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a b s t r a c t 

In this paper, we investigate the neural-network-based adaptive guaranteed cost control for continuous- 

time affine nonlinear systems with dynamical uncertainties. Through theoretical analysis, the guaranteed 

cost control problem is transformed into designing an optimal controller of the associated nominal sys- 

tem with a newly defined cost function. The approach of adaptive dynamic programming (ADP) is in- 

volved to implement the guaranteed cost control strategy with the neural network approximation. The 

stability of the closed-loop system with the guaranteed cost control law, the convergence of the critic 

network weights and the approximate boundary of the guaranteed cost control law are all analyzed. Two 

simulation examples have been conducted and all simulation results have indicated the good performance 

of the developed guaranteed cost control strategy. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

During control practices, the design on nonlinear optimal reg-

ulators always involves to solve the Hamiltonian–Jacobi–Bellman

(HJB) equation. Although the nonlinear optimal problem is well de-

scribed by the HJB equation from the point of view of mathemat-

ics, it is well known that the analytical solution of nonlinear HJB

equation is almost impossible to be obtained since the problem it-

self encounters the partial differential equation. The approach of

dynamic programming was deemed as a basic strategy to han-

dle optimal control problems of nonlinear systems, but there still

exists a serious issue called the curse of dimensionality [1,2] . To

overcome the difficulty in coping with optimal control problems

of nonlinear systems, based on function approximation structures

like neural networks and support vector machines, approximate or

adaptive dynamic programming (ADP) was proposed as a kind of

effective method to solve nonlinear optimal control problems in

forward time [3–8] . There exists a fundamental idea in ADP which
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s similar as adaptive control systems with function approximation

echniques [9–13] . 

ADP and relevant methods have gained much development

n various control issues of nonlinear systems. In [14] , the

ontrol-constrained approximate optimal control was proposed

or discrete-time nonlinear systems by the finite-horizon non-

uadratic cost function based on an adaptive critic network struc-

ure. In [15] , the optimal control problem of unknown and non-

ffine nonlinear systems was addressed by the ADP-based method

nd recurrent neural networks. A novel policy iteration method of

lobal ADP was proposed in [16] for the adaptive optimal control

f nonlinear polynomial systems. The H ∞ 

state feedback control

roblem for a class of affine nonlinear discrete-time systems was

nvestigated in [17] with unknown system dynamics. More top-

cs of nonlinear systems have also been conducted with the ADP-

ased approach, such as optimal control of discrete-time nonlin-

ar systems [18–21] , optimal control of continuous-time nonlinear

ystems [22–24] , optimal tracking control [25–27] , robust control

28–30] , differential games [31–33] , and so on. 

It is worth mentioning that the researchers have paid great

ttention on system uncertainties since uncertain systems exist

n a broad rage [34–37] . For example, in [34] , the robust filtering

roblem of the stochastic systems with polytopic uncertainties

as investigated. [35] presented the state estimation for complex

etworks with uncertain inner coupling. In [36] , the robust sta-

ilization of uncertain switched neutral systems was intensively

eveloped based on Lyapunov stability theory and the dynamic
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utput feedback technique. In [37] , a robust output observer-

ased control was proposed for the problem of uncertainty in

witched neutral systems with interval time-varying mixed de-

ays. Simultaneously, the optimal control design on uncertain

ystems is more and more frequently consulted. As is known

o all, the direct optimal control design of uncertain nonlinear

ystems is pretty difficult, since coping with the cost function

f the uncertain system is not an easy task. Therefore, some

esearchers have paid attention to study the boundedness of the

ost function with respect to the uncertain system, not limited

o directly optimize it. The guaranteed cost control strategy,

roposed by Chang and Peng [38] , possesses the advantage of

roviding an upper bound on a given cost function, and therefore

he cost function can be limited within this boundary even if

he degradation of control performance is incurred by system

ncertainties. 

When the boundedness of the cost function of the uncer-

ain systems is considered, it results in the guaranteed cost con-

rol problem. There are some results in the field of the guaran-

eed cost control design with the ADP-based approach. In [39] ,

he ADP-based guaranteed cost control was firstly proposed for

ontinuous-time uncertain nonlinear systems, and a modified cost

unction was established as the guaranteed cost function of the

tudied uncertain system. In [40] , for a class of time-varying uncer-

ain nonlinear systems, a neural-network-based approximate op-

imal guaranteed cost controller was developed with respect to

 finite-horizon cost function. In [41] , an ADP-based guaranteed

ost control algorithm was presented for the tracking control of

ontinuous-time uncertain nonlinear systems. In [42] , the decen-

ralized guaranteed cost control design was constructed for large-

cale uncertain nonlinear systems, where both dynamical uncer-

ainties and interconnections were discussed for better control per-

ormance. Using the ADP-based approach, an available guaranteed

ost control scheme can be obtained for nonlinear system by ap-

roximately solving a optimal control problem. Most of the exist-

ng results of this field are obtained in terms of optimal regula-

ion or tracking problems [39–42] , not the guaranteed cost control

roblem regarding to unknown system dynamics. This greatly mo-

ivates our research. 

This paper mainly contributes to the neural-network-based

uaranteed cost control for continuous-time uncertain nonlinear

ystems with unknown dynamics. First, the cost functions of the

riginal uncertain system and its associated nominal system are

oth defined. It is proved that the optimal control of the associ-

ted nominal system can implement the guaranteed cost control

or the original uncertain system. Second, a neural network identi-

er is involved to the guaranteed cost control scheme. The weights

f neural network identifier are adaptively updated to ensure the

symptotical stability of the identification error. Third, with the

DP-based technology, a novel learning control framework is built

o approximately solve the optimal control of the nominal system

or implementing the guaranteed cost control law of the original

ncertain system. Theoretical analysis is provided for the stability

f the closed-loop system with the learning-based guaranteed cost

ontrol, as well as the approximate boundary of the guaranteed

ost control law. 

The rest of this paper is organized as follows. The problem de-

cription of the guaranteed cost control for a class of continuous-

ime affine nonlinear systems is provided in Section 2 , and the

roblem transformation is also stated. The adaptive critic method-

logy within the ADP framework is developed for the guaranteed

ost control design in Section 3 , and the associated theoretical

nalysis is also presented in this section. The simulation studies

n two nonlinear systems are shown in Section 4 . Finally, the con-

lusion remarks are given in Section 5 . 
. Problem statement of the guaranteed cost control 

We study a class of continuous-time affine nonlinear systems

ith the formula 

˙ 
 (t) = f (x ) + g(x ) u (t) + � f (x ) , (1) 

here x (t) ∈ �x ⊆ R 

n is the state vector and u (t) ∈ �u ⊆ R 

m is the

ontrol vector, f ( x ) and g ( x ) are differentiable in their arguments

ith f (0) = 0 and ‖ g ( x ) ‖ ≤ g M 

, g M 

is a positive constant. �f ( x ) de-

otes the uncertain dynamics. In this paper, we consider that the

ncertain dynamics satisfies the matching condition, i.e., it is in the

ange space of g ( x ) rendering � f (x ) = g(x ) d (x ) with d (x ) ∈ R 

m .

esides, assume that d ( x ) is upper bounded by a known function

 ( x ), i.e., ‖ d ( x ) ‖ ≤ D ( x ) with D (0) = 0 . Here, we also assume that

(0) = 0 such that x = 0 is an equilibrium of system (1) . 

For the uncertain nonlinear system (1) , consider the cost func-

ion given as 

(x, u ) = 

∫ ∞ 

t 

R (x (τ ) , u (τ )) d τ, (2)

here R (x, u ) = Q(x ) + u T u is the utility function, and Q(x ) = x T Qx

ith Q = Q 

T ≥ 0 . 

The purpose of designing the guaranteed cost controller is to

nd a feedback control function u ( x ) and determine a finite up-

er bound function �( u ) (where �(u ) ≤ M < + ∞ with M being a

ositive constant), such that the closed-loop system (1) is robustly

table and the cost function (2) is bounded as J ( x, u ) ≤ �( u ). There-

ore, the function �( u ) can effectively bound the cost function of

ystem (1) , named as the guaranteed cost function. Furthermore,

hen �( u ) is minimal, it is termed as the optimal guaranteed cost

nd is written as �∗, where �∗ = min u �(u ) . The associated con-

rol law u ∗ is called the optimal guaranteed cost control law with

 

∗ = arg min u �(u ) . In this paper, we will study how to obtain the

ptimal guaranteed cost control law u ∗ for system (1) with the cost

unction (2) . 

Without considering the uncertainty, the controlled system

urns to its nominal version, which plays an important role in the

ontrol design. The nominal system corresponding to (1) is formu-

ated as 

˙ 
 (t) = f (x ) + g(x ) u (t) . (3) 

imilar as the classical literature of nonlinear optimal control, as-

ume that the right side of (3) is Lipschitz continuous on a set

x ⊆ R 

n containing the origin such that system (3) is controllable. 

The following conclusions present the achievement of nonlin-

ar robust control and the existence of guaranteed cost function

f system (1) , as an improvement of the result of [39] . Note that

( ·) � ∂ ( ·)/ ∂ x is employed to denote the gradient operator. 

heorem 1. There exists a continuously differentiable function V ( x )

or system (1) with V ( x ) ≥ 0 and V (0) = 0 only at x = 0 , such that

or a feedback control law u ( x ) satisfying 

(∇V (x )) T g(x ) = −2 u 

T (x ) , (4a) 

 (x, u ) + (∇V (x )) T ( f (x ) + g(x ) u (x )) + θD 

2 (x ) = 0 , (4b) 

here θ ≥ 1 . Then system (1) is locally asymptotically stable within

he neighbourhood of the origin under the control law u ( x ) . 

roof. Define V ( x ) as the Lyapunov function and let ˙ V (x ) be its

erivative along system (1) . By using (4) , we can find that 

˙ 
 (x ) = (∇V (x )) T ( f (x ) + g(x ) u (x ) + � f (x )) 

= −θD 

2 (x ) − R (x, u ) − 2 u 

T (x ) d(x ) . (5) 
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Adding and subtracting a quadratic term d T ( x ) d ( x ) and considering

‖ d ( x ) ‖ ≤ D ( x ), it follows from (5) that 

˙ 
 (x ) = − θD 

2 (x ) − x T Qx + d T (x ) d(x ) 

− (u (x ) + d(x )) T (u (x ) + d(x )) 

≤ − x T Qx − (θ − 1) D 

2 (x ) 

− (u (x ) + d(x )) T (u (x ) + d(x )) . 

Then, we derive that ˙ V (x ) ≤ −x T Qx < 0 holds with θ ≥ 1 for x 
 =
0. Hence, we obtain the asymptotic stability of system (1) with the

feedback control law u ( x ). �

Theorem 2. The cost function of system (3) defined as 

φ(x, u ) = 

∫ ∞ 

t 

{
R (x (τ ) , u (x (τ ))) + θD 

2 (x (τ )) 
}

d τ (6)

can ensure that J(x, u ) ≤ φ(x, u ) = V (x ) holds. 

Proof. Recalling the definition of J ( x, u ) and φ( x, u ) in (2) and (6) ,

it is obvious that J ( x, u ) ≤ φ( x, u ). When V ( x ) is taken as the Lya-

punov function of system (3) , we have its derivative as 

˙ 
 (x ) = (∇V (x )) T 

(
f (x ) + g(x ) u (t) 

)
. (7)

Based on (4b) , it can be deduced that 

(∇V (x )) T 
(

f (x ) + g(x ) u (t) 
)

= −R (x, u ) − θD 

2 (x ) . (8)

Combing (7) with (8) , it yields 

˙ 
 (x ) = −R (x, u ) − θD 

2 (x ) . (9)

Integrating (9) in the interval [0, ∞ ), it can be concluded that

φ(x, u ) = V (x ) . As a result, J(x, u ) ≤ φ(x, u ) = V (x ) is proved, which

guarantees the boundedness of the cost function J ( x, u ). �

Theorem 1 provides the control law u ( x ) that can robustly sta-

bilize the original uncertain system (1) . Through the conclusion of

Theorem 2 , φ( x, u ) is seen as a guaranteed cost function of system

(1) . For the purpose of attaining the optimal guaranteed cost con-

troller, i.e., dealing with the optimality of the guaranteed cost func-

tion, a control law u ( x ) is pursued to minimize the bound function

φ( x, u ). Then, the original control problem described in this section

is transformed into an optimal control problem. That is to say, for

the nominal system (3) , the optimal controller which minimizes

the cost function (6) is the desired guaranteed cost solution of the

original control problem. 

Based on the above analysis, we aim to solve the optimal con-

trol problem of the nominal system. The designed optimal feed-

back control must be admissible. For system (3) , observing 

φ(x, u ) = 

∫ ∞ 

t 

{
R (x (τ ) , u (x (τ ))) + θD 

2 (x (τ )) 
}

d τ

= 

∫ t 1 

t 

{
R (x, u ) + θD 

2 (x ) 
}

d τ + �
(
x (t 1 ) , u 

)
. (10)

According to Theorem 2 , it has φ(x, u ) = V (x ) . Therefore, 

 (x ) = 

∫ t 1 

t 

{
R (x, u ) + θD 

2 (x ) 
}

d τ + V 

(
x (t 1 ) 

)
, (11)

it follows that 

lim 

t→ t 1 

∫ t 1 

t 

1 

t 1 − t 

(
R (x, u ) + θD 

2 (x ) 
)
d τ + lim 

t→ t 1 

1 

t 1 − t 

(
V (x (t 1 )) − V (x (t)) 

)
= R (x, u ) + θD 

2 (x ) + (∇V (x )) T 
(

f (x ) + g(x ) u (t) 
)

= 0 . (12)

(12) is clearly equivalent to (4b) . The above analysis demonstrates

that (4b) is the nonlinear Lyapunov equation. 

Note that in the following, V ( x ) is employed to represent the

cost function of system (3) , instead of φ( x, u ). �x is a compact sub-

set of R 

n and �u is the set of admissible controls on �x . In light
f the classical optimal control theory, we define the Hamiltonian

unction of transformed problem as 

(x, u, ∇V (x )) = θD 

2 (x ) + R (x, u ) + (∇V (x )) T 
(

f (x ) + g(x ) u (t) 
)
. 

(13)

he optimal cost function of the nominal system (3) is defined as

 

∗(x ) = min u ∈ �u 
φ(x, u ) , which satisfies the continuous-time HJB

quation of the form 

 = min 

u ∈ �u 

H(x, u, ∇V 

∗(x )) . (14)

ence, the optimal control of system (3) is obtained by 

 

∗(x ) = −1 

2 

g T (x ) ∇V 

∗(x ) . (15)

sing the optimal control u ∗( x ), the HJB equation becomes 

 = θD 

2 (x ) + R (x, u 

∗) + (∇V 

∗(x )) T 
(

f (x ) + g(x ) u 

∗(x ) 
)

(16)

ith V ∗(0) = 0 . Based on (15), (16) can also be written as 

 = θD 

2 (x ) + Q(x ) + (∇V 

∗(x )) T f (x ) 

− 1 

4 

(∇V 

∗(x )) T g(x ) g T (x ) ∇V 

∗(x ) (17)

ith V ∗(0) = 0 . 

Suppose that the HJB equation (17) has a continuously differen-

iable solution V 

∗( x ). It can be found that the optimal guaranteed

ost can be gained when letting u = u ∗(x ) . Then, �(u ∗) = V ∗(x ) ,

hich implies that �∗ = V ∗(x ) and u ∗ = arg min u �(u ) . Therefore,

nce the solution of (17) related with (3) is gotten, we can develop

he optimal guaranteed cost controller of system (1) . 

Since it is always difficult to analytically solve the nonlinear op-

imal control, kinds of ADP-based methods combining the idea of

einforcement learning have been proposed to get the approximate

olution. In what follows, we turn to the adaptive guaranteed cost

ontrol design with the ADP-based method. 

. Neural adaptive design for guaranteed cost control 

In this section, we develop the neural adaptive design for the

uaranteed cost control problem, including a neural network iden-

ification of the unknown dynamics, the neural network imple-

entation of adaptive guaranteed cost control, and some related

heoretical analysis. 

.1. Neural network identification 

In this paper, we assume that the internal dynamics of system

3) are unknown. A neural network identifier with three layers is

ntroduced to reconstruct the dynamics by using the system data.

efine the number of the hidden layer neurons as h m 

, then system

3) can be expressed by 

˙ 
 (t) = Ax (t) + w 

T 
m 

σm 

(χ ) + ζm 

(x ) , (18)

here A ∈ R 

n ×n is a designed stable matrix, w m 

∈ R 

h m ×n is the

deal weight matrix between the hidden layer and the output

ayer, σm 

(·) ∈ R 

h m is a monotonically increasing activation func-

ion, χ = κT 
m 

z(t) with χ ∈ R 

h m , κm 

∈ R 

(n + m ) ×h m is the used weight

atrix between the input layer and the hidden layer, z(t) =
 x T (t) , u T (t)] T ∈ R 

n + m is the augmented input vector, and ζm 

(x ) ∈
 

n is the reconstruction error. 

For simplicity, let the input-to-hidden weight matrix κm 

be

onstant and only regulate the hidden-to-output weight matrix.

hen, the output of neural network identifier is 

˙ ˆ 
 (t) = A ̂

 x (t) + 

ˆ w 

T 
m 

(t) σm 

( ̂  χ) , (19)

here ˆ w m 

(t) is the estimated weight matrix of w m 

at time t , ˆ x (t)

s the estimated system state vector, and ˆ χ = κT 
m 

[ ̂ x T (t) , u T (t)] T . 
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Let ˜ w m 

(t) = ˆ w m 

(t) − w m 

be the weight error matrix and ˜ x (t) =
ˆ  (t) − x (t) be the identification error. Then, according to (18) and

19) , the dynamical equation with respect to the identification er-

or can be derived as 

˙ ˜ 
 (t) = A ̃

 x (t) + 

ˆ w 

T 
m 

(t) σm 

( ̂  χ) − w 

T 
m 

σm 

(χ ) − ζm 

(x ) 

= A ̃

 x (t) + 

˜ w 

T 
m 

(t) σm 

( ̂  χ) + w 

T 
m 

(
σm 

( ̂  χ) − σm 

(χ ) 
)

− ζm 

(x ) . 

(20) 

ith regard to the weight matrices and the reconstruction error,

ne lemma and two assumptions that are commonly used in the

ommunity [15,33] , are provided for the following theoretical anal-

sis. 

emma 1 (cf. [15] ) . With the activation function σ m 

( ·), we can de-

ive the following inequality 

 σm 

(χa ) − σm 

(χb ) ‖ ≤ λσm 
‖ χa − χb ‖ (21)

or any two vectors χ a and χb with same dimensions, λσm ≥ 0 is a

onstant. 

ssumption 1. The weight matrices w m 

and κm 

are bounded such

hat ‖ w m 

‖ ≤ w M 

and ‖ κm 

‖ ≤ κM 

, where w M 

and κM 

are positive

onstants. 

ssumption 2. The reconstruction error ζ m 

( x ) is upper bounded

y a function of the identification error, such that ζ T 
m 

(x ) ζm 

(x ) ≤
ζm ̃

 x T (t) ̃ x (t) , where λζm 
< 1 is a positive constant. 

heorem 3. Using the neural network identifier (19) , if the weight

atrix is tuned by 

˙ ˆ 
 m 

(t) = −ηm 

σm 

( ̂  χ) ̃  x T (t) , (22) 

here ηm 

> 0 is the learning rate of the neural network identifier,

hen the identification error ˜ x (t) is asymptotically stable. 

roof. Choose a Lyapunov function as 

 m 

(t) = L 11 (t) + L 12 (t) , 

here 

 11 (t) = 

˜ x T (t ) ̃  x (t ) , (23a) 

 12 (t) = η−1 
m 

tr { ̃  w 

T 
m 

(t) ̃  w m 

(t) } . (23b) 

Take the derivative of L 11 ( t ) along the trajectory of the error sys-

em (20) and obtain 

˙ 
 11 (t) = 2 ̃

 x T (t) 
(

A ̃

 x (t) + w 

T 
m 

(
σm 

( ̂  χ) − σm 

(χ ) 
)

− ζm 

(x ) 
)

+ 2 ̃

 x T (t) ̃  w 

T 
m 

(t) σm 

( ̂  χ) . (24) 

or the term 

˙ L 12 (t) , using the updating rule (22) and the property

f trace operation, we find that 

˙ 
 12 (t) = 2 η−1 

m 

tr 
(

˜ w 

T 
m 

(t ) ˙ ˜ w m 

(t ) 
)

= −2 ̃

 x T (t ) ̃  w 

T 
m 

(t ) σm 

( ̂  χ) . (25) 

ccording to (24) and (25) , we can obtain 

˙ 
 m 

(t) = 2 ̃

 x T (t) A ̃

 x (t) + 2 ̃

 x T (t) w 

T 
m 

(t) 
(
σm 

( ̂  χ) − σm 

(χ ) 
)

− 2 ̃

 x T (t) ζm 

(x ) . (26) 

dopting (21) and using Assumption 1 , we have 

 ̂  χ − χ‖ ≤ ‖ κm 

‖‖ ̂

 z (t) − z(t) ‖ ≤ ‖ κm 

‖‖ ̂

 x (t) − x (t) ‖ ≤ κM 

‖ ̃

 x (t) ‖ , 

uch that 

2 ̃

 x T (t) w 

T 
m 

(
σm 

( ̂  χ) − σm 

(χ ) 
)

≤ ˜ x T (t) w 

T 
m 

w m ̃

 x (t) + (σm 

(
ˆ χ) − σm 

(χ ) 
)T (

σm 

( ̂  χ) − σm 

(χ ) 
)

≤ ˜ x T (t) w 

T 
m 

w m ̃

 x (t) + λ2 
σ κ2 

M ̃

 x T (t ) ̃  x (t ) . (27) 

m e
onsidering Assumption 2 , we derive 

2 ̃

 x T (t) ζm 

(x ) ≤ ˜ x T (t) ̃  x (t) + ζ T 
m 

(x ) ζm 

(x ) 

≤ (1 + λζm 
) ̃  x T (t ) ̃  x (t ) . (28) 

ased on (27) and (28) , we further obtain 

˙ 
 m 

(t) ≤ ˜ x T (t) 
(
2 A + w 

T 
m 

w m 

+ (1 + λζm 
+ λ2 

σm 
κ2 

M 

) I n 
)

˜ x (t) 

= − ˜ x T (t) M ̃

 x (t) , 

here the matrix M stands for M = −2 A − w 

2 
M 

I n − (1 + λζm 
+

2 
σm 

κ2 
M 

) I n , I n represents the n × n identity matrix. If A is selected

o ensure that M > 0 , then the time derivative of the Lyapunov

unction is ˙ L m 

(t) < 0 for any ˜ x (t) 
 = 0 . Thus, we find that the iden-

ification error can approach zero as time goes to infinity (i.e.,

˜  (t) → 0 as t → ∞ ), which ends the proof. �

According to Theorem 3 , the neural network identifier is

symptotically stable. It means that the estimated system states

ould finally converge to the actual states. Hence, after a suffi-

ient learning process, an available neural network identifier can

e obtained with finally convergent weights as follows: 

˙ 
 (t) = f (x ) + g(x ) u (x ) = Ax (t) + 

ˆ w 

T 
m 

σm 

(χ ) , (29) 

here x ( t ) can be actually understood in the sense of the final out-

ut derived from the model network, instead of ˆ x (t) for simplicity.

ake the partial derivative of (29) with respect to u ( x ) and derive

hat 

(x ) = 

ˆ w 

T 
m 

(
∂σm 

(χ ) 

∂χ

)
κT 

m 

[
0 n ×m - - - - - - 

I m 

]
, (30) 

here the term ∂ σ m 

( χ )/ ∂ χ is in fact a h m 

-dimensional square ma-

rix. Eq. (30) reconstructs the information of the control matrix. 

.2. Neural adaptive guaranteed cost control design 

The optimal cost V 

∗( x ) for system (3) can be expressed by a

eural network on a compact set �x , i.e., 

 

∗(x ) = w 

T 
c σc (x ) + ζc (x ) , (31) 

here w c ∈ R 

h c is the ideal weight vector, σc (x ) ∈ R 

h c is the activa-

ion function, h c is the number of hidden layer neurons, and ζ c ( x )

epresents the approximation error by neural networks. 

Take the derivative of (31) to get ∇V 

∗( x ) as 

V 

∗(x ) = (∇ σc (x )) T w c + ∇ ζc (x ) . (32) 

ased on this expression, the Lyapunov equation (4b) becomes 

(x, u, w c ) 

= θD 

2 (x ) + R (x, u ) + 

(
w 

T 
c ∇σc (x ) + (∇ζc (x )) T 

)
˙ x (t) = 0 . (33) 

ubstitute (32) into (15) to get the optimal feedback control under

he ideal weight w c , which is 

 

∗(x ) = −1 

2 

g T (x ) 
(
(∇ σc (x )) T w c + ∇ ζc (x ) 

)
. (34) 

he above equation represents the neural network expression of

he optimal feedback control if V ∗(x ) = w 

T 
c σc (x ) + ζc (x ) is regarded

s a neural network expression of the optimal cost function. In this

ense, it is that ∇V 

∗( x ) and u ∗( x ) can be written in terms of the

deal weight w c in (32) and (34) , respectively. Hence, the Hamilto-

ian equation H(x, u ∗, ∇V ∗) = 0 implies H(x, u, w c ) = 0 as shown

n (33) , which is in fact expanded as 

(x, u, w c ) = θD 

2 (x ) + R (x, u ) + w 

T 
c ∇σc (x ) ̇ x (t) − e H = 0 , (35) 

here 

 H = −(∇ζc (x )) T ˙ x (t) (36) 
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represents the residual error of the Hamiltonian function, which

is caused when conducting the approximation operation by using

neural networks. 

Under the framework of ADP-based approximate optimal con-

trol design, a critic neural network is built based on an estimated

weight vector ˆ w c (t) , i.e., 

ˆ 
 (x ) = 

ˆ w 

T 
c (t) σc (x ) (37)

to approximate the cost function. Obviously, we can get that 

∇ ̂

 V (x ) = (∇σc (x )) T ˆ w c (t) . (38)

Similarly, the approximate optimal control function is derived as 

ˆ u (x ) = −1 

2 

g T (x )(∇σc (x )) T ˆ w c (t) . (39)

With the estimation weight vector ˆ w c (t) , the approximate Hamil-

tonian function can be written as 

ˆ H (x, u, ˆ w c ) = θD 

2 (x ) + R (x, u ) + 

ˆ w 

T 
c (t ) ∇σc (x ) ̇ x (t ) . (40)

Define e c (t) = 

ˆ H (x, u, ˆ w c ) − H(x, u, w c ) as the approximate error of

the critic network, which means e c (t) = 

ˆ H (x, u, ˜ w c ) , where ˜ w c (t) =
w c − ˆ w c (t) denotes the estimation error of the critic network

weight vector. Therefore, we derive that 

e c (t) = e H − ˜ w 

T 
c (t ) ∇σc (x ) ̇ x (t ) . (41)

For training the critic network, we design ˆ w c (t) to minimize

the network error function expressed as E c = (1 / 2) e T c (t ) e c (t ) .

The weight vector is updated via a steepest descent algorithm,

i.e., 

˙ ˆ w c (t) = −ηc 

(
∂E c 

∂ ˆ w c (t) 

)
, (42)

where ηc > 0 is the learning rate of the training process for the

critic network. 

Next, we consider the weight error of the critic network. Con-

sidering (41) , it can be found that 

∂e c (t) 

∂ ˆ w c (t) 
= ∇σc (x ) ̇ x (t) � ϕ(x ) . (43)

Hence, according to the fact that ˆ w c (t) = w c − ˜ w c (t) , the dynamics

of the weight estimation error are 

˙ ˜ w c (t) = − ˙ ˆ w c (t) = ηc e c (t) 
(

∂e c (t) 

∂ ˆ w c (t) 

)
. (44)

Then, we can further deduce that 

˙ ˜ w c (t) = ηc 

(
e H − ˜ w 

T 
c (t) ∇σc (x ) ̇ x (t) 

)∇σc (x ) ̇ x (t) . (45)

3.3. Stability analysis 

Before the related stability analysis, we first introduce two com-

mon assumptions. 

Assumption 3. The activation function σ c ( ·) and its derivative

∇σ c ( ·), the reconstruction error ζ c ( x ) and its derivative ∇ζ c ( x ),

the ideal weight vector w c are all bounded, i.e., ‖ σ c ( ·) ‖ ≤ σ M 

,

‖∇σ c ( ·) ‖ ≤ σ D , ‖ ζ c ( t ) ‖ ≤ ζ M 

, ‖∇ζ c ( t ) ‖ ≤ ζ D and ‖ w c ‖ ≤ w cM 

,

where σ M 

, σ D , ζ M 

, ζ D and w M 

are all positive constants. 

Assumption 4. Considering system (3) is controllable, e H and ϕ( x )

are assumed to be bounded by ‖ e H ‖ ≤ e M 

and ‖ ϕ( x ) ‖ ≤ ϕM 

, re-

spectively, where e M 

and ϕM 

are both positive constants. 

The convergence of the critic network weights and the uni-

formly ultimately bounded stability of the closed-loop system are

shown in the following theorem. 

Theorem 4. Consider the nonlinear system (3) . Let the feedback con-

trol law be obtained by (39) and the weight vector of the critic net-

work be trained by (42) . Then, the weight estimation error ˜ w c (t) and
he state vector x ( t ) of the closed-loop system are uniformly ultimately

ounded. 

roof. Let the Lyapunov function be chosen as L (t) = L 21 (t) +
 22 (t) , where L 21 (t) = (1 / 2) η−1 

c ˜ w 

T 
c (t ) ̃  w c (t ) and L 22 (t ) = V ∗(x ) . The

erivative of L ( t ) is formulated as ˙ L (t) = 

˙ L 21 (t) + 

˙ L 22 (t) . 

For deriving the term 

˙ L 21 (t) , we consider (45) and obtain that 

˙ 
 21 (t) = η−1 

c ˜ w 

T 
c (t) ̃  w c (t) 

= 

(
e cH − ˜ w 

T 
c (t) ∇σc (x ) ̇ x (t) 

)
˜ w 

T 
c (t) ∇σc (x ) ̇ x (t) . (46)

y applying the Cauchy–Schwarz inequality and Assumption 4 ,
˙ 
 21 (t) can be deduced as 

˙ 
 21 (t) = η−1 

c 

(
ηc e H ˜ w 

T 
c (t) ϕ(x ) − ηc 

(
˜ w 

T 
c (t) ϕ(x ) 

)2 
)

≤ 1 

2 ηc 

(
e 2 H + 

(
ηc ˜ w 

T 
c (t) ϕ(x ) 

)2 
)

−
(

˜ w 

T 
c (t) ϕ(x ) 

)2 

= −
(
1 − ηc 

2 

)‖ ̃

 w 

T 
c (t) ϕ(x ) ‖ 

2 + 

1 

2 ηc 
e 2 H . (47)

bserving (47) , it can obtain 

˙ L 21 (t) ≤ 0 with 

 < ηc < 2 , ‖ ̃

 w c (t) ‖ ≥
√ 

e 2 
M 

ηc ϕ M 

(2 − ηc ) 
. (48)

herefore, we can obtain that ˙ L 21 (t) ≤ 0 if 0 < ηc < 2 and ˜ w c (t)

ies outside the compact set 

˜ w c 
= 

{ 

˜ w c (t) : ‖ ̃

 w c (t) ‖ ≤ e M 

(
ηc ϕ M 

(2 − ηc ) 
)− 1 

2 

} 

. (49)

or the term 

˙ L 22 (t) , we observe (17) and derive that 

(∇V 

∗(x )) T f (x ) = − θD 

2 (x ) − Q(x ) + 

1 

4 

(∇V 

∗(x )) T gg T ∇V 

∗(x ) . 

(50)

hen, applying (39) and (50) , we can find that 

˙ 
 22 (t) = (∇V 

∗(x )) T 
(

f (x ) + g(x ) ̂  u (x ) 
)

= − θD 

2 (x ) − Q(x ) + 

1 

4 

(∇V 

∗(x )) T g(x ) g T (x ) 

× ∇V 

∗(x ) + (∇V 

∗(x )) T g(x ) ̂  u (x ) 

= − θD 

2 (x ) − Q(x ) + 

1 

4 

(∇V 

∗(x )) T g(x ) g T (x ) 

× ∇V 

∗(x ) − 1 

2 

(∇V 

∗(x )) T g(x ) g T (x )(∇σc (x )) T 

× (w c − ˜ w c (t)) 

= − θD 

2 (x ) − Q(x ) − 1 

4 

(∇V 

∗(x )) T g(x ) g T (x ) 

× ∇V 

∗(x ) + 

1 

2 

(∇V 

∗(x )) T g(x ) g T (x ) ̃  w c 

+ 

1 

2 

(∇V 

∗(x )) T g(x ) g T (x ) ∇ζc (x ) . (51)

ince the quadratic bound of d ( x ) can be determined in many

ases. It is common to assume that D (x ) = ρ‖ x ‖ , where ρ is a pos-

tive constant. Let λmin ( Q ) be the least eigenvalue of Q , and thus

 ( x ) ≥ λmin ( Q ) ‖ x ‖ 2 . Then, (51) can be derived that 

˙ 
 22 (t) = − θρ2 ‖ x ‖ 

2 − λmin (Q ) ‖ x (t) ‖ 

2 + 

1 

2 

(∇V 

∗(x )) T 

× g(x ) g T (x )( ̃  w c (t) + ∇ζc (x )) . (52)

y applying Assumption 3 , the above inequality can be further de-

uced to 

˙ 
 22 (t) = −

(
θρ2 + λmin (Q ) 

)‖ x (t) ‖ 

2 + ψ 

2 , (53)
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Fig. 1. The norm square of identification error. 
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2 = 

1 

2 

(∇V 

∗(x )) T g(x ) g T (x )( ̃  w c (t) + ∇ζc (x )) 

≤1 

2 

(σD w cM 

+ ζD ) g 
2 
M 

(
e M 

(
ηc ϕ M 

(2 − ηc ) 
)− 1 

2 + ζD 

)
� ψ 

2 
M 

(54) 

herefore, we can obtain that ˙ L 22 (t) ≤ 0 if x ( t ) lies outside the

ompact set 

x = 

{ 

x (t) : ‖ x (t) ‖ ≤ ψ M 

(
θρ2 + λmin (Q ) 

)− 1 
2 

} 

(55) 

olds. According to (49) and (55) , it can be concluded that

hat the weight estimation error ˜ w c (t) and the state vector x ( t )

re uniformly ultimately bounded. Thus, the proof is completed.

�

orollary 1. The approximate optimal control law ˆ u (x ) is designed in

he formula (39) , which converges to the neighborhood of the optimal

ontrol u ∗( x ), with a finite boundary given in (56) . 

roof. According to Theorem 4 , it can derive that ‖ ̃  w c (t) ‖ ≤
 M 

(
ηc ϕ M 

(2 − ηc ) 
)− 1 

2 . Based on (34) and (39) , we have that 

 u 

∗(x ) − ˆ u (x ) ‖ = 

1 

2 

‖ g T (x ) 
(
(∇σc (x )) T ˜ w c (t) + ∇ζc (x ) 

)‖ 

≤ 1 

2 

g M 

(
σD e M 

(
ηc ϕ M 

(2 − ηc ) 
)− 1 

2 + ζD 

)
� λu , (56) 

here λu stands for the finite boundary with respect to the control

ignal. Thus the proof is completed. �

Via the developed approximate optimal control scheme, the

uaranteed cost control strategy for the original uncertain system

s attained. It is significant to note that the established method

rovides a combination of adaptivity and robustness, thus enlarges

he application scope of approximate optimal strategy to the study

f guaranteed cost control of nonlinear systems under uncertain

nvironment. 

emark 1. The proposed method of this paper focuses on the

DP-based guaranteed cost control for uncertain nonlinear sys-

ems with unknown dynamics. Using the ADP-based approach, we

an obtain a novel learning-based guaranteed cost control scheme.

ompared with most of the existing results of this field in terms

f optimal regulation or tracking problems [39–42] , this proposed

ethod further involves a neural network identifier to the guar-

nteed cost control framework for unknown system dynamics. The

eights of the identifier are updated to guarantee the asymptotical

tability of the identification error. Theoretical analysis is provided

or the stability of the closed-loop system with the learning-based

uaranteed cost control. With this kind of design, it means that

he model network is introduced to implement the control scheme.

herefore, the proposed guaranteed cost control scheme is data-

riven based on available system data without requiring the accu-

ate model. It is a learning control framework with the ADP-based

echnology. 

. Simulation 

In this section, two simulation cases are provided to demon-

trate the control performance of the neural-network-based adap-

ive guaranteed cost control strategy. 

Case 1. The studied nonlinear dynamic system with uncertain-

ies is described in the following formula 

˙ 
 = 

[
−x 3 1 − 2 x 2 

x 1 + 0 . 5 cos (x 2 1 ) sin (x 3 2 ) 

]
+ 

[
1 

−1 

]
u (x ) + � f (t) , (57) 
η  
here x = [ x 1 , x 2 ] 
T ∈ R 

2 , u (x ) ∈ R and � f (t) = [ d 1 x 2 sin (d 2 x 
2 
1 
) ,

d 1 x 2 sin (d 2 x 
2 
1 
)] T with d 1 and d 2 belonging to the interval [ −1 , 1] .

onsidering �f ( t ) is matched, therefore � f (t) = g(x ) d(x ) , where

(x ) = d 1 x 2 sin (d 2 x 
2 
1 
) and D (x ) = ρ‖ x ‖ . 

In this case, select Q(x ) = x T x, d 1 = 0 . 8 , d 2 = 0 . 5 . In order to

olve the guaranteed cost control of system (57) , the optimal con-

rol of its nominal system is considered with the associated cost

unction in the formula (6) . According to Theorem 2 , (6) is the

uaranteed cost function of system (57) . In order to obtain the op-

imal guaranteed cost control law u ( x ) for system (57) , it is trans-

ormed to minimize the guaranteed cost function φ( x, u ). It means

hat the optimal guaranteed cost control law u ( x ) can minimize the

ost function of nominal system. The optimal guaranteed cost con-

rol law u ( x ) is approximately solved by the ADP-based approach

ith the neural network implementation. 

Since the internal dynamics are unknown, an identifier is con-

ucted to capture the system dynamics, where a three-layer neu-

al network is taken as the identifier with the structure of 3–6–2

i.e., 3 input neurons, 6 hidden neurons, and 2 output neurons).

he learning rate of the model network is ηm 

= 0 . 1 and the activa-

ion function is the tansig function. The selected negative definite

atrix A = −I 2 . We train the neural network identifier for 100 s

o obtain the evolution result of the identification error, which is

hown in Fig. 1 . 

The weight vector between the input layer and the hidden layer

s initialized as 

m 

= 

 −0 . 5895 0 . 0020 0 . 8314 −0 . 5755 −0 . 6453 −0 . 9565 

−0 . 1547 0 . 2543 0 . 9095 −0 . 8287 0 . 1488 0 . 2455 

−0 . 7355 0 . 1980 −0 . 6288 0 . 6704 −0 . 4947 −0 . 3569 

] 

,

hile the weight vector between the hidden layer and the output

ayer is finally convergent to 

ˆ 
 m 

= 

0 . 9441 −1 . 3837 −1 . 0364 0 . 2429 −1 . 5269 −1 . 5009 

0 . 2808 −0 . 1009 1 . 1530 −0 . 3143 0 . 1585 −0 . 2734 

]T 

.

hen, we finish training the neural identifier and keep all weights

nchanged. According to (29) and (30) , g ( x ) of system (57) can

e approximated as g(x ) = [0 . 9857 − 1 . 0024] T and the associated

ominal dynamics are estimated as ˙ x (t) = Ax (t) + ˆ w m 

(t) σ (κm 

(χ )) .

ased on the the reconstructed neural network model, the ADP-

ased approach is used to approximately solve the optimal guaran-

eed cost control law. A critic neural network is constructed with

he activation function σ (x ) = [ x 2 1 , x 1 x 2 , x 
2 
2 ] 

T and the learning rate

c = 0 . 01 . By taking the initial state vector of the nominal system
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Fig. 2. The state curves with the exploration noises when training the critic net- 

work. 

Fig. 3. The convergence curves of the weights when training the critic network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The state trajectories of system (57) . 

Fig. 5. The curve of guarantee cost control law. 

Fig. 6. The cost function of system (57) and its guarantee cost function. 
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c  
as [0.5, 0.5] T and setting θ = 1 . 5 and ρ = 1 , the critic network is

trained by the weight updating rule presented in (42) . During the

training process, for satisfying the persistency of excitation condi-

tion, an excitation noise N(t) = sin 

2 (t ) cos (t ) + sin 

2 (2 t ) cos (0 . 1 t ) +
sin 

2 (−1 . 2 t) cos (0 . 5 t) + sin 

5 (t) + sin 

2 (1 . 2 t) + cos (2 . 4 t) sin 

3 (2 . 4 t) is

added to the control input and thus further affects the system

states. The training process lasts 10 0 0 s and the exploration noise

is turned off at 900 s when the weight vector of the critic network

has converged to ˆ w c = [1 . 0620 − 1 . 3086 0 . 7445] T , as shown in

Figs. 2 and 3 . 

With the trained critic network weight vector ˆ w c , the approx-

imated optimal guaranteed cost control law can be obtained ac-

cording to (39) . Then we apply the control law to system (57) for

15 s to evaluate the control performance. The state trajectories are

presented in Fig. 4 and the used control variable is shown in Fig. 5 .

Fig. 6 depicts the cost function of system (57) and the guaranteed

cost function, which shows that the cost function J ( x, u ) of system

(57) has been bounded by φ( x, u ). These results have illustrated

that system (57) can be well operated under the designed guaran-

teed cost control law. 

Case 2. The studied three-order continuous-time uncertain non-

linear system is described as 

˙ x = 

[ −x 1 + x 2 
−0 . 2 x 2 − x 1 x 3 

x 1 x 2 − x 2 x 3 

] 

+ 

[ 

1 0 0 

0 −1 0 

0 0 1 

] 

u (x ) + � f (t) , (58)
1 A  
here x = [ x 1 , x 2 , x 3 ] 
T ∈ R 

3 , u (x ) ∈ R 

3 , and � f (t) = [ −d 1 x 3 sin (x 1
 2 ) , −d 2 x 1 sin (x 2 ) , d 3 x 2 cos (x 3 )] T with d 1 , d 2 and d 3 belonging

o the interval [ −1 , 1] . Since �f ( t ) is matched, then d(x ) =
 −d 1 x 3 sin (x 1 x 2 ) , d 2 x 1 sin (x 2 ) , d 3 x 2 cos ( x 3 )] 

T and its boundary D ( x )

atisfies D (x ) = ρ‖ x ‖ . 
In this case, Q ( x ) is selected as Q(x ) = x T x . The guaranteed cost

ontrol problem of system (58) is approximately solved by the

DP-based approach with the neural network implementation. The
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Fig. 7. The convergence curves of the weights when training the critic network. 

Fig. 8. The state trajectories of system (58) . 

Fig. 9. The curves of control variables in the guarantee cost control law. 
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Fig. 10. The cost function of system (58) and its guarantee cost function. 
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eural network identifier with the structure 6–8–3 is first built

ased on the data of the studied system, where eight hidden neu-

ons all use the tansig function as the activation function. We set

he negative definite matrix A = −I 3 and then train the neural net-

ork identifier for 100 s. The input-to-hidden weight vector is ini-

ialized as κm 

and the hidden-to-output weight vector is trained as

ˆ  m 

. Thus, the nominal dynamics of system (58) are estimated as

˙  (t) = Ax (t) + ˆ w m 

(t) σ (κm 

(χ )) . By applying (30) , g ( x ) is obtained

s 
(x ) = 

[ 

1 . 1363 0 . 0565 0 . 0165 

0 . 0055 −1 . 0 6 68 −0 . 0092 

0 . 0575 −0 . 0055 1 . 0183 

] 

. 

After the identification of the nominal system dynamics, the

DP-based approach is used to solve the approximate optimal con-

rol law. The critic network is constructed to approximate the cost

unction of the nominal system with the structure 3–6–1, and the

earning rate of the critic network is set as ηc = 0 . 5 . The training

rocess for the critic network lasts 10 0 0 s. The exploration noise

 ( t ) is also added to the control variables for providing the per-

istent excitation. It is turned off at 900 s when all weights have

onverged with the exploration noise, which indicates a sufficient

raining process. Then, we can obtain that the weight vector of the

ritic network converges to [0 . 2628 0 . 5198 0 . 9717 − 0 . 2912 −
 . 6939 0 . 5951] T , as shown in Fig. 7 . With the trained weights of

he critic network, we can derive the approximated optimal guar-

nteed cost control law according to (39) . In order to verify the

erformance of the guaranteed cost control, we apply the control

aw into system (58) to stabilize all states. Let the initial states

e x 0 = [1 , 0 , 1] T and parameters in �f be d 1 = 1 , d 2 = 0 . 5 and

 3 = 0 . 1 . Such that we select θ = 1 . 5 and ρ = 1 . Fig. 8 shows all

ystem trajectories during the regulation, and Fig. 9 provides the

alues of all control variables. Fig. 10 presents the cost function J ( x,

 ) of system (58) and its guarantee cost function φ( x, u ), which ob-

iously shows that J ( x, u ) is bounded by φ( x, u ). These simulation

esults verify the effectiveness of the developed guaranteed cost

ontrol approach. 

. Conclusions 

In this paper, the relationship between the guaranteed cost

ontrol strategy of original uncertain system and the optimal

ontrol of nominal system has been clarified. The neural network

dentifer with adaptive weights has been designed to obtain the

nknown system dynamics. By using the ADP-based method

o approximately solve the HJB equation of the optimal control

roblem of nominal system, a novel learning control framework

f guaranteed cost control for original uncertain system has been

stablished. The related theoretical analysis and simulation veri-

cation conducted on two examples have well demonstrated that

he developed guaranteed control law is effective and robust. For

urther research work, this learning control framework of guaran-

eed cost control is also expected to be developed for non-affine

ncertain systems including unknown dynamics and unmatched

isturbances. Also, we will investigate the robust optimal con-
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trol of uncertain nonlinear system with unknown dynamics and

unmatched disturbances with the ADP-based method. 
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