
A Data-based Online Reinforcement Learning
Algorithm with High-efficient Exploration

Yuanheng Zhu∗ and Dongbin Zhao†
The State Key Laboratory of Management and Control for Complex Systems,

Institution of Automation, Chinese Academy of Sciences, Beijing, China
∗Email: yuanheng.zhu@gmail.com
†Email: dongbin.zhao@ia.ac.cn

Abstract—An online reinforcement learning algorithm is pro-
posed in this paper to directly utilizes online data efficiently for
continuous deterministic systems without system parameters. The
dependence on some specific approximation structures is crucial
to limit the wide application of online reinforcement learning
algorithms. We utilize the online data directly with the kd-tree
technique to remove this limitation. Moreover, we design the
algorithm in the Probably Approximately Correct principle. Two
examples are simulated to verify its good performance.

I. INTRODUCTION

Online reinforcement learning (RL) draws a lot of attention
both from the computer science [1]–[4] and optimal control
science [5]–[9], because it uses the online data to achieve an
optimal policy through the interaction with the environment.
Compared to the offline reinforcement learning, the efficient
usage of online data, or the trade-off of exploration and ex-
ploitation becomes more critical. Besides, some issues related
to practical implementation, e.g. the convergence rate and the
obtained optimality, are also taken into consideration. Lots of
efforts [10]–[18] have been devoted to solve such problems
from different aspects.

Among many studies to overcome these problems, the
probably approximately correct (PAC) is one of the most
effective approaches. In the running process of an online
learning algorithm, if the sum of steps when it implements
non-optimal actions is finite and bounded, then it is called a
PAC algorithm. Considering finite Markov Decision Processes
(MDPs) with finite states, a lot of PAC algorithms have been
proposed, including E3 [19], RMAX [20], MBIE [21], Delayed
Q-learning [22], etc.

For recent years, many researchers have concentrated on
continuous-state systems to solve online optimal control prob-
lems in the PAC principle. Bernstein and Shimkin [23] propose
the ARL algorithm for continuous deterministic systems. They
prove their algorithm has a determinate finite time bound. But,
the implementation requires some parameters of systems. So
it is partially dependent on system information, which limits
its application.

In this paper, we consider the optimal control problem
of continuous deterministic systems and propose an online
data-based RL algorithm. Without relying on any specific
approximation structure, the online data are used directly. A
kd-tree technique is adopted. The implementation is based on
the current collected data and is applicable for arbitrary control
problems. As we adopt kd-tree and consider the PAC principle

on continuous-state systems, we term our algorithm as kd-
CPAC.

The paper is organized as follows. Section II introduces
the background for RL and Section III describes the kd-tree
technique adopted in the algorithm. The whole process of
kd-CPAC algorithm is presented in Section IV. We simulate
two examples in Section V to verify the performance of our
algorithm. The end is our discussion and conclusion.

II. FORMULATION OF ONLINE REINFORCEMENT
LEARNING

A continuous-state system with deterministic transition
function can be represented by a 4-tuple, (𝑆,𝐴,𝑅, 𝐹), where
𝑆 is a continuous state space, 𝐴 is a discrete action set,
𝑅(𝑠, 𝑎) is the reward function, and 𝐹 (𝑠, 𝑎) is the deterministic
transition function. Suppose the state space is bounded, not
infinitely extended. The reward function also has an interval,
namely 𝑟𝑚𝑖𝑛 ≤ 𝑅(𝑠, 𝑎) ≤ 𝑟𝑚𝑎𝑥. Note that in this case, 𝑅
and 𝐹 are both unknown to algorithms. So the only available
information is online observations (𝑠, 𝑎, 𝑟, 𝑠′), where 𝑟 is the
received reward and 𝑠′ is the next-step state at (𝑠, 𝑎).

During the interaction with the environment, we assume
that at time 𝑡, the agent has experienced a history of states
and actions, denoted by

ℎ𝑡 = {𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡}.
In the online case, the policy is non-stationary as algorithms
can modify it at any moment. So actions are selected following
a series of policies 𝜋 = {𝜋𝑡}∞𝑡=0, namely 𝑎𝑡 = 𝜋𝑡(𝑠𝑡).

To evaluate the performance of a policy, we adopt the
discounted return criterion. Given a policy 𝜋 and an initial
state 𝑠0 = 𝑠, the discounted return is defined as

𝐽𝜋(𝑠) ≜
∞∑
𝑡=0

𝛾𝑡𝑟𝑡
∣∣
𝑠0=𝑠,𝑎𝑡=𝜋𝑡(𝑠𝑡)

where 𝛾 is the discount factor satisfying 0 < 𝛾 < 1. Note
that in some systems, agents may stop and get stuck at some
terminal states. Then the discounted return in this case is
modified to

𝐽𝜋(𝑠) ≜
𝑇−1∑
𝑡=0

𝛾𝑡𝑟𝑡 + 𝑉 (𝑠𝑇)
∣∣
𝑠0=𝑠,𝑎𝑡=𝜋𝑡(𝑠𝑡)

where 𝑠𝑇 indicates the terminal state and 𝑉 (𝑠𝑇) is a predefined
value to estimate the success or failure at 𝑠𝑇 .

978-1-4799-4552-8/14/$31.00 ©2014 IEEE978-1-4799-4552-8/14/$31.00 ©2014 IEEE

The target of RL is maximizing the value of 𝐽𝜋(𝑠) and
the corresponding policy is called the optimal policy, 𝜋∗ ≜
argmax

𝜋
𝐽𝜋 . Here, we adopt optimal action-value function or

optimal Q function for the implementation of RL. It is defined
in a Bellman principle as

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′)

and the optimal policy is generated by

𝜋∗(𝑠) = argmax
𝑎
𝑄(𝑠, 𝑎).

Besides, as the reward function is bounded in an interval
[𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥], so the value function also has an upper bound,
denoted by 𝑉𝑚𝑎𝑥 = 𝑟max

1−𝛾 .

As the information of systems is only from online obser-
vations, the storage of these samples is a major problem in the
algorithm. Next, we will give a brief description about kd-tree,
which is used to store online samples.

III. KD-TREE FOR THE STORAGE OF SAMPLES

Kd-tree, as an efficient approach to split the state space
and store data, has been applied widely in the field of RL
[24], [25].

Suppose a sample is denoted by (𝑠, 𝑎̂, 𝑟, 𝑠′). We take
𝑠 as the key to refer the sample. For convenience, each
action corresponds to a kd-tree and there are ∣𝐴∣ kd-trees–
∣𝐴∣ indicates the number of actions. At the beginning, each
tree has an empty root, which occupies the whole state space.
When samples arrive, they are stored in the root. When the
number of stored samples reaches a maximum number 𝑁𝑠𝑝𝑙𝑖𝑡–
split condition, the space of the root is split into two nodes
by a split hyperplane at split dimension. At the same time, the
𝑁𝑠𝑝𝑙𝑖𝑡 samples are also divided separately into two children.
This process will continue if more samples arrive and the depth
of the tree will increase larger and larger.

The split dimension and hyperplane is determined by the
following principle. Calculate the variance of each dimension
among the samples in the node which is going to be split.
For better comparison, states are normalized by the span of
the state space before the calculation. The dimension corre-
sponding to the maximum variance is selected as the split
dimension. Then choose the median value at this dimension
among samples as the split hyperplane.

When a new sample (𝑠, 𝑎̂, 𝑟, 𝑠′) is required to be added in
kd-trees, search the kd-tree of action 𝑎̂ for the leaf which 𝑠
belongs to. Then put the sample in the leaf node.

For arbitrary states, it is also convenient to find their neigh-
boring samples in kd-trees. Given a state 𝑠, the neighboring
samples of 𝑠 refer to the set of samples (𝑠, 𝑎̂, 𝑟, 𝑠′) which
satisfy 𝑑(𝑠, 𝑠) ≤ 𝛿. 𝑑 is a metric 𝑑 : 𝑆×𝑆 → ℝ to specify the
distance between two states, and 𝛿 is the neighboring distance.
Start from the root and estimate the area of each node if it
is close to 𝑠 within 𝛿. If not, the children and the included
samples are also far away and there is no need to look into
them. Otherwise, if the distance between the node and 𝑠 is less
than 𝛿, and the node has children, then continue to estimate
each child in the same way until reaching leaves. Compare the

samples in the leaves with 𝑠 and output those whose distances
are less than 𝛿 as neighboring samples.

Based on the principle of storing samples with kd-tree, we
present the kd-CPAC algorithm in the following section.

IV. KD-TREE BASED CONTINUOUS PAC ALGORITHM

A. Data set

Based on the previous section, suppose the current time
is 𝑡 and we have a data set 𝐷𝑡 = {(𝑠𝑖, 𝑎̂𝑖, 𝑟𝑖, 𝑠′𝑖)} stored in
kd-trees, in which are selective samples of the past time. As
𝑟𝑖 and 𝑠′𝑖 are determined by 𝑠𝑖 and 𝑎̂𝑖, so we can simplify the
expression of a sample by the pair (𝑠𝑖, 𝑎̂𝑖). Or just 𝑠𝑖 if given
𝑎̂𝑖.

Separate samples at different actions into different sets.
Use 𝐷𝑡(𝑎) to represent the set of samples belonging to 𝑎.
Furthermore, for an arbitrary state 𝑠 at action 𝑎, we construct
a neighboring set–𝐶𝑡(𝑠, 𝑎), to include the neighboring samples
(𝑠𝑖, 𝑎, 𝑟𝑖, 𝑠

′
𝑖) in 𝐷𝑡(𝑎) that have 𝑑(𝑠, 𝑠𝑖) ≤ 𝛿, where 𝛿 is

the predefined neighboring distance. If there exists no such
samples, we declare 𝐶𝑡(𝑠, 𝑎) = ∅. So 𝐶𝑡(𝑠, 𝑎) indicates the
set of samples that is 𝛿-close to 𝑠 and we can further use them
to approach (𝑠, 𝑎).

B. Data-Based Q Iteration

Based on the data set, we can utilize it to define a Data-
Based Q Iteration (DBQI) operator.

Definition 1 (DBQI operator) Given a function 𝑔 : 𝑆×𝐴→ ℝ

and arbitrary 𝑠 and 𝑎, the DBQI operator 𝒯 is defined as

𝒯 (𝑔)(𝑠, 𝑎) =

{
min

𝑠𝑖∈𝐶𝑡(𝑠,𝑎)

[
𝑟𝑖+𝛾 max

𝑎′ 𝑔(𝑠′𝑖,𝑎
′)
]
, if 𝐶𝑡(𝑠,𝑎) ∕=∅

𝑉max, otherwise
(1)

where (𝑠𝑖, 𝑎, 𝑟𝑖, 𝑠
′
𝑖) denotes the neighboring samples of (𝑠, 𝑎)

if 𝐶𝑡(𝑠, 𝑎) is not empty.

DBQI operator means for a pair (𝑠, 𝑎), if its 𝐶𝑡(𝑠, 𝑎) is
empty, we assign the value of (𝑠, 𝑎) with the upper bound
of value function, 𝑉max. Otherwise, we use the neighboring
samples in 𝐶𝑡(𝑠, 𝑎) to approach its value, more concretely, the
minimum one corresponding to the right side of the equation
in (1). It is obvious that the calculation of DBQI operator is
totally based on the stored samples.

We can prove 𝒯 is a contraction operator, so there exists
a fixed solution that has 𝑄̂𝑡 = 𝒯 (𝑄̂𝑡). 𝑄̂𝑡 is called Data-
Based Q Function (DBQF). To calculate 𝑄̂𝑡, Value Iteration
(VI) [26], [27] or Policy Iteration (PI) [28], [29] can be used.

Based on value iteration, to calculate 𝑄̂𝑡, we first initialize
a function 𝑄̂(0)

𝑡 which can be assigned to any value. Usually
𝑄̂

(0)
𝑡 is equal to 0 or 𝑉max. Then calculate the Q values of

stored samples (𝑠, 𝑎̂, 𝑟, 𝑠′) ∈ 𝐷𝑡 by

𝑞
(0)
𝑡 (𝑠, 𝑎̂) = 𝑟 + 𝛾max

𝑎′
𝑄̂

(0)
𝑡 (𝑠′, 𝑎′).

Furthermore, a new 𝑄̂
(1)
𝑡 can be obtained by

𝑄̂
(1)
𝑡 (𝑠, 𝑎) =

{
min

𝑠𝑖∈𝐶𝑡(𝑠,𝑎)
𝑞
(0)
𝑡 (𝑠𝑖, 𝑎), if 𝐶𝑡(𝑠, 𝑎) ∕= ∅

𝑉max, otherwise

The above equation is totally equal to the process of calculating
𝑄̂

(1)
𝑡 from 𝑄̂

(0)
𝑡 by (1). Then, this calculation is iterated.

In conclusion, suppose we have 𝑄̂(𝑗)
𝑡 of the 𝑗-th iteration,

calculate Q values of stored samples using

𝑞
(𝑗)
𝑡 (𝑠, 𝑎̂) = 𝑟 + 𝛾max

𝑎′
𝑄̂

(𝑗)
𝑡 (𝑠′, 𝑎′).

Then 𝑄̂(𝑗+1)
𝑡 at the (𝑗 + 1)-th iteration is obtained by

𝑄̂
(𝑗+1)
𝑡 (𝑠, 𝑎) =

{
min

𝑠𝑖∈𝐶𝑡(𝑠,𝑎)
𝑞
(𝑗)
𝑡 (𝑠𝑖, 𝑎), if 𝐶𝑡(𝑠, 𝑎) ∕= ∅

𝑉max, otherwise

As the above process is a variant of solving (1) by value
iteration, so it is convergent and the result is the same with
directly calculating 𝑄̂𝑡 by value iteration. Moreover, in the
process, the only need is storing Q values of samples, and the
values of 𝑄̂𝑡 over the whole state space are easy to obtain.

With 𝑄̂𝑡, a greedy policy is extracted and applied to the
system online to obtain a new observation at the next step

𝜋𝑡(𝑠) = argmax
𝑎
𝑄̂𝑡(𝑠, 𝑎). (2)

C. Known vs Unknown

The next issue is whether to add the new observation into
𝐷𝑡 or not. At the beginning of the algorithm, 𝐷0 is empty. As
the implementation progresses, some observations are added
in 𝐷𝑡, while some are omitted to avoid the data set increasing
infinitely. The principle is only storing the samples that have
useful information about systems. So a definition of known is
given here.

Definition 2 (Known) Given an observation (𝑠, 𝑎, 𝑟, 𝑠′). If
𝐶𝑡(𝑠, 𝑎) ∕= ∅ and there exists a sample (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠

′
𝑖) ∈

𝐶𝑡(𝑠, 𝑎) such that

∣∣∣∣max
𝑎′
1

𝑄̂𝑡(𝑠
′, 𝑎′1) − max

𝑎′
2

𝑄̂𝑡(𝑠
′
𝑖, 𝑎

′
2)

∣∣∣∣ ≤ 𝜀𝐾 ,

then the observation is known. Otherwise, we say it is un-
known. The parameter 𝜀𝐾 is called known error.

When a new observation arrives, we determine if it is
known or unknown first. If known, we regard it with no useful
information for our algorithm. If unknown, the observation
contains some knowledge we have not known. Then it is added
into the data set and 𝐷𝑡 → 𝐷𝑡+1. Update 𝑄̂𝑡 and 𝜋𝑡 to 𝑄̂𝑡+1

and 𝜋𝑡+1.

At most cases of online problems, there exists an initial
state 𝑠0 and each episode has a fixed 𝑇𝑒𝑝𝑖𝑠𝑜𝑑𝑒 length. At the
beginning of each episode, the system is set to 𝑠0 and after
𝑇𝑒𝑝𝑖𝑠𝑜𝑑𝑒 steps, the episode ends and the state is reset. For this
kind of systems, the whole process of kd-CPAC is presented
in the following. Note that no parameters about systems are
involved.

Algorithm 1 Kd-CPAC Algorithm
Require: value function upper bound 𝑉max

∣𝐴∣ kd-trees
neighboring distance 𝛿
known error 𝜀𝐾

1: initialize 𝐷0 ← ∅, 𝑄̂0 ← 𝑉max and 𝜋0(𝑠) =
argmax𝑎 𝑄̂0(𝑠, 𝑎)

2: for 𝑡 = 0, 1, 2, ... do
3: observe (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠

′
𝑡)

4: if (𝑠𝑡, 𝑎𝑡) is unknown in 𝐷𝑡 then
5: (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠

′
𝑡) is added into 𝐷𝑡

6: update 𝑄̂𝑡 according to (1)
7: produce 𝜋𝑡 according to (2)
8: end if
9: execute 𝜋𝑡 on the system

10: end for no change of 𝐷𝑡 happens in an episode

V. EXAMPLES

In this section, we apply kd-CPAC to two different prob-
lems, Mountain Car and Inverted Pendulum. Mountain car is
a 2-dimensional system with failure and success terminals.
Inverted pendulum is also 2-dimensional but without terminals.

In the implementation, a distance metric 𝑑 is required.
Here, we choose 𝑑 in a modified version of maximum norm.
For two states 𝑠1 and 𝑠2, their distance is defined by

𝑑(𝑠1, 𝑠2) = max
𝑗

∣∣∣∣∣ 𝑠𝑗1 − 𝑠𝑗2
𝑆𝑗
sup − 𝑆𝑗

inf

∣∣∣∣∣
where 𝑆sup and 𝑆inf is the upper and lower bound of the
state space, and the superscript 𝑗 indicates the 𝑗-th dimension.
The value is normalized by 𝑆sup and 𝑆inf , which is based on
the same consideration in the calculation of variances when
choosing split dimension in kd-tree.

A. Mountain car

The mountain car is a widely used system to test RL
algorithms [24]. A schematic is illustrated in Fig. 1. At
the beginning, the car is initialized at the bottom position
(𝑝 = −0.5). By applying a horizontal force, the car can move
left and right. The target is to reach the top of the mountain
(𝑝 = 1). The system dynamics is denoted by

𝑝 =
1

1 +
(

d𝐻(𝑝)
d𝑝

)2

(
𝑢− 𝑔d𝐻(𝑝)

d𝑝
− 𝑝̇2 d𝐻(𝑝)

d𝑝

d2𝐻(𝑝)

d2𝑝

)

where 𝑝 ∈ [−1, 1]m is the horizontal position of the car, 𝑝̇ ∈
[−3, 3]m/s is its velocity, 𝑢 ∈ [−4, 4]N is the horizontal force,
𝑔 = 9.81m/s2 is the gravitational acceleration, and 𝐻 denotes
the shape of the hill, defined as

𝐻(𝑝) =

{
𝑝2 + 𝑝, if 𝑝 < 0

𝑝√
1+5𝑝2

, if 𝑝 ≥ 0 .

In the simulation, the state variable is 𝑠 = [𝑝, 𝑝̇]𝑇 and the
action set is discretized by 𝐴 = {−4, 4}. Whenever the car
passes the left edge (𝑝 = −1) or its velocity is over 3 (∣𝑝̇∣ > 3),
we regard it as a failure and stop the driving. The success

−1 −0.5 0 0.5 1
−0.5

0

0.5

p

H
(p

)

Fig. 1. A schematic of mountain car system.

TABLE I. MOUNTAIN CAR: LEARNED POLICIES’ PERFORMANCE OF

KD-CPAC AT DIFFERENT KNOWN ERRORS WHEN 𝛿 = 0.01

𝜀𝐻 1.0 3.0 5.0 7.0 9.0

Length to success(s) 1.9 1.9 4.0 6.2 fail

condition is the car reaching the right edge (𝑝 = 1) within the
speed limit (∣𝑝̇∣ ≤ 3). So the failure terminal is assigned with
a low value, 𝑉 (𝑠𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = −100, while the success one with
𝑉 (𝑠𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = 0. In the middle of the process, each step has
a reward 𝑟 = −1. The discount factor is 𝛾 = 0.95 and the
sample time is 0.1s. The episode length 𝑇𝑒𝑝𝑖𝑠𝑜𝑑𝑒 is set to 10s
and the initial state 𝑠0 = [−0.5, 0]𝑇 . The split condition 𝑁𝑠𝑝𝑙𝑖𝑡

chooses 20.

First, we fix the value of neighboring distance 𝛿 as 0.01
and study the impact of different known errors 𝜀𝐻 on the final
learned policies of kd-CPAC. To evaluate a policy, the time
length in an episode to success is adopted as its performance.
The results are illustrated in Table I. Viewed from the ten-
dency, it is concluded that smaller known errors lead to more
optimal policies. This is consistent to our theoretical results.
Furthermore, if the known error is too large, the policy can fail
to move the car to the goal like the last experiment in Table I.

Then, we fix known error 𝜀𝐻 to 1.0 and examine the
influence of neighboring distance 𝛿. Similarly, we can conclude
from Table II that a large neighboring distance leads to a bad
policy. These two groups of experiments are consistent to our
theoretical results that the smaller values 𝛿 and 𝜀𝐻 choose, the
learned policy is more optimal.

Next, let 𝛿 = 0.02 and 𝜀𝐻 = 1.0 and observe the process of
kd-CPAC. After 100 trials of running, the algorithm stops and
a total of 1216 samples are stored. The stored samples at each
action are presented in Fig. 2, combined with the partitions of
state space by the leaves in kd-trees. These figures illustrate
that kd-tree can efficiently store samples for our algorithm.
Apply the learned policy to the system starting from the initial
state and the trajectories are depicted in Fig. 3. It is revealed
that after 1.9 seconds, the car successfully reaches the goal.
Besides, the policy is so efficient that only one turn of actions
in the episode leads to the success.

TABLE II. MOUNTAIN CAR: LEARNED POLICIES’ PERFORMANCE OF

KD-CPAC AT DIFFERENT NEIGHBORING DISTANCES WHEN 𝜀𝐻 = 1.0

𝛿 0.01 0.015 0.02 0.025 0.03

Length to success(s) 1.9 1.9 1.9 2.0 fail

0 0.5 1 1.5 2
−1

0

1

2

1.9

p
[m

]

0 0.5 1 1.5 2
−2

0

2

4

1.9

p’
 [

m
/s

]

0 0.5 1 1.5 2
−5

0

5

1.9

u
[N

]

t [s]

Fig. 3. Mountain Car: Trajectories of states and actions under the learned
policy of kd-CPAC with 𝛿 = 0.02 and 𝜀𝐻 = 1.0.

motor

l

m

Fig. 4. A schematic of the inverted pendulum.

B. Inverted pendulum

In the second simulation, we adopt the inverted pendulum.
It is a common example to estimate online algorithms [2].The
inverted pendulum is a device that rotates a mass in a vertical
plane and is driven by a DC motor. A schematic is presented
in Fig. 4 and its dynamics can be denoted by

𝛼̈ =
1

𝐽

(
𝑚𝑔𝑙 sin(𝛼)− 𝑏𝛼̇− 𝐾2

𝑅
𝛼̇+

𝐾

𝑅
𝑢

)

where 𝛼 and 𝛼̇ are the angle and angular velocity of the
pendulum, satisfying the bound [−𝜋, 𝜋) rad and [−15𝜋, 15𝜋]
rad/s respectively. 𝑢 is the control action applied to the DC
motor and constrained to [−3, 3]V. For simulation, dynamics
parameters are adopted the same as [2], given in Table III and
the sample time is set to 0.01s.

The goal is to swing up the pendulum from the bottom
and balance it at the top. So the state input is 𝑠 = [𝛼, 𝛼̇]𝑇

and the control action is discretized into 3 discrete values,
𝐴 = {−3, 0, 3}. The reward is designed by 𝑟(𝑠, 𝑎) = −𝑠𝑇𝑄𝑠,
where 𝑄 = 𝑑𝑖𝑎𝑔(5, 0.1). The discount factor is set 𝛾 = 0.98.
The episode length 𝑇𝑒𝑝𝑖𝑠𝑜𝑑𝑒 is 6s and each trial starts from
[𝜋, 0]𝑇 .

In this experiment, we still choose 𝑁𝑠𝑝𝑙𝑖𝑡 = 20 but set
𝛿 = 0.005 and 𝜀𝐾 = 30.0. After 143 episodes of learning, the

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p [m]

p’
 [

m
/s

]

(a) u=−4

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p [m]

p’
 [

m
/s

]

(b) u=4

Fig. 2. Mountain Car: Partitions of state space and the stored samples at each action of kd-trees with 𝛿 = 0.02 and 𝜀𝐻 = 1.0.

2 0 2

40

20

0

20

40

α [rad]

α’
 [r

ad
/s

]

(a) u= 3

2 0 2

40

20

0

20

40

α [rad]

α’
 [r

ad
/s

]

(b) u=0

2 0 2

40

20

0

20

40

α [rad]

α’
 [r

ad
/s

]

(c) u=3

Fig. 5. Inverted Pendulum: Partitions of state space and the stored samples at each action of kd-trees with 𝛿 = 0.005 and 𝜀𝐾 = 30.0.

TABLE III. PARAMETERS OF INVERTED PENDULUM

Symbol Value Meaning

𝑚 0.055 mass
𝑔 9.81 gravitational acceleration
𝑙 0.042 distance from centre to mass
𝐽 1.91e-4 moment of inertia
𝑏 3e-6 viscous damping
𝐾 0.0536 torque constant
𝑅 9.5 rotor resistance

algorithm stops and it stores 29684 samples. Stored samples
in three kd-trees are depicted in Fig. 5. As the problem is
complicated, more samples are stored and the state space is
partitioned by kd-trees to smaller sizes. Next, the learned
policy is applied to the system to observe its performance. For
comparison, an offline model-based Fuzzy Q-Iteration from [2]
is also applied to the same system. In its implementation, we
set triangular fuzzy partitions with 51 equidistant cores for both
state variables. After the offline learning, a convergent policy is
obtained. We implement these two policies with respect to kd-
CPAC and Fuzzy Q-Iteration to inverted pendulum and their
results are illustrated in Fig. 6. By comparison, it is obvious
that the policy of kd-CPAC algorithm (blue solid lines) has
a better performance than Fuzzy Q-Iteration algorithm (green

dashed lines), as kd-CPAC policy needs less steps to swing
up and balance the pendulum. So even our algorithm is online
and has no information about the system, the learned policy is
still more optimal.

VI. CONCLUSION

In this paper, we consider continuous deterministic systems
and propose a new online RL algorithm, kd-CPAC. During the
online running, the algorithm selectively stores samples and
utilizes them directly to produce policies. These policies are
prone to explore unvisited areas, which helps to collect system
information.

To avoid the dependence on approximation structure in the
implementation, we utilize the online data directly. It benefits
the algorithm with high efficiency of online data. To store
samples, a kd-tree technique is adopted. It helps to divide
the state space according to samples and store them in a tree
structure. Based on kd-tree, it is convenient for the algorithm to
locate samples and search for neighboring samples for arbitrary
states.

0 0.5 1 1.5 2
−4

−2

0

2

4

α
[r

ad
]

0 0.5 1 1.5 2
−20

−10

0

10

α’
 [

ra
d/

s]

0 0.5 1 1.5 2
−4

−2

0

2

4

u
[V

]

0 0.5 1 1.5 2
−100

−50

0

r
[−

]

t [s]

Fig. 6. Inverted pendulum: Trajectories of states, actions and rewards. The
blue solid lines indicate the policy of kd-CPAC, while the green dashed lines
refer to the policy of Fuzzy Q-Iteration with 51×51 triangular fuzzy partitions.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China (NSFC) under Grants No. 61273136, No.
61034002, and Beijing Natural Science Foundation under
Grant No. 4122083.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[2] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
New York: CRC Press, 2010.

[3] A.-H. Tan, Y.-S. Ong, and A. Tapanuj, “A hybrid agent architecture
integrating desire, intention and reinforcement learning,” Expert Syst.
Appl., vol. 38, no. 7, pp. 8477–8487, 2011.

[4] L. Tang, Y.-J. Liu, and S. Tong, “Adaptive neural control using rein-
forcement learning for a class of robot manipulator,” Neural Comput.
Appl., pp. 1–7, 2013.

[5] D. Wang, D. Liu, D. Zhao, Y. Huang, and D. Zhang, “A neural-
network-based iterative GDHP approach for solving a class of nonlinear
optimal control problems with control constraints,” Neural Comput.
Appl., vol. 22, no. 2, pp. 219–227, 2013.

[6] Q. Wei and D. Liu, “Stable iterative adaptive dynamic programming al-
gorithm with approximation errors for discrete-time nonlinear systems,”
Neural Comput. Appl., vol. 24, no. 6, pp. 1355–1367, 2014.

[7] B. Wang, D. Zhao, C. Alippi, and D. Liu, “Dual heuristic dynamic
programming for nonlinear discrete-time uncertain systems with state
delay,” Neurocomputing, vol. 134, pp. 222–229, 2014.

[8] Q. Yang and S. Jagannathan, “Reinforcement learning controller design
for affine nonlinear discrete-time systems using online approximators,”
IEEE Trans. Syst. Man Cybern. B, vol. 42, no. 2, pp. 377–390, April
2012.

[9] H. Zhang, L. Cui, and Y. Luo, “Near-optimal control for nonzero-sum
differential games of continuous-time nonlinear systems using single-
network adp,” IEEE Trans. Cybern., vol. 43, no. 1, pp. 206–216, Feb
2013.

[10] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Cam-
bridge Univ., Cambridge, U.K., 1989.

[11] S. ten Hagen and B. Kröse, “Neural Q-learning,” Neural Comput. Appl.,
vol. 12, no. 2, pp. 81–88, 2003.

[12] G. A. Rummery and M. Niranjan, “On-line Q-learning using con-
nectionist systems,” Cambridge University Engineering Department,
Cambridge, England, Tech. Rep. TR 166, 1994.

[13] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based
optimal control for a class of unknown discrete-time nonlinear systems
using globalized dual heuristic programming,” IEEE Trans. Automat.
Sci. Eng., vol. 9, no. 3, pp. 628–634, July 2012.

[14] S. B. Thrun, “The role of exploration in learning control,” in Hand-
book for Intelligent Control: Neural, Fuzzy and Adaptive Approaches,
D. White and D. Sofge, Eds. Florence, Kentucky 41022: Van Nostrand
Reinhold, 1992.

[15] D. Zhao, Z. Hu, Z. Xia, C. Alippi, and D. Wang, “Full range adaptive
cruise control based on supervised adaptive dynamic programming,”
Neurocomputing, vol. 125, pp. 57–67, 2014.

[16] D. Zhao, B. Wang, and D. Liu, “A supervised actor-critic approach for
adaptive cruise control,” Soft Computing, vol. 17, no. 11, pp. 2089–
2099, 2013.

[17] D. Zhao, X. Bai, F. Wang, J. Xu, and W. Yu, “DHP for coordinated
freeway ramp metering,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4,
pp. 990–999, 2011.

[18] X. Bai, D. Zhao, and J. Yi, “The application of ADHDP(𝜆) method
to coordinated multiple ramps metering,” International Journal of
Innovative Computing, vol. 5, no. 10(B), pp. 3471–3481, 2009.

[19] M. Kearns and S. Singh, “Near-optimal reinforcement learning in
polynomial time,” Mach. Learn., vol. 49, no. 2-3, pp. 209–232, Nov.
2002.

[20] R. I. Brafman and M. Tennenholtz, “R-max - a general polynomial time
algorithm for near-optimal reinforcement learning,” J. Mach. Learn.
Res., vol. 3, pp. 213–231, Mar. 2003.

[21] A. L. Strehl and M. L. Littman, “A theoretical analysis of model-
based interval estimation,” in Proc. 22nd Int. Conf. Machine Learning
(ICML’05), 2005, pp. 856–863.

[22] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “PAC
model-free reinforcement learning,” in Proc. 23rd Int. Conf. Machine
Learning (ICML’06), 2006, pp. 881–888.

[23] A. Bernstein and N. Shimkin, “Adaptive-resolution reinforcement learn-
ing with polynomial exploration in deterministic domains,” Mach.
Learn., vol. 81, no. 3, pp. 359–397, Dec. 2010.

[24] R. Munos and A. Moore, “Variable resolution discretization in optimal
control,” Mach. Learn., vol. 49, no. 2-3, pp. 291–323, Nov. 2002.

[25] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” J. Mach. Learn. Res., vol. 6, pp. 503–556, Dec.
2005.

[26] H. Li and D. Liu, “Optimal control for discrete-time affine nonlinear
systems using general value iteration,” IET Control Theory and Appli-
cations, vol. 6, no. 18, pp. 2725–2736, 2012.

[27] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time non-
linear HJB solution using approximate dynamic programming: Con-
vergence proof,” Trans. Sys. Man Cyber. Part B, vol. 38, no. 4, pp.
943–949, Aug. 2008.

[28] D. Liu, X. Yang, and H. Li, “Adaptive optimal control for a class
of continuous-time affine nonlinear systems with unknown internal
dynamics,” Neural Comput. Appl., vol. 23, no. 7-8, pp. 1843–1850,
2013.

[29] L. Zuo, X. Xu, C. Liu, and Z. Huang, “A hierarchical reinforcement
learning approach for optimal path tracking of wheeled mobile robots,”
Neural Comput. Appl., vol. 23, no. 7-8, pp. 1873–1883, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

