ( k ) and u ( k ) under the control obtained by MsHDP with β = 30 . 
where K (i ) = −(R + B T P (i ) B ) −1 B T P (i ) A . The policy evaluation (16) is given by: 

x T (k ) P (i +1) x (k ) = k + β−1 ∑ 
l= k R (x (l) , u (i ) (x (l))) + x T (k + β) P (i ) x (k + β) . (37) 

The least-square scheme (30) is used to compute the unknown matrix P (i +1) of the Eq. (15) , and the adaptive law (31) is 
used to compute K ( i ) . For this LQR problem, the solution of the algebraic Riccati Eq. (35) is a positive symmetric ma- 
trix denoted by P = { p i j } n ×n ∈ R n ×n . Since p i j = p ji for i ̸ = j , the matrix P contains n (n + 1) / 2 different parameters. Com- 
paring (15) and (16) with (36) and (37) , we have that V (i ) (x ) = x T P (i ) x = ∑ n 

i =1 ∑ n 
j=1 p (i ) 

i j x i x j . Considering p i j = p ji , we can 
rewrite V ( i ) ( x ) with the form (27) as V (i ) (x ) = $T (x ) θ (i ) 

V , where θ (i ) 
V = [ p (i ) 

1 , 1 , 2 p (i ) 
1 , 2 , · · · , 2 p (i ) 

1 ,n , p (i ) 
2 , 2 , · · · , 2 p (i ) 

2 ,n , · · · , p (i ) 
n,n ] T and 

$(x ) = [ x 2 1 , x 1 x 2 , · · · , x 1 x n , x 2 2 , · · · , x 2 x n , · · · , x 2 n ] T . Similarly, the control policy (36) can also be rewritten with the form (31) as 
u (i ) (x ) = K (i ) x = (T (x ) θ (i ) 

u , where θ (i ) 
u = (K (i ) ) T and ((x ) = x T . 
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Fig. 10. For example 1, the relationship between the convergent iteration i and the step β by using MsHDP. 

Fig. 11. For example 2, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of value iteration ( β = 1 ). 
5. Simulations studies 

In this section, the effectiveness of the developed MsHDP method is verified through comparative simulation studies 
using two examples. For nonlinear systems, the explicit optimal control law is usually unavailable. To show that the MsHDP 
can find the optimal control policy, it is first tested on a linear system, and then it is applied to a nonlinear system. 
5.1. Example 1: linear system 

Consider the linear system (33) with the system matrices given by 
A = 

⎡ 
⎢ ⎢ ⎣ 

0 . 8336 −0 . 1844 0 . 4933 0 . 2188 0 . 3701 
−0 . 6447 0 . 4335 −0 . 1820 −0 . 3976 0 . 1668 
0 . 9231 1 . 2643 −0 . 3826 −0 . 1813 −0 . 2393 
1 . 0231 0 . 9135 0 . 7174 −0 . 7530 0 . 9509 
0 . 0386 0 . 2487 0 . 4597 0 . 1943 0 . 3258 

⎤ 
⎥ ⎥ ⎦ , 
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Fig. 12. For example 2, trajectories of the state x ( k ) and control u ( k ) of the closed-loop system under control obtained with value iteration. 

Fig. 13. For example 2, trajectory of the real cost J ( k ) of the closed-loop system under control obtained with value iteration. 
B = [0 . 0065 , −0 . 5830 , −0 . 0492 , 0 . 6807 , 0 . 2954] T . 

For the performance index (2) , let Q = 0 . 1 I and R = 20 . For this LQR problem, its algebraic Riccati equation can be solved 
with the MATLAB command DARE. The optimal value function is J ∗(x ) = x T P x with P given by 

P = 
⎡ 
⎢ ⎢ ⎣ 

17 . 1107 10 . 0862 7 . 6090 0 . 2768 7 . 9625 
10 . 0862 11 . 4994 5 . 2113 −0 . 8873 6 . 9936 
7 . 6090 5 . 2113 3 . 7341 −0 . 0517 4 . 0247 
0 . 2768 −0 . 8873 −0 . 0517 0 . 5199 −0 . 4168 
7 . 9625 6 . 9936 4 . 0247 −0 . 4168 5 . 0128 

⎤ 
⎥ ⎥ ⎦ (38) 

and the optimal control is u ∗(x ) = Kx with K given by 
K = [0 . 0311 , 0 . 1885 , 0 . 0379 , −0 . 0255 , 0 . 0887] T . (39) 

To solve this problem with the developed MsHDP method, value iteration and policy iteration, the critic NN activation 
functions are selected as $(x ) = [ x 2 1 , x 1 x 2 , x 1 x 3 , x 1 x 4 , x 1 x 5 , x 2 2 , x 2 x 3 , x 2 x 4 , x 2 x 5 , x 2 3 , x 3 x 4 , x 3 x 5 , x 2 4 , x 4 x 5 , x 2 5 ] T , and the actor 
NN activation functions are selected as ((x ) = x = [ x 1 , x 2 , x 3 , x 4 , x 5 ] T . From (38) and (39) , the ideal critic NN weight 
vector θ ∗

V = K = [ p 11 , 2 p 12 , 2 p 13 , 2 p 14 , 2 p 15 , p 22 , 2 p 23 , 2 p 24 , 2 p 25 , p 33 , 2 p 34 , 2 p 35 , p 44 , 2 p 45 , p 55 ] T = [17 . 1107 , 20.1725, 15.2181, 
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Fig. 14. For example 2, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of policy iteration. 

Fig. 15. For example 2, trajectories of the state x ( k ) and control u ( k ) of the closed-loop system under control obtained with policy iteration. 
0.5535, 15.9250, 11.4994, 10.4227, −1 . 7747 , 13.9872, 3.7341, −0 . 1034 , 8.0495, 0.5199, −0 . 8336 , 5 . 0128] T , and the ideal actor 
NN weight vector is θ ∗

u = [0 . 0311 , 0 . 1885 , 0 . 0379 , −0 . 0255 , 0 . 0887] T . 
Value iteration (i.e., β = 1 ) and policy iteration are employed for comparative simulation studies with MsHDP with 4 

different number of steps: β = 2 , 5 , 10 , 30 . Figs. 2–7 show the comparative results, where the dotted lines represent ideal 
values of the critic NN weight vector θ ∗

V and the actor NN weight vector θ ∗
u . It is observed from simulation results that 

the critic NN weight vector θ (i ) 
V and the actor NN weight vector θ (i ) 

u obtained from value iteration and MsHDP converge to 
the ideal values (dotted lines) of θ ∗

V and θ ∗
u . From Fig. 2 , it is shown that value iteration achieves convergence at i = 170 th 

iteration. Figs. 3–6 show that the convergence was achieved at i = 89 th , i = 36 th , i = 19 th and i = 6 th iteration when using 
MsHDP with β = 2 , β = 5 , β = 10 and β = 30 , respectively. Obviously, MsHDP converges much faster than value iteration. 
The results obtained with policy iteration is given in Fig. 7 , which shows that θ (i ) 

V and θ (i ) 
u do not converge to their ideal 

values (dotted lines). This means that policy iteration cannot be used for optimal control design if initial stabilizing control is 
not available. By using the converged control obtained with policy iteration, the state and control of the closed-loop system 
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Fig. 16. For example 2, trajectory of the real cost J ( k ) of the closed-loop system under control obtained with policy iteration. 

Fig. 17. For example 2, the critic NN weights θ (i ) 
V and actor NN weights θ (i ) 

u of MsHDP with β = 5 . 

is given in Fig. 8 , which shows the closed-loop system becomes unstable. For comparison, the converged control obtained 
from MsHDP ( β = 30 ) was also used for simulation, and the result was shown in Fig. 9 . 

To further investigate how the number of steps β affects the performance of MsHDP, we conduct simulation of MsHDP 
with β changing from 1 to 40. Fig. 10 demonstrate the simulation result, from which the converged step of MsHDP decreases 
sharply with β . This means that the increase of the step β can greatly improve the performance of MsHDP compared with 
value iteration (i.e., β = 1 ). 

Through the simulation on the linear system, the effectiveness of the developed MsHDP is verified. From the simulation 
results, MsHDP overcomes the problem of policy iteration that requires the initial stabilizing control policy. Moreover, it 
is observed that MsHDP greatly improves the performance compared with value iteration, and better performance can be 
achieved by increasing the step β . Next, the developed MsHDP is employed to solve the optimal control problem of a 
nonlinear system. 
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5.2. Example 2: nonlinear system 

Consider the following nonlinear system 
{

x 1 (k + 1) = −0 . 15 x 1 (k ) + 0 . 705 x 2 2 (k ) − 0 . 015 x 3 1 (k ) + 1 . 10 u (k ) , 
x 2 (k + 1) = 1 . 33 x 2 (k ) + 0 . 27 x 2 1 (k ) + 0 . 133 x 3 2 (k ) + 0 . 87 u (k ) , (40) 

with x (0) = [0 . 5 , 0 . 7] T . For the performance index (2) , let Q = 3 I and R = 0 . 1 . To show the real cost generated by using 
control u , define the real cost with respect to time as 

J(k ) ! k ∑ 
l=0 R (x (l ) , u (l )) . (41) 

Select the critic NN activation functions as $(x ) = [ x 2 1 , x 1 x 2 , x 2 2 , x 3 1 , x 2 1 x 2 , x 1 x 2 2 , x 3 2 ] T , and the actor NN activation functions 
as ((x ) = [ x 1 , x 2 , x 2 1 , x 1 x 2 , x 2 2 ] T . Value iteration, policy iteration and MsHDP ( β = 5 ) are employed to solve this optimal 
control problem, respectively. 

By using value iteration, the critic NN weight vector θ (i ) 
V and the actor NN weight vector θ (i ) 

u are given in Fig. 11 , where 
value iteration achieves convergence at i = 37 th iteration. With the converged control policy, simulation is conducted on the 
closed-loop system, and the state and control are shown in Fig. 12 . The real cost J ( k ) is given in Fig. 13 , where it converges 
to 5.1015. 

By using policy iteration, the critic NN weight vector θ (i ) 
V and the actor NN weight vector θ (i ) 

u are given in Fig. 14 , where 
it achieves convergence at i = 51 th iteration. With the converged control policy, simulation is conducted on the closed-loop 
system. The system is interrupted at time k = 7 because the closed-loop system becomes unstable. Figs. 15 and 16 show the 
state and control and the real cost J ( k ), respectively. From these figures, it is observed that policy iteration fails to solve this 
problem. 

Next, the developed MsHDP ( β = 5 ) is employed to solve this problem. Fig. 17 shows the critic NN weight vector θ (i ) 
V and 

the actor NN weight vector θ (i ) 
u , where MsHDP achieves convergence at i = 7 th iteration. By using the converged control 

policy, simulation is conducted on the closed-loop system. The trajectories of the state and control and the real cost are 
similar to that in Figs. 12 and 13 , which are omitted here. The real cost (41) converges to J(k ) = 5 . 0847 as k increases. 
Remark 3. Through simulations with the MsHDP, we found that there exists a maximum for the step size β , denoted by 
β . That is to say, if 1 % β % β, the MsHDP converges to the solution of the Bellman equation, and then solves the optimal 
control problem. Otherwise, it may not. For specifical practical problems, the maximum β is different for different systems. 
Therefore, it is difficult and also not necessary to determine the maximum β exactly. Experiences will be helpful to suggest 
a appropriate step size β satisfying 1 % β % β . #
6. Conclusions 

The MsHDP method has been developed to solve the optimal control problem of nonlinear discrete-time systems in this 
paper. After detailed review and analysis of the policy iteration and value iteration algorithms, it is found that the advantages 
and disadvantages of the two algorithms result from their differences in policy evaluation. To overcome the drawbacks of 
both algorithms, the MsHDP algorithm has been developed by using the multi-step policy evaluation scheme, which starts 
from an arbitrary initial positive semi-definite value function and thus avoids the requirement of initial stabilizing control 
policy. The actor-critic structure has been developed to implement the MsHDP algorithm, where actor and critic NNs are 
employed to approximate the control policy and value function, respectively. To help readers understand the developed 
MsHDP method, it has been employed to solve a special case: the LQR problem. Through the comparative simulation studies 
with value iteration, policy iteration and MsHDP, the results demonstrate that MsHDP converges much faster than value 
iteration and also avoids the initial stabilizing control policy requirement in policy iteration. 
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