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Abstract—Sum of squares (SOS) polynomials have provided a
computationally tractable way to deal with inequality constraints
appearing in many control problems. It can also act as an approx-
imator in the framework of adaptive dynamic programming. In
this paper, an approximate solution to the H, optimal control of
polynomial nonlinear systems is proposed. Under a given attenu-
ation coefficient, the Hamilton—Jacobi-Isaacs equation is relaxed
to an optimization problem with a set of inequalities. After apply-
ing the policy iteration technique and constraining inequalities
to SOS, the optimization problem is divided into a sequence
of feasible semidefinite programming problems. With the con-
verged solution, the attenuation coefficient is further minimized
to a lower value. After iterations, approximate solutions to the
smallest L3-gain and the associated H~, optimal controller are
obtained. Four examples are employed to verify the effectiveness
of the proposed algorithm.

Index Terms—Adaptive dynamic programming (ADP), Hy
optimal control, policy iteration (PI), polynomial nonlinear
systems, sum of squares (SOS).

I. INTRODUCTION

N THE field of robust control, Hy, control [1], [2] is a pow-
Ierful tool in solving the disturbance attenuation problem
occurred in many practical systems. In these systems, an
exogenous disturbance is mixed into the dynamics. An Hy
controller renders the Ly-gain, or Hy, norm of the system from
disturbance to output within a prescribed constant in the time
domain. One approach to synthesize such a controller is by
solving the Hamilton—Jacobi—Isaacs (HJI) equation [3], [4],
which is a first-order, nonlinear partial differential equation.
For general cases, it is difficult to give a universal analytic
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solution to the HJI equation, not to mention finding the Hy,
optimal controller with the smallest L,-gain. When considering
systems with linear dynamics, the HJI equation is reduced to
an algebraic Riccati equation (ARE) [5], and the linear matrix
inequality (LMI) toolbox [6], [7] provides a tractable approach
to find its solution. To deal with nonlinear dynamics, numeri-
cal methods are proposed to find the approximate solutions to
the HIJI equation [8], [9].

Adaptive dynamic programming (ADP) exhibits promis-
ing performance in solving many control problems, including
Hs control (see [10]-[12] and references quoted therein).
Among the existing literature, policy iteration (PI) is an effec-
tive approach to solve nonlinear partial differential equations,
including the Hamilton—Jacobi-Bellman (HJB) equation in
the optimal control [13]-[16], the HJI equation in Hy, con-
trol [17]-[19], and the Hamilton—Jacobi (HJ) equation in the
nonzero sum game problem [20], [21]. PI mainly includes
two steps. One calculates a given policy’s value function, and
the other updates the policy based on the result of the first
step. Since the policy is monotonically improved after each
iteration, it will finally converge to the optimal solution.

In practical applications, approximation techniques have to
be used to efficiently describe the complicated value functions
and policy functions appearing in PI, and neural network (NN)
technique [22]-[24] is the most common one. A group of basis
functions together with the corresponding weights define a net-
work. The weights are determined on the basis of system data
that are collected offline or online. Our previous work [25] has
proved the convergence of ADP under the approximation of
NNs in Hy, control. Unfortunately, the universal approxima-
tion property of NNs is held only in a compact set, not over
the entire state space. More importantly, NNs rarely consider
the non-negativity of target functions, which is an essential
requirement for value functions in PI and many other similar
functions appearing in control theory.

Recent exciting developments on positive polynomial the-
ory, especially the sum of squares (SOS) theory [26], [27] have
provided a feasible solution to ensure the global non-negativity
for polynomial functions. A sufficient condition for positiv-
ity of a polynomial is to be expressible as a sum of squared
polynomials. The existence of an SOS decomposition is equiv-
alent to a semidefinite programming (SDP) feasible problem.
Many toolboxes such as SOSTOOLS [28] and GloptiPoly [29],
have been fully developed to solve the problem. With the
development of SOS techniques, a new avenue is opened
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to analyze and synthesize controllers for nonlinear systems
with polynomial dynamics. In [30]-[32], state dependent LMIs
are constructed to design controllers via control Lyapunov
functions. The controllers are computed after relaxation of
inequalities to SOS constraints. In [33], the Bellman equation
is relaxed to an inequality, and an approximate value func-
tion is computed offline by solving a semidefinite program.
Stochastic optimal control is also studied in [34] and [35].

The success of SOS polynomials attracts interests of
researchers from the ADP community. Jiang and Jiang [36]
proposed an SOS-based global ADP algorithm to solve the
HJB equation using online data in the absence of system
dynamics information. The learned policy is globally stabi-
lizing for a general class of polynomial nonlinear systems.
Another combination of ADP and SOS is seen in [37] via
the backstepping technique to control a class of block strict-
feedback nonlinear systems. It is worth noting that in the
past few years, polynomials have been widely used in ADP
algorithms as basis functions for NN approximation. The
polynomial coefficients therein are determined in the prin-
ciple of minimizing approximation errors. While in SOS
programs, the coefficients are constrained in the convex SOS
feasible set, which guarantees non-negativity of the resultant
approximation. However, for the Hy, optimal control problem,
SOS-based ADP is rarely considered, which motivates this
paper.

In this paper, we consider polynomial nonlinear systems and
deal with the Hy, optimal control problem. The contribution is
threefold. First, given a prescribed attenuation coefficient, the
H, control is relaxed to an optimization problem by treating
the disturbance as independent variables. Second, an SOS-
based PI is proposed to solve the relaxed L,-gain optimization
problem. By adding SOS constraints to the set of inequal-
ity conditions, each iteration becomes a semidefinite program.
Third, once we obtain the approximate solution to the H, con-
trol, we further minimize the L,-gain to a lower value using
SDP. A new Hy, control problem is formulated on the basis
of the new Lp-gain. After iterations, the Hy, optimal control
problem in finding the smallest L,-gain and the associated con-
troller is approximately solved in a numerical way. It is the first
time that ADP successfully solves this problem. Examples on
a scalar system and a linear system verify the effectiveness of
finding the optimal solutions. A nonlinear example shows our
algorithm is capable of finding an Hy, controller with a smaller
L>-gain than other methods. A comparison with the NN-based
ADP is also presented. In addition, an application to the active
suspension problem reveals our algorithm is capable to solve
realistic problems.

The remainder of this paper is organized as follows.
Section II describes the basic knowledge of the Hy, control
and the HIJI equation. Section III relaxes the HII equation
to an optimization problem. Section IV gives a PI approach
and introduces SOS constraints to solve the optimization
problem. Section V proposes an approximate solution to
the Hy, optimal control of polynomial nonlinear systems.
Section VI presents four examples to test the performance of
our algorithm. Section VII gives the remarkable conclusion in
the end.
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II. PRELIMINARY OF Hy, CONTROL AND HJI EQUATION

We consider the continuous-time nonlinear system in
the form

X =f) +gx)u+ k(x)d
7 = h(x) (D

where x(7) € R" is the state vector, u(r) € R™ is the control
input, d(f) € R? is the external disturbance, and z(r) € R? is
the output. The system is assumed to be zero-state observable.
Dynamics functions f, g, and k are assumed to be Lipschitz
continuous and f(0) = 0. Then x = 0 is the equilibrium. &
is the output function. If there is no confusion in the context,
argument x is omitted in functions.

For the H,, control, it is desired to find a controller that
stabilizes the system at d(¢) = 0 and renders the cost

T
J= /0 (||h||2 +u"Ru — )/02||d||2>dt )

nonpositive for x(0) = 0 and Vd € L,(0,T). R is a pos-
itive symmetric matrix. )y is a positive constant, which is
also known as attenuation coefficient. If such a controller
exists, the closed-loop system is said to have Lp-gain < yy.
Hy optimal control is to find the smallest y* and the
associated controller such that the above problem is still
solvable.

Assumption 1: For the system (1), suppose there exists a
controller u such that the closed-loop system has L,-gain < yy
and it globally stabilizes the system when d(f) = O.

As shown in [4], given a fixed yp, a sufficient condition for
solvability of the L,-gain problem is that there exists a smooth
positive semidefinite solution V* to the HJI equation

(vve)'r - %(VV*)TgR_lgTVV*

1
+ — (VW ROV 2 = 0,V ©0) = 0.  (3)
4y0
If such a solution exists, the controller

* _ 1 —-1,T *
u(x) = —ER g OVVi(x)

is the Hy, controller with L-gain < yy.

Among the various approaches that have been proposed to
solve the nonlinear HJI equation, PI is the most commonly
used one. Van der Schaft [4] and Abu-Khalaf et al. [17]
divided the HIJI equation into an infinite sequence of PIs on
the control input following:

1) Policy Evaluation:

T 1 77T
(VVD' (f + gui) + —5 (VV) kk" VV;
4)/0
+ 1Al + ul Ru; = 0, Vi(0) = 0. (4)
2) Policy Improvement:

PPN PP
i+1(x) = 2R g (OVVi(x). (%)

Vi is also the available storage function for u;. Some useful
facts are listed in Theorem 1 that can be seen as an extension
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of [17]. The previous work considers input-saturated systems.
We generalize the results to system (1) without control con-
straints. Similar research is also seen in [9], but it fails in
analyzing the Ly-gain property of their policies. The proof of
the theorem is given in the Appendix.
Theorem 1: Let uj satisfy Assumption 1. Suppose for every
i, there exists a smooth solution V; > 0 to (4). Following the
PI of (4) and (5), the following properties hold Vi:
1) wuijy1 is a globally stabilizing controller and makes the
closed-loop system Ly-gain < yp;
2) Vix) = Vig1(x) =0, Vx € R
3) the sequence {V;} is convergent and the limitation V° =
lim;_, o V; satisfies the HJI equation

(vvo)'s - %(VVO)TgR_l g'vve

+ %(VV")TkkTVV” +a2=0. (6)
4y,

Notice that (4) is also a nonlinear partial differential equa-
tion. Reference [9] further introduces an additional PI on
disturbance to iteratively solve (4) by a sequence of linear
partial differential equations

VVE(f + gui + kd; ) + || h1*
+ uf Ru; — yg lldijlI* = 0, Vij(0) =0 (7)

and the disturbance update law

diji1(x) = %kT(x)vvi,,-(x).
2y,
Subscript i indicates the outer iteration on policies, while
J indicates the inner iteration on disturbance. When updat-
ing disturbance, i keeps constant. The complete analysis is
available in [9] and [17].

Note that even for linear partial differential equations, it
is still difficult to find analytical solutions. So approximation
techniques like NNs have to be used. In order to achieve small
approximation errors, a large number of basis functions are
necessary for NNs and the computation is heavy. In addition,
disturbance d is treated as a state-dependent function, just like
the control policy u. It naturally increases the computational
burden.

IIT. RELAXED Lp-GAIN OPTIMIZATION PROBLEM

In this section, we introduce a relaxation to the HJT equation.
By completing the square, (3) becomes

(vv)'r - %(VV*)TgR_lgTVV* + (Vv*) kd
2

+ 1712 = y31dII* = =@ <0.

1
d— —ZkTVV*
2y4

Based on that, a relaxed L-gain optimization problem is
formulated.

Definition 1: The relaxed Ly-gain optimization problem is
defined as

min / Vidx ®)
14 Q

1
st —vvIF4 ZVVTgR_lgTVV

~VVTkd = |h)? + y21dIP =0 (9)

V=0 (10)

where 2 € R” is an arbitrary compact set containing the ori-
gin. It represents the area where the Hy, control is mostly
interested, or in other words, the area where disturbance
attenuation is mostly expected.

In difference to the HJI equation, the equality constraint
is relaxed to an inequality in (9). The inequality condition
should be held for arbitrary disturbance, so d acts as an inde-
pendent variable just like x. In what follows, a useful lemma
is presented.

Lemma 1: Given a control policy u(x), if there exists V > 0
such that L(V, u, yp) > 0, Vx and Vd, then u is globally stabi-
lizing and the associated closed-loop system has L-gain < yy.
L(V, u, yp) is defined as

LV, u, y0) = =VVT @) () + g@u) + k(x)d)
— 1R — u” ) Ru(x) + v d|>

Proof: According to the definition of L, if d = 0, it has
VVI(f + gu) = =LV, u, yo) — 1> — u” Ru.

Under the zero-state observability, if £(V,u, y9) > 0, the
closed-loop system is stabilizable under the well-defined
Lyapunov function V. When considering the disturbance

VVI(f + gu+kd) = —L(V, u, yo) — IIAlI* — u" Ru+ yg |1d|I*.

Integrate both sides over the interval [0, T

T
V(x(T) = V() < /O (=11 — R+ 3 ) )t

Under the positive assumption of V, u renders the system
Ly-gain < yp. |

Theorem 2: Suppose for arbitrary initial policy ug satisfy-
ing Assumption 1, the unique limit solution V° to PI in (4)
and (5) exits and is positive smooth. The following facts hold
for the relaxed L;-gain optimization problem.

1) The problem has a nonempty feasible set.

2) Let V be a feasible solution. Then « =
—(1/2)R'gTVV is globally stabilizing and the
closed-loop system has Lp-gain < yp.

3) V¢ is the optimal solution to the problem.

Proof:

1) Obviously, V? is a feasible solution to (8)—(10), so the
feasible set is nonempty.

2) For a feasible solution V, the inequality condition (9)
can be rewritten as

[:(V, u, )/0) > 0.

By Lemma 1, the stabilizing and L,-gain properties of
the control policy «’ are ensured.

3) From 2), for any feasible solution V, ' =
—(1/2)R"'gTVV is an Lp-gain < yy controller. In
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addition, the following inequality holds for arbitrary d
according to (9):

1
VVI(f + gu) + — YV kK VYV

4)/0
2

+ 1k +uTRd < v .

1
d— —k'vv
2y,

If we let d = (1/2yD)kIVV

1
VVI(f + gu) + — VYV kKT VYV
4)/0
+ |h1? + TR < 0.

Thus, V is a possible storage function for u’. Following
the results of Theorem 1, if we start the PI with uy = v’
and compute the value sequence {V;} using (4) and (5),
we have V2 < ... < Vi <V, <o Vg < V.
Since the inequality V¢ < V holds for arbitrary
feasible solutions, V¢ is the optimal solution of the
problem. |
Notice that (9) is nonlinear in VV. Based on the PI tech-
nique, the nonlinear inequality constraint can be divided into a
sequence of linear inequalities. But testing the non-negativity
of a function is still NP-hard. With the development of the
polynomial theory, the positivity of a polynomial can be
ensured by testing for an SOS decomposition, which is a
tractable SDP problem. In what follows, an SOS-based PI for
polynomial nonlinear systems is proposed to give an approx-
imate solution to the relaxed L,-gain optimization problem.

IV. POLICY ITERATION FOR RELAXED Lp-GAIN
OPTIMIZATION USING SOS

A multivariable polynomial p(x) is called an SOS if there
exist polynomials fi(x), ..., fn(x) such that

M
pe) =) S0
i=1

It is clear that an SOS polynomial is globally non-negative.
But the converse is not true. An SOS decomposition of a
polynomial is equivalent to an SDP feasible problem. SOS
polynomials provide a computationally tractable way to deal
with non-negativity constraints. More detailed descriptions
about SOS can refer to [26] and [27].

Now, we suppose that the dynamics and output functions
in (1) are all polynomials. We also define the value function
in the polynomial form

N
Vix) = Z cjm;(x)

Jj=1
where m;(x) are predefined monomials in terms of x and
¢j are coefficients to be determined. Using more monomials
is helpful to reduce errors when approximating true func-
tions, but more coefficients are to be determined, increasing
the computational cost. In practice, designers should make
a balance between the computational burden and the control
performance.
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Based on the SOS theory, a new assumption is made.

Assumption 2: For system (1), there exist polynomial func-
tions Vo(x) and uj(x) such that Vy is SOS and L(Vy, u1, yp)
is SOS.

Prajna er al. [30] provided a computational method to find
such Vy, uj, and yp that satisfy Assumption 2 if they exist.
Interested readers may refer to their work.

From Lemma 1, Assumption 2 implies u; is an Lp-gain
< yo controller. The SOS-based PI for the relaxed L-gain
optimization problem with the initial u; is given as follows.

Algorithm 1 (Relaxed L>-Gain Optimization Problem):

1) Policy Evaluation: For i = 1,2,..., solve the SOS

program for the optimal solution V;

min / Vdx (1)
|4 Q

s.t. LV, u;, y) is SOS (12)

Vi—1 — V is SOS (13)

V is SOS. (14)

2) Policy Improvement: Update the control policy by
L _
U1 () = =R (@ VVi(). (15)

Go back to 1) with i =i+ 1.

The terminal condition for the algorithm is that the dif-
ference of monomial coefficients {c;} of V; between two
successive iterations is less than a prescribed threshold. In
comparison with the original PI in solving the HJI equation
in Section II, the above SOS-based method replaces the HJ
equation (4) with a relaxed optimization problem (11)—(14).
The inequalities are restricted to SOS constraints so that the
problem is computationally solvable by SDP.

Theorem 3: Suppose there exists a positive smooth solution
V? to (6). Under Assumption 2, fori =1,2,...:

1) the SOS program (11)—(14) has a nonempty feasible set;

2) the controller ;1 is globally stabilizing and the closed-
loop system has Lp-gain < yp;

3) the optimal solution V; at each iteration always has
Vi(x) > Vip1(x) > 0,Vx € R";

4) the sequence {V;} is convergent and V¢ provides
the lower bound for the limitation, i.e., Voo(x) =
lim;_ o Vi(x) > V°(x), Vx € R".

Proof:

1) For i = 1, under Assumption 2, Vj is a feasible solu-
tion to (11)—(14). So the feasible set is nonempty. When
i > 2, suppose at the ith iteration the SOS program
still has a nonempty feasible set and V; is the optimal
solution. After substituting u;.;y = —(1/2)R"'gTVV;
into (12), it has

L(Vi, uit1, v0) = L(Vi, ui, o)
+ ( — i) R(u; — uip1).  (16)

So L(V;i, uiy1, yo) is also an SOS. By the definition of
the SOS program, V; is a feasible solution to (11)—(14)
at the (i4 1)th iteration. By induction, the first statement
is true.

2) From the analysis of 1), L(Vi, uj+1,v0) > 0. The
conclusion is derived directly from Lemma 1.
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3) Constraints (13) and (14) imply V;—1 > V; > 0, Vi.

4) As shown in the proof of 3), the sequence {V;} is
decreasing and lower bounded by 0. So there exists
Voo (x) = lim;_, o Vi(x). Furthermore, V, satisfies

1
£<Voo, —ER‘lgTvvoo, y0> is SOS
Vs is SOS

indicating V is a feasible solution to (8)—(10).
According to 3) of Theorem 2, Vo, > V7. [ |
Now, the HJI equation is first relaxed to an optimization
problem, and then relaxed to a sequence of SOS programs
that are computationally solvable by SDP. The objective func-
tion (11) restricts the algorithm to find the closest solution to
the HJI solution V? in the feasible set at each iteration. After
iterating, the result is continuously decreased and it approaches
more and more closely to V. Note that the final converged
solution Vi to (11)—(14) is not necessarily equal to V°. But
the associated controller us, = —(1/2)R™'gTVV, has the
closest possible storage function to V° than any other con-
trollers generated during the PI. So us, possesses promising
performance in the Ho, control.

The SOS constraint on L(V, u;, yp) in (12) includes two
variables: x and d. The relaxation of disturbance being inde-
pendent variables is first presented in [4]. But the author fails
in finding an effective way to deal with the inequality. In this
paper, we successfully convert the problem to a feasible SDP
problem.

In the existing literature, polynomial NNs are widely used
as approximation of the value function in the form

N
V) =D cigyx)

j=1
where ¢;(x) is the polynomial basis function and ¢; is the cor-
responding weight. The approximation V is also a polynomial
in x. But the weights ¢; are determined mostly in the principle
of minimizing the approximation error, which occurs when
substituting V into the HJI equation or other relevant equa-
tionAs. The resultant weights cannot ensure the non-negativity
of V.

V. APPROXIMATE SOLUTION TO Hyo OPTIMAL CONTROL

In the previous section, we propose an approximate solution
to the HJI equation under a given attenuation coefficient. The
value of yp needs to be prescribed and an initial Lp-gain <
yo controller is required. In addition, the Hy, optimal control
problem in finding the smallest y* is still unsolved.

From the analysis in the proof of Theorem 3, (16) implies

L(Vi, uir1, v0) = LV, ui, o).

According to the definition of £, the above inequality implies
that it is possible to find a smaller y’ < yy to ensure

£(Vi, Ui+1, )//) = 0.

Thus, the conclusion of Lemma 1 holds for u;1; with y’. In
other words, the improved policy after the PI in (11)-(15)

allows a smaller attenuation coefficient to achieve the L;-gain
performance. Based on that fact, we use the final con-
verged us, to construct an SOS program in finding a smaller
attenuation coefficient for the Hs, control. The problem is
formulated as

min Y
Y
S.t. LV, uso, y) is SOS
V is SOS.

Since yy is a feasible solution, the problem has a nonempty
feasible set. We denote the optimal solution found by SDP as
y1, and it is no greater than yp. With the new y|, we can say
the closed-loop system with us, has Lr-gain < yj.

Inspired by the idea of PI, we propose the following itera-
tive SOS-based algorithm to obtain the approximate solution
of the Hy, optimal control. A two-loop iteration is included,
where the inner loop searches the HJI solution under a given
attenuation coefficient, and the outer loop minimizes the coef-
ficient under the result of the inner loop. The whole process
is listed in Algorithm 2. The initial controller #¥) is assumed
to be globally stabilizing and has a finite L,-gain.

Algorithm 2 (Hy Optimal Control):

1) For/=0,1,..., find the optimal solution y to the SOS

program
min  y (17
Y
s.t. z:(v, u®, y) is SOS (18)
V is SOS. (19)

Denote y® =y, and V(gl) = V. Let uY) =u®.
a) For i = 1,2,..., find the optimal solution V to
the SOS program

min / Vidx (20)
14 Q
S.t. .c(v, ul, y) is SOS Q1)
v —Vis SOS (22)
V is SOS. (23)
Then, denote V,-(l) =V.
b) Update the control policy by

! o !

) (x) = L v, 4

If ||Vl-(l) — Vi(i)l” > ¢, go back to step a) and let
i = i+ 1. Otherwise, stop the inner iteration and
let u*D = ul(.l) .

2) If [y ®—p =D < ¢, the convergence is reached and the
algorithm is terminated. Output the approximate optimal
solution y® and u*V. Otherwise, replace / by (I + 1)
and go back to step 1).

In the above algorithm, an initial globally stabilizing u(®
is required, and we assume it has finite L,-gain. But the
exact Lp-gain value is not needed and is computed using
SOS program (17)—(19). After the learning process, we let the
converged y¥ be the near-optimal L,-gain and let u*1 be
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the associated Hy, near-optimal controller. It should be men-
tioned that our algorithm solves the Hy, optimal control in
a numerical way with the help of SOS programming. In the
conventional ADP literature, the optimal y™* is suggested to
be searched using the bisection method [9]. It has to test the
validity of the L-gain problem for every candidate y, which
inevitably results in heavy computational burden.

VI. EXPERIMENTAL STUDY

In this part, we use four polynomial examples to test the
performance of our algorithm. The first is a scalar nonlinear
system whose exact optimal y* can be analytically solved. The
second is a 3-D F-16 system with the linear dynamics, so the
HII equation is reduced to an ARE. By using the LMI toolbox,
the optimal solution is easily obtained. The third is a 2-D non-
linear system. We compare the results with another SOS-based
algorithm [30] and with the conventional NN-based ADP [17].
The last is an application to the active suspension problem.
SOSTOOLS [28] is used throughout our experiments to solve
SOS programs.

A. Scalar Nonlinear Example

Consider the system with dynamics

i=-XH4u+d
= x3
where x € R is the state variable, u € R is the control input,
d € R is the disturbance signal, and z denotes the output
signal. Let R = I. The corresponding HIJI equation is
1

1
—VV . — ZWZ + mvv2 +x°=0.

By solving the nonlinear equation, the solution has

4 4
= X .
2(,/2)/2 1 ~|—y)

Note that the solution ceases to be valid for y < (1/4/2). So
the optimal y is equal to (1/ V2).

Now we apply our algorithm to the problem. The initial
globally stabilizing controller selects u? (x) = 0. The polyno-
mial form of V is set to V(x) = ¢1x2 4 c2x°> + ¢3x?, where ¢j,
¢>, and c¢3 are unknown coefficients and are to be determined
by SDP. The optimizing area selects 2 = {x| — 1 < x < 1}.
The optimal solution y© for u©® after solving (17)—(19) is
equal to 2. After ten iterations, the outer loop converges and
outputs y 19 = 0.70715, which is nearly equal to (1/4/2). The
final converged VU9 (x) is 0.49258x*, in comparison with the
exact optimal solution V*(x) = (1/2)x* at y* = (1/ V2). The
results of value functions after inner loop iterations are shown
in Fig. 1. The Hy near-optimal controller obtained by our
algorithm is 'V (x) = —0.98515x>.

*

B. 3-D Linear Example

The second example considers the F-16 aircraft plant, whose
finite Lp-gain problem has been solved in [38] and [39] using

IEEE TRANSACTIONS ON CYBERNETICS

40
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0
-3 -2 -1 0
X
Fig. 1. Comparison of value functions after inner loop iterations in
Example 1.

NN with polynomial basis functions. Here we consider its Hy
optimal control problem. The system dynamics is described by

x=Ax+Bu+ Cd

=X
where
[ —1.01887 0.90506 —0.00215
A= 0.82225 —1.07741 —0.17555
L 0 0 —1
[0 1
B=|[0|,C=1]0
|1 0

The state vector is composed of x = [e, g, 5,17, where «
denotes the angle of attack, ¢ is the pitch rate, and &, is the
elevator deflection angle. The control input u is the elevator
command and the disturbance d is a wind gust into the angle
of attack. Still let R = I. Since the dynamics is linear and the
cost is quadratic, the HJI equation is reduced to the ARE

1
AQ + QAT + ?CCT —BBT + 00" =o.

Finding the minimum y and positive matrix Q is equivalent
to the minimization problem expressed in the form of LMIs

min y
Y

T, 1 ~T _ ppT
ot AQ 4+ QA" + 2 cc BB 0 <0
o’ —1|~

By MATLAB LMI toolbox, the optimal solution to the above
problem is y* = 3.46469.

Now apply our Hy, optimal control algorithm with the ini-
tial stabilizing controller u®(x) = —x; — 0.1xp + 0.1x3. V
is defined in the form of V(x) = clx% + cox1x2 + c3x1x3 +
C4X% + cs5x0x3 + c6x§. Q selects {x] — 1 < x < 1,i =
1,2, 3}. After eight iterations, the algorithm reaches the con-
vergence. The value of y is significantly reduced after the
first outer-loop iteration, as shown in Fig. 2. The converged
y® is equal to 3.46470. The final H., optimal controller is
u® (x) = 0.34324x; + 0.35648x, — 0.46166x3. To test the
attenuation effect of u®, we select the disturbance signal
d(t) = 8tcos(t/5) exp(—t/3)/(t + 1) and initialize the system
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Fig. 2. Values of y during the learning process in Example 2.
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Fig. 3. State trajectories with u® in Example 2.
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Fig. 4. Disturbance attenuation with u® in Example 2.

at x(0) = 0. The trajectories of state and disturbance attenu-
ation ([, (IlI> + u” Ruydt/ [, |d)?dr) are plotted in Figs. 3
and 4. It is obvious that the attenuation keeps less than the
square of y®.

C. 2-D Nonlinear Example

Consider a nonlinear system with dynamics [30]

1 3 3 1
. [—xl + g0 a7 = 53] —xfn — 00 - 35
- 0

SHEH

To apply the proposed algorithm, we select the initial con-
troller u© (x) = 2x1 — x2 and let V(x) = clx% + cox1xp +

z=1[1 Ox.

/
2
>
1.5
| N\
1 2 3 4 5 6
iteration
Fig. 5. Values of y during the learning process in Example 3.
NN-ADP SOS-ADP
. / 6
Sy
> 0.5 L8 s 4 00
sy QRN
N8I/ 2 XX
1 27 . 1 4
1 1
Xy =1 -1 X, X, =1 -1 X,

Fig. 6. Comparison of learned value functions by [17] (left) and our method
(right) over the area [—1, 1] x [—1, 1] in Example 3.

C3x% + C4x? + C5x%x2 + c6x1x% + cwc% + ng‘l‘ + 09x?x2 +
cloxfx% + cqu% + clzx‘zl. Q selects {x] — 1 < x <
1,i = 1,2}. R = I. After six iterations, y converges to
1.07529. The curve of ¥ along the outer-loop iteration
is given in Fig. 5. The final Hy near-optimal controller is
expressed as u'” (x) = —0.46766x; —0.66409x, —0.76782x7 —
0.74141x1x; — 0.42354x3 — 0.02336x] — 0.57793x3x, —
0.32172x1x3 — 0.47494x3.

The same H., optimal control problem has been stud-
ied in [30]. The authors convert the problem to a set of
state-dependent LMIs and use SOS optimization to find the
minimum y. Their final optimal value of y is equal to 1.15,
which is larger than our result. It means our algorithm is capa-
ble of finding a more accurate solution to the Hy, optimal
control. Another drawback appeared in the method of [30] is
that it requires the system input gain matrix g(x) must have
at least one zero entry row, while our algorithm has no such
limitation.

We further compare our results with the NN-based ADP
algorithm proposed in [17]. We let the network basis func-
tions for the value function use the same group of monomials
in our experiment, and specify y = 1.07529. After substitut-
ing the network into the PI formula (7), the NN weights are
determined by minimizing the least-squared error. We sample
the state space in the same area Q2 = {x|—1 < x; < 1,i= 1,2}
for 441 points. After convergence, the learned value function
by NN-based ADP algorithm is V = 0.3401x% —0.1115x1x2 +
0.2435x3 +0.0782x3 — 0.1009x3x, +0.0488x1x3 — 0.0005x3 —

0.0396;?1I - 0.0493x%x2 —0.0068x7x3 —0.0206x.x3 — 0.0167x3.
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Fig. 7. Comparison of learned value functions by [17] (left) and our method
(right) over the area [—3, 3] x [—3, 3] in Example 3.
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Fig. 8. Quater-car model.

For comparison, we plot the two value functions of NN-based
and our SOS-based ADP algorithms over €2 in Fig. 6. Both
values are positive in the area. However, when we extend
the plotting area, the value function by NN-based ADP is no
longer positive in some outside regions, as shown in Fig. 7.
It can be explained by the fact that NN only approximates a
complex function in a compact set. For regions outside the
sampled area, positivity is not guaranteed and neither is the
Hso control of the learned controller. To solve the problem,
designers have to extend the sampled area, which inevitable
leads to more computation. In our SOS-based ADP algo-
rithm, the value function is globally positive supported by SOS
theory. So the Hy, control is valid over the whole state space.

D. Active Suspension Problem

The last experiment considers the application of our algo-
rithm to the active suspension control of a quarter-car
system [36], [40], whose model is depicted in Fig. 8. Its
nonlinear dynamics is described by

X1 =x2
. 1
X = __[Ka(xl — x3) + K (x1 — x3)°
M,
+ Ca(xz - X4) - M:I
)'63 = X4

. 1
X4 = M—[Ku()ﬂ —x3) + Kn(x1 — x3)°

us

+ Culr = x) = Kilxs = d) — u]
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Fig. 9. Comparison of performance with the learned controller and with no
control input in Example 4.
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Fig. 10. Control signal with the learned controller in Example 4.

where x1, x2, and M), denote the position, velocity, and mass
of the car body. x3, x4, and M, are the position, velocity, and
mass of the wheel. K;, K, K,,, and C, are the tyre stiffness, the
linear suspension stiffness, the nonlinear suspension stiffness,
and the damping rate of the suspension. u is the control force
from the hydraulic actuator and d is the road disturbance. In
the experiment, dynamics parameters are set to standard values

M, =300 Kg M,; =60 Kg
K; = 190000 N/m K, = 16000 N/m
K, =K,/10 C, = 1000 N/(m/sec).

Our main consideration is to maintain position of the car body
x1 in the presence of road disturbance, so the cost for the Hy,
control selects

o0
J= / (103 + u? = y2d?)dr.
=0

To apply our algorithm, monomials for the value function
select products of the set {xl,xz,x3,x4,x%,x%,x%,xi} with
itself. So the polynomial degree is 4. The system is desired to
attenuate disturbance effects in the area Q = {x|x € R*, |x| <
0.05, [x2| < 0.5, |x3] < 0.05, |x4] < 1}. Since the system
is self-stable, the initial controller is u@ (x) = 0. After five
outer iterations, the algorithm converges to y® = 94465.1
and the approximate H,, optimal controller is expressed
by u®(x) = —24473.2x; — 0.00110x3 — 0.00020x3xs +
0.00004x2xi —3602.06x; +21584.4x3+ 000592":31 +343.62x4.
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To test the learned controller, we set the system at rest and
choose the road disturbance as a single bump in the form
0.038(1 — cos(8n1)), 0.5<t=<0.75
d) = ]
0, otherwise.

After applying u®, the trajectories of x; and u are plotted
in Figs. 9 and 10. For comparison, the trajectory of x; at the
same environment but with no control input is also plotted
in Fig. 9. It is obvious that the learned controller exhibits
satisfying performance in disturbance attenuation.

VII. CONCLUSION

The Hy, optimal control problem is solved based on PI and
SOS programming. A two-loop iteration is proposed, where
the inner loop calculates the approximate HJI solution under a
given attenuation coefficient, while the outer loop further min-
imizes the coefficient value. However, our algorithm supposes
the stabilizing and L,-gain region is global. But in many cases,
the valid state space is bounded. S-procedure [30], [33] pro-
vides a relaxation to deal with bounded state space. Besides,
this paper only concentrates on polynomial nonlinear systems.
In practice there exist numerous systems with polynomial
fractions and other complicated dynamics. Further efforts are
needed to extend this paper to these systems.

The proposed algorithm relies on the SOS theory, which has
its own challenges. Since it is only an approximation to the
optimal solution, the approximability needs to be addressed. In
addition, the computation and numerical efficiency is another
issue that limits its application. The development of SOS
theory is the key to overcome the challenges.

APPENDIX
PROOF OF THEOREM 1

1) The statement is true for i = 1 under Assumption 1.
Suppose at the ith iteration, we have obtained the glob-
ally stabilizing u; and the smooth solution V; to (4).
Since V; > 0, it is a well-defined Lyapunov function.
Following (4) and (5), u;4+ and V; satisfy:

T 1 Ty, T 2
(VT i) + 5 (VVOTRT Vi ]
0
+ ]y \Ruip = —(; — uip1) R(u; — uiy1) < 0.
(25)
Consider the closed-loop system X = f + gu;11, the time
derivative of V; satisfies

Vi = (VV)I(f + guit1)

1
—— (VV) k" V; — |hl|* = ], Ruis
4y0

0.

So wujt+; is globally stabilizing. When the exogenous
disturbance exists

(VVOI(f + guit1 + kd)

1
—— (V) K"V V; — ||n|1?
4)/O

IA

— uly \Ruipy + (VV) kd
— 1% =l Ruipr + y2 I

IA

2)

3)

The

[1]

[2]

[3]

[4]

[3]
[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

After integrating both sides over the interval [0, T], the
following integral dissipation inequality exists:

Vi(x(T)) — Vi(x(0))

T
[ (=112 =l Ruisr + v 1)
0

Taking x(0) 0 and d € L,(0,T), and using V; > 0,
ui+1 is an Lp-gain < yp controller.
Reviewing the inequality given in (25), V; and w4
satisfy the HJ inequality function

IA

N . v Ty
(VV)' (f + guiv1) + 1,2 (VV) kk” VV;
0

+ h? + !y Ruipy <0 (26)

which means V; is a possible storage function for u;4 .
Since we assume Vi is the smooth solution to (26)
when equality holds, then V;i is the available storage
function for ;41 and has 0 < Vi1 (x) < Vi(x), Vx € R".
After the above analysis, it is inferred that {V;} is a
decreasing sequence and has the lower bound 0. The
sequence is convergent and its limitation V? satisfies the
HIT equation.

proof is complete. |
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