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Abstract. Policy iteration, as one kind of reinforcement learning methods is ap-
plied here to solve the optimal problem of nonlinear discrete-time non-affine 
system with continuous-state and continuous-action space. By applying action-
value function or Q function, the implementation of policy iteration avoids the 
dependence on system dynamics. Online model-free recursive least-squares  
policy iteration (RLSPI) algorithm is proposed with continuous policy approx-
imation. It is the first attempt to develop online LSPI algorithm for nonlinear 
discrete-time non-affine systems with continuous policy. A nonlinear discrete-
time system is simulated to verify the efficiency of our algorithm. 
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1 Introduction  

Reinforcement learning (RL) refers to one kind of methods that try to find optimal or 
near-optimal policies for complicated systems or agents [1-3]. Policy iteration (PI) is 
one powerful instrument of RL to solve optimal problems. PI [4] includes two steps: 
policy evaluation and policy improvement. With iteration of these two steps, PI im-
proves policy constantly and finally achieves the optimal one [5].  

As RL developed, function approximation (FA) technique was introduced to RL to 
solve continuous optimal problems and promoted the development of RL. Such as 
approximate SARSA [6], TD(λ) [7] and so on. Especially recent years, a new branch 
of RL, adaptive dynamic programming (ADP) was proposed [2]. Some overviews 
about ADP are given in [2], [3], [8] and [9]. 

As FA technique is used for the approximation of value function, parameters of 
approximation have to be learned based on data. And a lot of online algorithms  
have developed. SARSA is an online algorithm which modifies value function based 
on temporal difference (TD) error with gradient method. Si and Wang [10] applied 
ADP for online learning of under-actuated control systems and presented great  
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performance. However, those algorithms make a limited use of data, which does not 
benefit their application.  

To solve those problems, Busoniu et al. [11] extended offline least-squares policy 
iteration (LSPI) [12] to an online LSPI algorithm. And this algorithm employed Q 
function featured as model-free and the results revealed great performance for online 
learning. However, a batch least-squares method was used and only discrete-action 
policies were applied.  

In this paper, we focus on a brand new research field of online model-free recur-
sive learning with continuous-action policy approximation for nonlinear discrete-time 
non-affine systems. An online model-free RLSPI algorithm is proposed using linear 
function approximation for continuous state and action systems. To the limit of our 
knowledge, it is the first attempt to combine continuous policy approximation with 
LSPI for online learning.  

This paper is organized as follows. In Section 2, PI method using Q function is in-
troduced to solve optimal control problem of nonlinear discrete-time non-affine sys-
tem. Then an online model-free algorithm, RLSPI, is proposed in Section 3 to solve 
this kind of problems online. And a nonlinear example is simulated with the new al-
gorithm. In the end, we have our conclusion. 

2 PI for Nonlinear Discrete-Time Non-affine Optimal Problem 

2.1 Nonlinear Discrete-Time Non-affine Optimal Problem 

In this paper, the nonlinear discrete-time non-affine system is denoted by 

1 ( , )k k kx f x u+ = , where 1, n
k kx x R+ ∈ , m

ku R∈ , : n m nf R R R× → , and k is the 

step index. Assume the system is controllable on a compact set Ω and 0 is the equili-
brium point. Suppose a negative definite function ( , )k kr x u  is used as the reward at 

each step, and : n mh R R→  represents a policy.  
Given a policy h , the following definition specifies its action-value function, or Q 

function 

 ( , ) ( , ) ( ( , ), ( ( , )))h h
k k k k k k k kQ x u r x u Q f x u h f x u= + . (1) 

hQ  are negative definite. And the optimal control problem is to find the maximum Q 

function and optimal policy, namely 

 * ( , ) max ( , )h
k k k k

h
Q x u Q x u= , (2) 

 * *( ) arg max ( , )k k
u

h x Q x u= . (3) 

It is important to note that the Q function defined here is undiscounted. So a defini-
tion is introduced from [13] to guarantee the validity  
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Definition 1. (Admissible Policy) A control policy h  is defined to be admissible, 
denoted by ( )h ψ∈ Ω , if h  is continuous on Ω, (0) 0h = , h  stabilizes the system 

on Ω and for kx∀ ∈Ω , ( , )h
k kQ x u  is finite. 

2.2 Policy Iteration 

Based on Q function, policy evaluation and policy improvement of PI is presented as 
follows 

PI method 

1. Policy evaluation: given an admissible control policy ( ) ( )ih ψ∈ Ω , calculate rele-

vant Q function by 

 ( ) ( ) ( ) ( )( , ) ( , ) ( ( , ), ( ( , ))), (0,0) 0.i i i i
k k k k k k k kQ x u r x u Q f x u h f x u Q= + =  (4) 

2. Policy improvement: generate a new improved policy ( )ih  using  

 ( 1) ( )( ) arg max ( , ).i i
k k

u
h x Q x u+ =  (5) 

As the policy is improved over and over again, the optimal policy can be finally ob-
tained. 

3 An On-Line Model-Free RLSPI Algorithm 

LSPI method was first proposed by Lagoudakis and Parr [12] to utilize the linear 
property of PI method and apply least-squares method for finite state and action sets. 
Then Busoniu et al. [11] extended this method to an online version for infinite and 
continuous-state space and finite-action sets. However, their algorithm is not suitable 
for more general continuous action systems. 

Different from offline or online LSPI algorithm using batch least-squares at the end 
of iterations, a new online model-free RLSPI algorithm is proposed which applies 
RLS method at each step and uses continuous policy approximation for continuous 
state and action control problems.  

3.1 Q Function and Policy Approximation 

As state and action spaces are continuous, approximation of Q function and policy is 
necessary. Here, linear parametrization technique [13] is used.  

A linear parametrization of Q function can be expressed by ˆ( , ) ( , )TQ x u x uφ θ= , 

where 1( , ) [ ( , ),..., ( , )]TNx u x u x uφ φ φ=  is a vector of N basis functions (BFs), and 
NRθ ∈  is a parameter vector. Like many others works [13], polynomials are adopted 
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here as BFs. Suppose 1[ ,..., ]Tnx x x=  and 1[ ,..., ]Tmu u u= and let polynomial BF iφ  

have the form 1 2 1 2
1 2 1 2( , )

i i i ii i
n m

i n mx u x x x u u uα α β βα βφ =   .  

Similarly, denote the linear parametrization of policy by ˆ( ) ( )Th x xω ϕ= , where 

1( ) [ ( ),..., ( )]TMx x xϕ ϕ ϕ=  and 1[ ,..., ] M m
m Rω ω ω ×= ∈ , while each vector M

j Rω ∈  

is associated with action ju . And the polynomial BF jϕ  is defined as 

1 2
1 2( )

j j j
n

j nx x x xγ γ γϕ =  . 

3.2 Policy Evaluation with Q Function Approximation 

With Q function approximation and policy evaluation, the calculation of parameters 

vector θ  can be implemented using online data. Suppose current policy is ( )ˆ ih  and 

try to solve parameters vector ( )iθ . 1{( , , )}t t tx u x +  denotes online data.  

For each sample 1( , , )t t tx u x + , combine ( )ˆ iQ  and (4)  and we have 

 ( ) ( )
1 1

ˆ[ ( , ) ( , ( ))] ( , ).i T i
t t t tt tx u x x r x uhφ φ θ+ + =−  (6) 

It is obvious that (6) is a linear to ( )iθ . Besides, online samples are collected step by 

step. So RLS method is applied for learning ( )iθ . The whole learning process is pre-
sented by  

 

( )
1 1

( )

1

1
( ) ( )

( ) ( , )

( )

( ) ( ) ( ) ( ) ( ) ( )

ˆ( , ) ( , ( ))

1

( 1) ( ) ( ) ( )

( ) ( ) ( )

t t

T

i
t t t t

i i i
t t

T
t

T

z t r x u

s t

q t P t s t s t P t s t

P t I

x

q t s t P t

q t z

u x h

t s t

xφ φ

θ θ θ

+ +

−

+

=

=

 = + 
 + = − 

 = +

−

− 

 (7) 

3.3 Policy Improvement with Policy Approximation 

After ( )iθ  is achieved, policy improvement continues to extract an improved policy 
( 1)ˆ ih + . However, because of the linear parametrization for Q function and polynomials 

BFs, it is difficult to solve policy improvement (5) directly and have an explicit solu-

tion of ( 1)iω +  associated with ( 1)ˆ ih + . In this way, a gradient-based method is more 

suitable for policy improvement, which is denoted by j

j j

uQ
j j u ωω ω α ∂∂

∂ ∂
= + , where α is 

the learning rate. 
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To guarantee the accuracy of ( 1)ˆ ih +  or ( 1)iω +  on the whole state space Ω, a train-
ing set which is evenly distributed over the state space is defined beforehand, { }sX , 

1,..., ss N= . For any BF iφ , its partial differential to action ju  has the following 

form 

 

( , )
, if 0

( , )

0, if 0

i i
j ji

j

j
j

x u
u

ux u
u

u

φβφ
 ≠∂ = ∂  =

 (8) 

So partial differential of ( )ˆ iQ  can be formulated by 
( )ˆ ( )( , ) ( , )
i

jj

Q T i
uu

x u x uφ θ∂
∂

= where 

1 ,..., N

j j j

T

u u u

φφφ ∂∂
∂ ∂
 =   

. In this way, the gradient-based updating formula for ( 1)i
jω +  on 

training set { }sX  is obtained 

 ( 1) ( 1)( 1) ( )
, , 1 , 1( , ( ) ) ( )

j

i ii T T i
j s u s s sj s j sX X Xω ω αφ ϕ ω θ ϕ+ ++

− −= +  (9) 

where 1,...,j m= . It is noted that in order to generate an accurate parameter ( 1)iω + , 

updating formula (9) on training set { }sX  can be implemented for sufficient times. 

3.4 Exploration 

Exploration is necessary for online algorithm to find optimal polices. Here, we intro-
duce ε -greedy exploration and reset scheme in [11]. At each step t, it has 1 tε−  

probability to apply the current policy directly and tε  probability to add uniform 

random exploration noise tn  to the action. Besides, at the beginning of the algorithm, 

the exploration probability is relatively large to encourage exploration. As the algo-
rithm runs, the proportion of the exploitation increases. A decay exploration is de-

noted by 0
t

t dε ε ε= , where 0ε  is the initial value and dε  is the decay factor with 

0 1dε< < .  

However, as the policy is admissible and the exploration noise is small, the system 
can still be stabilized after enough steps. At that time, the added exploration noise is 
not sufficient to drive the state away from the equilibrium and a new trial starting 
from non-equilibrium points is more benefit for the exploration. Namely, after every 

trialT  steps, the state is reset away from equilibrium.  

Algorithm 1 presents our online RLSPI algorithm. It should be noted that during 
the implementation, no information of system dynamics is needed and the algorithm 
only relies on online data. 
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Algorithm 1. Online RLSPI algorithm 

1:   initialize (0) 0θ ← , (0)
0hω ← , (0) N NP aI ×= , 0i =  and 0x  

2:   for every step 0,1,2,...t =  do 

3:       
( )

( )

ˆ ( ) at 1  probability

ˆ ( ) at  probability

i
t t

t i
t t t

h x
u

h x n

ε

ε

 −= 
+

 

4:        apply tu and measure next state 1tx +  and reward tr  

5:        policy evaluation ( )iθ  by (7) 
6:        if ( 1) updatet i K= +  then 

7:             policy improvement ( 1)iω +  using (9) on { }sX  and 1i i= +  

8:        end if 
9:   end for 

4 Simulation Example 

The nonlinear discrete-time system to test our algorithm is a mass-spring system with 
two states and one action. The dynamics of this system is presented in [14]. We define 
the reward function by a negative definite quadratic function with respect to state and 

action, ( , ) T T
k k k k k kr x u x Qx u Ru= − − , where 2 20.5 , 1Q I R×= = . 

As the system is nonlinear, the associated Q function or policy is complicated and 
a plenty of BFs are required to achieve high precision. In this way, up to 6-order 

( , )x uφ  and up to 5-order ( )xϕ  are used 

 

2 2 2 4 4 4 3 2 2 3 3 2 2 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2

2 2 2 3 6 6 6 5 4 2 3 3 2 4 5
1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

5 4 3 2 2 3 4 5 2 4
1 1 2 1 2 1 2 1 2 2 1

, , , , , , , , , , , , [ , , , ],

[ , , ], [ , ], , , , , , , , ,
( , )

[ , , , , , ], [ ,

x x u x x x u x u x x u x x x x x x u x x x x x x

u x x x x u x x x x u x x x x x x x x x x
x u

u x x x x x x x x x x u x x
ϕ =

3 2 2 3 4
1 2 1 2 1 2 2

3 3 2 2 3 4 2 2 5
1 1 2 1 2 2 1 1 2 2 1 2

3 2 2 3 5 4 3 2 2 3 4 5
1 2 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2 2

, , , ],

[ , , , ], [ , , ], [ , ]

( ) , , , , , , , , , , ,

T

T

x x x x x x

u x x x x x x u x x x x u x x

x x x x x x x x x x x x x x x x x x xϕ

 
 
 
 
 
  

 =  

 

For this system, the initial state of each trial is set to [ 0.2,0.2]T− . And the length 

of each trial trialT  is 1000 steps. Besides, the policy evaluation length updateK  is set 

to 200 and the training set { }sX  selects 2{ 0.1, 0.08,...,0.08,0.1}− − . The uniform 

random exploration noise is limited between [ 0.1,0.1]− . The initial exploration value 

0ε  is 1 and the decay factor dε  is 0.999977. As the system is self-stable, policy 

equal to 0 is adopted as the initial admissible policy. 
The results of the RLSPI algorithm is presented in Fig. 1, where (a) reveals 10 rep-

resentative trials during implementation, respectively at 0th, 10000th, 20000th, …, 
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90000th step. It is obvious that our algorithm can learn to improve the policy to a 
good one which stabilizes the system very well. The performance of the finial learned 

policy using RLSPI is presented in (b) starting from [ 0.2,0.2]T− . And (c) reveals 

scores of policies at the end of different trials in RLSPI with respect to step index. 
The scores of policies increase as RLSPI running.  

 

Fig. 1. Implementation of RLSPI algorithm for nonlinear discrete-time system. (a) Trajectory 
of representative trials in RLSPI algorithm. (b) Performance of finial learned policy using 

RLSPI algorithm. (c) Scores of different policies from [ 0.2,0.2]T− . 

5 Conclusion 

PI method for nonlinear discrete-time non-affine systems with continuous-state and 
continuous-action space is considered in this paper. Q function is introduced to ap-
proach undiscounted value function in PI. Relying on Q function, PI method does not 
need the information of system dynamics. Using linear parametrization, an online 
model-free RLSPI algorithm is proposed with RLS method and continuous policy 
approximation. The algorithm reveals efficiency on nonlinear discrete-time systems. 
Without the information of system dynamics and only relying on online data, RLSPI 
can learn optimal or near-optimal policies with finite steps. 
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