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Building Regional Covariance Descriptors
for Vehicle Detection

Xueyun Chen, Ren-Xi Gong, Ling-Ling Xie, Shiming Xiang, Cheng-Lin Liu, and Chun-Hong Pan

Abstract— We study the question of building regional covari-
ance descriptors (RCDs) for vehicle detection from high-
resolution satellite images. A unified way is proposed to build
RCD features by constant convolutional kernels in the forms of
2-D masks. Two novel formulas are designed to construct dif-
ferent RCD types based upon one or two convolutional masks,
obtaining ten novel RCD features by four simple constant
convolutional masks. Experiments show that such convolutional-
mask-based RCDs outperform the previous image-derivative-
based RCDs, the popular local binary patterns (LBPs), the
histogram of oriented gradients (HOGs), and LBP+HOG.
Furthermore, feeding to nonlinear support vector machines
(SVMs) of two kernel types [L1 kernel and radial basis function
(RBF)], these RCDs outperform four known deep convolutional
neural networks: AlexNet, GoogLeNet, CaffeNet, and LeNet, as
well as their fine-tuned models by their well-trained weights of
imageNet classification. Among three popular classic classifiers
we have tested in the experiments, nonlinear SVMs outperform
BP and Adaboost obviously, and L1 kernel exceeds RBF slightly.

Index Terms— Deep convolutional neural networks (DCNNs),
regional covariance descriptor (RCD), vehicle detection.

I. INTRODUCTION

THE regional covariance descriptor (RCD) was first intro-
duced by Tuzel et al. [1], [2] in 2006 to represent a region

by the covariance matrix of image features, such as spatial
location, intensity, first-order and second-order derivatives, and
so on. From then on, it has been used in a wide variety of tasks,
including face verification [3], human detection [4], object
tracking, classifying, matching, and recognition [5]–[9]. It is
known that RCD possesses a strong robustness against small
disturbances [1], [2], [10]. However, we do not know its exact
performance extents for general recognition and classification,
and how many varieties of them can be explored. All these
things remain a mystery as much as they were one decade ago.

Two factors impede the study of RCDs: one is the limited
selection of its based features and the other is the uncertain
choice of its distance metrics. Most researchers followed the
original definition of the based feature and distance metric
proposed in [2], a very few works have been done to expand
its feature varieties and determine which distance metric works
better.
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Recently, Faulkner et al. [10] did a significant work to
improve RCD by adding the lab color components to the
based feature, and evaluating the performances of Euclidean,
Log-Euclidean, and affine-invariant (the original) metrics by
a broad range of geometric and photometric image transfor-
mations. They reported that Euclidean measure achieves much
higher precision than the others in most situations (four out
of five), including changes of brightness, Gaussian blur,
Gaussian noise, and saturation. We argue that if Euclidean-
like (L1 and L2) metric is adopted, the 2-D structure property
of the covariance matrix should be ignored, which is just our
way of treating RCDs in this letter.

In order to expand the forms of RCD, we proposed a
unified way of constructing RCD forms by two novel for-
mulas from one or two convolutional masks. Ten new RCD
forms were built from four constant convolutional masks.
Theoretically, our method leads to an unlimited way of build-
ing RCDs upon the infinite varieties of the convolutional
masks.

Vehicle detection from satellite images coarsely includes
two stages: the first is searching all candidate windows effi-
ciently and the second is classifying the candidates precisely
and outputting those may contain vehicles. It is the second
stage that determining the precision of the detector mainly,
and the feature used that deciding the accuracy (AC) of the
classifier mostly.

Many features have been used in the past works of
vehicle detection: multiscale histogram of oriented gradients
(HOGs [18]) of color maps [11], HOG+Haar wavelets+local
binary patterns (LBPs [19]) [12], pose-indexed feature [13]
(an HOG-like feature), HOG+Haar wavelets features [14],
deep convolutional features [15], sparse coding upon bag-
of-words model [16], sparse representation of multiscale
HOG [17], and so on.

We used BP, Adaboost, and nonlinear support vector
machine (SVM) with two kernels to evaluate the RCD per-
formances, just the L1 kernel [Section IV, formula (7)] and
the RBF.

Experiments upon vehicle database show that our novel
RCDs outperform the previous RCDs [1], [2], [10], LBP, and
HOG. Furthermore, the convolutional-mask-based RCDs +
SVM(L1) even outperform four known deep convolutional
neural networks (DCNNs): AlexNet, GoogLeNet, CaffeNet,
and LeNet.

The remainder of this letter is organized as follows. The
previous works of RCD are presented concisely in Section II,
our approach of building new RCDs is carefully explained
in Section III, and implementation details and parameters
are given in Section IV. Experimental results are listed in
Section V. We concluded finally in Section VI.
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II. PREVIOUS WORKS OF REGIONAL

COVARIANCE DESCRIPTOR

The popular LBP and HOG features are easily to be
disturbed by the position shifting and illumination varying
in object detection. Based on the first-order and second-order
statistical moments, RCD [1], [2] is thought to be somehow
robust slightly, here we give its definition.

Given an n-dimension feature φ(x, y) of a region R, the
covariance matrix of φ(x, y) of R is expressed as

�R(φ(x, y)) =
∑

(x,y)∈R

(φ(x, y) − μR)T (φ(x, y) − μR)

(1)

where μR = 1
|R|

∑
(x,y)∈R φ(x, y), |R| is the number of

pixels in R. When using Euclidean-like metrics, we define
�−

R (φ) = vector(�R(φ)) as the vector composed by all
nonrepeated elements of the symmetric n × n matrix �R , it is
easy to see that the dimension of �−

R is n×(n+1)
2 .

Let I (x, y) denote the grayscale function of the image
pixel at (x,y), and Ix , Iy , Ix x , and Iyy denote the first-
order or second-order differential operators of I (x, y).
Tuzel et al. [1], [2] presented the initial form of RCD as
follows:

RC D(T ) = �−
R

([
x, y, |Ix |, |Iy |,

√
I 2
x + I 2

y ,

|Ix x |, |Iyy|, tan−1
( |Ix |

|Iy |
)])

. (2)

Faulkner et al. [10] proposed a new form of RCD as

RC D(F) = �−
R

([
x, y, r, g, b, |Ix |, |Iy|, |Ix x |, |Iyy |, |Ixy |,

√
I 2
x + I 2

y , tan−1
( |Ix |

|Iy |
)

, l, a, b

])
(3)

where l, a, and b are the three components of LAB color
space.

III. OUR APPROACH OF IMPROVING REGIONAL

COVARIANCE DESCRIPTOR

The importance of the convolutional kernels used in DCNN
has been convincingly proved by the great progresses achieved
by the deep learning methods in many artificial intelligence
fields. Such kernels can be mathematically expressed by
their convolutional masks. We argue that elaborated designed
constant convolutional masks should have a promising per-
formance like that in DCNN, when being used as the basic
features of RCD.

We design four simple convolutional masks, named
Ci = {Cix , Ciy}, 1 ≤ i ≤ 4, where Cix and Ciy are the
two components along the x- and y-coordinate axes. Their
geometrical forms are shown in Fig. 1.

In Fig. 1, C1x acts as the standard first-order differen-
tial mask Ix and C2x acts as the second-order differential
mask Ix x . C3 is designed to detect stripes and belts, and C4 is
designed to detect the corners and ends.

We introduce an operator � denoting the mask inner
product. If A = [ai j ]n×n, B = [bi j ]n×n, C = [ci j ]n×n ,

Fig. 1. First row lists the x-components of the four basic convolutional
masks, and the second row lists their y-components, which can be got by
applying a 90° clockwise turning upon the corresponding x-components.
(a) C1x . (b) C2x . (c) C3x . (d) C4x . (e) C1y . (f) C2y . (g) C3y . (h) C4y .

then

A � B = C. (4)

Means that ci j = ai j ·bi j (1 ≤ i and j ≤ n). Thus, C1x�C1y
is equivalent to the derivative Ixy , C2x�C2y equals Ix xyy ,
and C1x�C2y equals Ixyy .

We propose two novel formulas to construct RCDs, the first
is that based on one convolutional mask as

RC D(Ci) = �−
R

([
x, y, Cix , Ciy, Cix � Ciy,

√
Ci2

x + Ci2
y , tan−1

(
Cix

Ciy

)])
(5)

where 1 ≤ i ≤ 4, the second is that based on two convolutional
masks as

RC D(Ci, C j)

= �−
R

([
x, y, Cix , Ciy, C jx, C jy,

Cix � C jy, Ciy � C jx,
√

Ci2
x + Ci2

y ,
√

C j2
x + C j2

y ,√
(Cix � C jy)2 + (Ciy � C jx)2, tan−1

(
Ciy

Cix

)
,

tan−1
(

C jy

C jx

)
, tan−1

(
Ciy � C jx

Cix � C jy

)])
(6)

where 1 ≤ i , j ≤ 4, and i �= j . By (5) and (6), four-
novel RCD(Ci) and six-new RCD(Ci, Cj) are constructed,
respectively.

IV. IMPLEMENTATION DETAILS

Here, we give some important implementation details and
parameters of our approach.

When computing the RCD’s basic feature φ(x, y), following
Dalal and Triggs’s suggestion [18], we compute the value of
the convolutional masks upon three RGB color channels and
output the maximal magnitude, then normalizing all compo-
nents of φ(x, y) of the Region R into an unified range [0,1].
Finally, the RCDs are constructed upon the normalized
φ(x, y). For RCD(T), RCD(F), RCD(Ci), and RCD(Ci, Cj),
the dimensions of their φ(x, y) are: 8, 15, 7, and 16,
respectively.
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LBP feature is computed just as described by
Ojala et al. [19], where P = 8, and R = 1.5. All binary
patterns are divided into 59 classes, meaning that the patterns
with more than two 0–1 jumps belong to the nonuniform
class. HOG feature is computed as suggested by Dalal and
Triggs [18]. The [0, 180°] orienting range is divided into nine
bins.

Every sample image is divided by five spatial pyramid grids,
the number of the blocks is: 1×1+2×2+3×3+4×4+5×5 =
55. So, the total dimension of LBP, HOG, RCD(T), RCD(F),
RCD(Ci), and RCD(Ci, Cj) are: 59×55 = 3245, 9×55 = 495,
8 × 9/2×55 = 1980, 15 × 16/2×55 = 6600, 7 × 8/2×55 =
1540, and 16 × 17/2 × 55 = 7480, respectively. The default
feature norm is L1-norm. The influence of different feature
norms is listed in Table VI.

Let x and z denote two points in the feature space and
K (x, z) denotes the kernel function of the SVM classifier. The
L1 kernel and RBF kernel are defined as follows

L1 : K (x, z) = e− γ
nDim ‖x−z‖1 (7)

RB F : K (x, z) = e− γ
nDim ‖x−z‖2

2 (8)

where γ is the kernel parameter and nDim is the dimension
of the feature space. We use nonlinear SVM with L1 kernel as
the default classifier, set γ = 45, and the number of support
samples nsv = 800 as the default parameters.

We used four known DCNN models: AlexNet [20],
GoogLeNet [21], CaffeNet [22], and LeNet [23]. Their frames
were downloaded from https://github.com/BVLC/caffe. Except
of LeNet, their weight models of ImageNet database were
downloaded from https://dl.caffe.berkeleyvision.org/.

The structural parameters of these known DCNN models
are kept unchanged throughout our experiments, such as the
parameters of the layers, of the convolutional and pooling
kernels (number, type, size, stride, padding size, and so on).
But, the data layer was revised slightly to support our vehicle
database and linearly transforming the 48 × 48 image of the
samples into the required size (227 × 227 or 224 × 224
for them). The learn_rate = 0.001, weight_decay = 0, and
momentum = 0. Training process continued until the error
rate was less than 0.001 or smaller. Testing was executed every
100 iterations, using the “Softmax” as the final classifiers.

We defined the deep convolutional feature (DCF) of a
DCNN as the output of the highest pooling layer of the net. For
AlexNet, GoogLeNet, and CaffeNet, the dimension of their
highest pooling layer is 9216, 1024, and 9216, respectively.
The source codes of Caffe [22] include a file named “extra -ct
features.cpp.” It enables us to extract the DCFs from the above
three known DCNN models and evaluate their performance by
nonlinear SVM in Table V.

V. EXPERIMENT

The searching stage of vehicle detection inevitably produces
many similar positive samples, a huge quantity of meaningless
negative samples, such repetitive or meaningless samples
contribute very less to the detector training process. To avoid
such a fault, we construct our database by many unique
vehicle samples and difficult negative samples that containing
complicated textures or vehicle-like objects. Training database
includes 1500 positive samples and 1500 negative samples.

Fig. 2. Images of the samples used in our experiments. (a) Partial training
samples. (b) Partial test samples.

TABLE I

ACCURACIES OF FOUR KNOWN DEEP CONVOLUTIONAL NEURAL NETS

Testing database contains the same numbers of different pos-
itive and negative samples. All image patches are cut from
111 high-resolution satellite images at San Francisco city
streets via the Google-Earth software (Fig. 2).

The precision rate, recall rate, and AC are defined as

PR = number of detected vehicles

number of detected objects
(9)

RR = number of detected vehicles

number of all vehicles
(10)

AC = 1.0 − min{number of misclassified samples}
number of all vehicles

. (11)

In formula (11), the misclassified samples include miss-
detected vehicles and false alarms. AC reflects the best per-
formance that a detector can achieve.

Fig. 2 lists some typical sample images from our training
and test databases. They are 48 × 48 colorful images, with
normalized scale and orientation.

Table I lists the accuracies of the four known DCNNs
upon our vehicle test database, where AlexNet is the
nine-layer model described in [20], which had won the
ILSVRC-2012 classification challenge, GoogLeNet is a large-
scale deep neural networks [21] with about 40 layers, won
the ILSVRC-2014 classification challenge, CaffeNet [22] is a
revised net model from AlexNet, where pooling is done before
normalization, and LeNet is the net-model described in [23],
which is known to be working well on the hand-written digit
classifying task. The nonfine-tuned way is the normal way that
starting from small randomly initialized weight parameters and
then trained by the stochastic gradient descent method, and
the fine-tuned way is that tuned upon a preloaded well-trained
weight model of imageNet database. Table I shows that fine
tuning obviously improves the performances of the three net
models. It also greatly accelerates the training processes. For
an instance, GoogLeNet needs about 24–30 normal training
hours, but only 4–5 fine-tuning hours.

Table II lists the test accuracies of nonlinear SVM classifier
(L1 kernel, γ = 45, and nsv = 800), using 15 different
features. It shows clearly that RCD(Ci,Cj)+SVM(L1) outper-
forms the above four known DCNN models. RCD(Ci,Cj) out-
performs other features by an obvious margin. Among all RCD
features, RCD(C2,C3) is the best, but RCD(C1,C2) achieves
the second best by an almost ignorable margin (0.0006).
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TABLE II

PERFORMANCES OF HOG, LBP, LBP+HOG, AND RCDs+SVM(L1)

TABLE III

PERFORMANCES OF RCD FEATURES WITH

LBP+HOG, CLASSIFIED BY SVM(L1)

TABLE IV

AC OF VARIOUS CLASSIFIERS IN THE LBP+
HOG+RCD(C1,C4) FEATURE SPACE

Table III lists the accuracies of LBP+HOG+different
RCDs+SVM classifier (L1 kernel, γ = 45, and nsv = 800),
it shows that the combination of RCD with LBP + HOG
increases the former’s AC obviously. Among all fea-
tures, LBP+HOG+RCD(C1,C4) is the best one, and
LBP+HOG+RCD(C1,C2) achieves the second best again with
an ignorable margin (0.0003). It seems that RCD(C1,C2) has
a better performance stability than other RCDs.

In Table IV and Fig. 3, BP(n,2) means the three-layer back-
propagation neural network with n hidden neurons and two
output neurons, where the rectified linear unit function is
used for the neurons of the hidden layer, and Tanh function
for the output layer. Adaboost used weak classifiers based
on all components of the input feature, with their threshold
parameters and directions optimized in the training set in
advance. Table IV clearly exhibits that SVM outperforms
BP(n,2), and BP(n,2) outperforms Adaboost.

In Table V, the DCFs are extracted from the highest pooling
layers of the DCNNs, and the dimension of the highest
pooling layer is decided by its number of maps and its
map size. All DCFs are sent to a nonlinear SVM(L1, γ =
45, and nsv = 800) classifier to do training and testing.
Table V clearly shows that these DCFs could not outperform

TABLE V

PERFORMANCE OF DCFS + SVM (L1)

AC : Accuracy of the Nets training normally.
AC∗: Accuracy of the Nets loaded the imagenet weight-models without

fine-tuning.
AC∗∗: Accuracy of the Nets fune-tuned from the imagenet weight-models.

TABLE VI

INFLUENCE OF FEATURE NORM UPON THE AC OF SVM(L1) CLASSIFIER

TABLE VII

INFLUENCE OF KERNEL PARAMETER UPON THE AC OF

LBP + HOG + RCD(C1,C4) + NONLINEAR SVM

Fig. 3. P–R curves of nonlinear SVM versus BP and Adaboost on our vehicle
test database.

LBP + HOG + RCD(Ci,Cj). It seems that those DCFs for
imageNet classification are not suitable for vehicle detection.

Table VI shows the slight influence of the tree feature norms
upon the accuracies of fixed features + SVM(L1).

Table VII lists the influence of the selection of ker-
nel parameter γ upon the accuracies of LBP + HOG +
RCD(C1, C4) + nonlinear SVM. It reveals that L1 kernel
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Fig. 4. P–R curves of seven vehicle detectors: RCD(C2, C3), RCD(C3),
RCD(F), RCD(T), LBP + HOG, LBP, and HOG with SVM(L1) classifier.

Fig. 5. Performances of fixed features + SVM versus fine-tuned DCNNs.

always outperforms RBF kernel, and the γ kernel parameter
has a relative small influence upon the classifier AC.

Fig. 3 shows that SVM (L1) outperforms SVM (RBF), and
the later outperforms BP and Adaboost.

Fig. 4 shows that RCD (C2, C3) outperforms RCD (C3),
RCD (F), RCD (T), LBP + HOG, LBP, and HOG.

Fig. 5 shows that LBP + HOG + RCD(C1, C4) +
SVM (L1) outperforms fine-tuned AlexNet, GoogLeNet, and
CaffeNet obviously. As a contrast, the GPU (Tesla K20,
2496 kernels) training time of the DCNNs needs at least
4–30 h, while the CPU (Intel core i5, four kernels, 2.6 GHz)
training time of the fixed features + nonlinear SVM never
exceeds 370 s.

VI. CONCLUSION

In order to improve the AC of vehicle detection, we study
the problem of expanding RCD feature, proposed two novel
formulas to construct RCD based on one or two constant
convolutional masks, building ten novel RCDs: four RCD(Ci)
and six RCD(Ci, Cj) (1 ≤ i, j ≤ 4). They achieved a much
higher performance than the popular features (HOG, LBP,
LBP + HOG, and previous RCDs), and some of them even
exceed four known DCNNs (AlexNet, GoogLeNet, CaffeNet,
and LeNet) when using SVM (L1 kernel) classifier. Among all
RCDs, RCD(C1, C2) is specially recommended for its better
robustness. Compared with DCNNs, classifier based on hand-
crafted descriptors has the obvious advantage of swiftness,
simplicity, and convenience. Such descriptors have infinite
possibilities to be improved by human wisdom, and being
suitable for a wide range of recognition tasks.
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