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Abstract Online learning is an important property of adaptive dynamic programming
(ADP). Online observations contain plentiful dynamics information, and ADP algorithms
can utilize them to learn the optimal control policy. This paper reviews the research of online
ADP algorithms for the optimal control of continuous-time systems.With the intensive study,
ADP has been developed towards model free and data efficient. After separately introducing
the algorithms, we compare their performance on the same problem. This paper is desired to
provide a comprehensive understanding of continuous-time online ADP algorithms.

Keywords Adaptive dynamic programming · Policy iteration · Integral
reinforcement learning · Experience replay · Off-policy

1 Introduction

With decades of development, adaptive dynamic programming (ADP) (Lewis and Vrabie
2009; Wang et al. 2009; Zhang et al. 2012, 2013; Song et al. 2015; Zhu et al. 2016a, 2017a;
Zhao et al. 2016) has now become a powerful method in the field of control theory for
the optimal control. ADP is first proposed by Werbos (Werbos 1977), who incorporates the
idea of reinforcement learning (RL) (Kaelbling et al. 1996; Sutton and Barto 1998; Ribeiro
2002) from the field of computational intelligence. It interacts with the system and learns the
optimal control policy with the target of minimizing certain cost criteria. In the past, ADP
mainly focuses on discrete-time (DT) systems with stochastic or deterministic transition

B Dongbin Zhao
dongbin.zhao@ia.ac.cn

Yuanheng Zhu
yuanheng.zhu@ia.ac.cn

1 The State Key Laboratory of Management and Control for Complex Systems, Institute
of Automation, Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-017-9548-4&domain=pdf


Y. Zhu, D. Zhao

dynamics (Al-Tamimi et al. 2008; Wang et al. 2012; Zhao and Zhu 2015). In the physical
world, many problems are continuous-time (CT), which makes it difficult to directly apply
DT ADP algorithms to these problems.

From a mathematical viewpoint, to find the optimal control for CT systems one can
solve the Hamilton–Jacobi–Bellman (HJB) equation (Bardi and Capuzzo-Dolcetta 2008;
Beard et al. 1997), which is a first-order, nonlinear partial differential equation (PDE). In
general, it is intractable to give a universal solution. So approximation technique has to be
used to approach the solution over a compact set. Neural networks (NNs) are among the most
widely used approximations. Inmost cases, one network is constructed to evaluate the control
performance, termed as critic, and another network approximates the policy, termed as actor.
When the system dynamics is known, the HJB equation can be devided into a sequence of
linear PDEs by policy iteration (PI) (Beard et al. 1998; Abu-Khalaf and Lewis 2005). The
coefficients are computed offline. However, this method requires sampling the dynamics,
so algorithms lack interactions with the system. This problem can be overcomed by online
learning. Another advantage of online learning is that it helps algorithm avoid training on
unusual states and save computation resources.

Murray et al. (2002) execute a given stabilizing policy on the system and evaluate its
performance by observations. The policy is then updated. After iterating between the two
phases, the optimal policy is obtained. In their implementation, state derivatives must be
known. After that, Vrabie and Lewis (2009) introduce integral reinforcement learning (IRL)
to PI method. They use only partial system dynamics and online trajectories to implement
their algorithm. The input gain matrix is needed. Motivated by that, a complete model-free
method is developed by Jiang and Jiang (2014) without any dynamics knowledge. Probing
noise is inserted in dynamics, so trajectories contain more dynamics information, and the
algorithm can learn the optimal solution without any knowledge of dynamics.

One common feature of the abovementioned algorithms is that the policy evaluation phase
and the policy improvement phase are separately conducted. In other words, when the critic
is updated, the actor holds constant, and vice versa. To simplify the process, Vamvoudakis
and Lewis (2010) propose a synchronous policy iteration (SPI) algorithm. The critic and the
actor are updated synchronously. They further prove that the system states and critic/actor
NN errors are uniformly ultimately bounded (UUB), which illustrates the convergence of
the learning. The full system dynamics is needed. In many practical applications, the precise
dynamics is usually unknown. One solution is to construct identifier NNs to model dynamics,
such as Bhasin et al. (2013), Modares et al. (2013). The update of the critic and the actor is
implemented on the basis of the identified dynamics.Notice that online trajectories contain the
complete dynamics information. So themore efficient approach is to design direct onlineADP
algorithm that learns the optimal solution using online data. Vamvoudakis et al. (2011, 2014)
combine their SPI algorithm with IRL technique. Their updating laws for critic and actor
use online trajectories, so the internal dynamics is no longer needed. Modares et al. (2014)
further introduce experience replay (ER) technique to accelerate the convergence rate. Past
observations are repeatedly utilized to train the critic and the actor. In the literature, actuation
saturation problem is particularly considered. However, input gain matrix is supposed to be
known in both algorithms. Inspired by the works of Jiang and Jiang (2014), we develop a
completemodel-free SPI algorithm to solve the optimal tracking problems (Zhu et al. 2016b).
The convergence rate is further improved by ER technique.

Even though onlineADPalgorithms have been fully developed, the systematic comparison
of these algorithms in the perspectives of methodology and experiments are rare. This paper
aims to summarize the state-of-the-art online ADP algorithms for the optimal control of
CT systems. Their performance is observed in solving the same problem. Their dynamics
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dependency and learning speed are also compared. The paper is organized as follows. In
Sect. 2, we briefly describe the optimal control problem of CT systems. In Sect. 3, the latest
online ADP algorithms are reviewed. The comparison in solving the same problem is give
in Sect. 4. In the end we have the discussion and conclusion.

Notations

Throughout this paper, we use R, Rn , Rn×m to denote the sets of real numbers, vectors
and matrices. ‖ · ‖ denotes the Euclidean norm for vectors, or the induced matrix norm for
matrices. ‖z‖max represents the upper bound of a variable vector or matrix z in the norm
sense.

2 Optimal control and HJB equation

The continuous-time system considered here is described by

ẋ(t) = f (x(t)) + g(x(t))u(t) (1)

where the state x(t) ∈ R
n , the control u(t) ∈ R

m , the internal dynamics f (x(t)) ∈ R
n ,

and the input gain matrix g(x(t)) ∈ R
n×m . We assume f (0) = 0 and f , g are Lipschitz

continuous on a compact set Ω ∈ R
n that contains the origin. In addition, we assume (1) is

stabilizable on Ω , i.e. there exists a continuous control function u(t) rendering the system
asymptotically stable.

For a linear system, it is easy to verify the global asymptotic stability. But for a nonlinear
system, it is generally difficult to guarantee the global asymptotic stability. It is because there
may exist the discontinuity of state time derivatives and cost gradient at some points due
to the dynamics nonlinearity. In Jiang and Jiang (2015), Zhu et al. (2017b), authors study
the global optimal control and the global H∞ optimal control for nonlinear CT systems.
Their research is based on sum of squares (SOS) theory, but is out of scope of this paper.
We here consider the general cases and restrict the state space Ω to a compact set so that the
asymptotic stability and differential continuity is guaranteed.

The subject of interest is to find a state-feedback control policy thatminimizes a prescribed
performance criterion. For a policy u = u(x(t)), its value function is defined as an infinite
horizon integral cost

V (x(0)) =
∫ ∞

0
(xT Qx + uT Ru)dτ (2)

where Q and R are symmetric positive definite matrices.

Definition 1 (Admissible) [Beard et al. (1997), Vrabie and Lewis (2009)] A control policy
u(x) is defined as admissible with respect to (2) on Ω , denoted by u ∈ Ψ (Ω), if u(x) is
continuous on Ω , u(0) = 0, u(x) stabilizes (1) on Ω and V (x0) is finite ∀x0 ∈ Ω .

The optimal control is to find the optimal admissible policy u∗ ∈ Ψ (Ω) that has the lowest
value for every state, called the optimal policy. The corresponding value function is called
the optimal value function, denoted by V ∗(x) = minu∈Ψ (Ω) V (x). We assume there exists a
unique solution to the optimal control problem and V ∗ is continuously differentiable on Ω ,
i.e. V ∗ ∈ C1(Ω). For ease of expression, x is omitted in functions if there is no confusion in
the context.
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An infinitesimal equivalent to the value function definition (2) is the Bellman equation

∇V T ( f + gu) + xT Qx + uT Ru = 0, V (0) = 0

Define the Hamiltonian function as follows

H(x,∇V, u) = ∇V T ( f + gu) + xT Qx + uT Ru (3)

where ∇ denotes the partial derivative operator, i.e. ∇V = ∂V/∂x . The sufficient condition
for the optimality is provided by the famous Hamilton–Jacobi–Bellman equation

min
u∈Ψ (Ω)

H(x,∇V ∗, u) = 0 (4)

According to the stationary condition, the optimal policy is constructed by the optimal value
function in the form

u∗(x) = −1

2
R−1gT (x)∇V ∗(x) (5)

After substituting into (4), the HJB equation becomes

[∇V ∗]T f − 1

4
[∇V ∗]T gR−1gT∇V ∗ + xT Qx = 0, V ∗(0) = 0

Once the solution to the HJB equation is obtained, the optimal control policy is known fol-
lowing (5). So the optimal control now becomes solving the HJB equation, which apparently
is a nonlinear partial differential equation. It is difficult or impossible to give an analytical
solution even for simple cases. An efficient approach is by policy iteration method, which
involves a two-step iteration. Given an admissible policy u0, calculate the value of the current
policy in the policy evaluation step with

[∇V (i)]T ( f + gu(i)) + xT Qx + [u(i)]T Ru(i) = 0, V (i)(0) = 0 (6)

and update in the policy improvement step to produce a new policy with

u(i+1)(x) = −1

2
R−1gT (x)∇V (i)(x) (7)

According to the existing literature (Beard et al. 1997; Abu-Khalaf and Lewis 2005), the new
policy is admissible and has better performance. After iterating the two steps, the value and
the policy sequences converge to V ∗ and u∗. Compared to the nonlinear nature of the HJB
equation, the formula in (6) is linear and it is feasible to solve. In ADP, a critic NN is con-
structed to approximate the value function, while an actor NN is constructed to approximate
the policy.

On the basis of PI method, numerous online algorithms are proposed to solve the optimal
control of CT systems using ADP. The critic and the actor are tuned based on observations
of online trajectories. Next section reviews the state-of-the-art online ADP algorithms and
analyzes their own features.
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3 Online ADP algorithms

3.1 Synchronous policy iteration algorithm

SPI algorithm is proposed byVamvoudakis and Lewis (2010). In their algorithm, V is approx-
imated by the critic NN with

V̂ (x) = Ŵ T
1 φ1(x), (8)

where Ŵ1 ∈ R
K1 are the critic NN coefficients and φ1 ∈ R

K1 include the basis functions.
K1 denotes the number of neurons in the hidden layer. According to (5), the corresponding
policy is formulated by

u(x) = −1

2
R−1gT (x)∇φ1(x)Ŵ1.

But they use another NN to represent the actor with

û(x) = −1

2
R−1gT (x)∇φ1(x)Ŵ2 (9)

where Ŵ2 are the actor NN coefficients. After substituting (8) and (9) into the Hamiltonian
function (3), we get the approximation error as

e = Ŵ T
1 ∇φT

1 ( f + gû) + xT Qx + ûT Rû (10)

The error reflects the accuracy of the critic and the actor towards the optimal solutions.
Hence one can update the coefficients based on the error using gradient descent method. In
the algorithm, the actor is applied on the system to produce online trajectories. The critic is
tuned using the following updating law

˙̂W1 = −α1
σ1

m2
s

(
σ T
1 Ŵ1 + xT Qx + ûT Rû

)
(11)

where α1 is the learning rate, σ1 = ∇φT
1 ( f + gû), and ms = σ T

1 σ1 + 1 is for normalization.
The actor on one hand aims to approximate the critic coefficients Ŵ1, and on the other hand
should stabilize the system in the compact set. So Vamvoudakis and Lewis (2010) design the
following actor law

˙̂W2 = −α2

{(
F2Ŵ2 − F1

σ T
1

ms
Ŵ1

)
− 1

4
D̄1(x)Ŵ2

σ T
1

m2
s
Ŵ1

}
(12)

where α2 is the learning rate and F1 > 0, F2 > 0 are tuning parameters. D̄1 is defined as
D̄1 = ∇φ1gR−1gT∇φT

1 .
By using Lyapunov analysis, Vamvoudakis and Lewis (2010) prove that under the update

laws (11) and (12), and the control input (9), the system states and the critic/actor errors
are uniformly ultimately bounded. Note that when the system is at rest (x = 0), e = 0

and ˙̂W1 = 0. The update stops working. In order to guarantee the convergence, persistency
of excitation (PE) condition is necessary, requiring the system be persistently excited. So
probing noise is added in the control input to excite the system.
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3.2 Actor-critic-identifier SPI algorithm

In the updating laws of the SPI algorithm, the system dynamics f and g is supposed to be
known. When considering unknown or uncertain problems, many researchers resort to the
identification techniques to model the system dynamics. An actor-critic-identifier structure is
proposed, and many kinds of identifier NNs are used. Bhasin et al. (2013) use the following
multi-layer dynamic neural network (MLDNN) identifer to approximate the system (1)

˙̂x = Ŵ T
f σ̂ f + g(x)û + μ

where x̂ ∈ R
n is the DNN state, σ̂ f = σ(V̂ T

f x̂) ∈ R
L f +1, Ŵ f and V̂ f are weight estimates,

and μ ∈ R
n is the robust integral of sign of the error (RISE) feedback term. Under the tuning

law given by Bhasin et al. (2013), the estimated state and derivatives infinitely approach the
true values when t → ∞. Another identifer NN structure used by Modares et al. (2013)
transforms the dynamics into a filtered regressor form. More details are available in the
reference.

Since the identification method has been deeply developed independent of ADP and has
gained tremendous success for various nonlinearCT andDT systems. Its detailed introduction
is out of the scope of this paper. Interesting readers are suggested to the review works of Hunt
et al. (1992), Cochocki and Unbehauen (1993).

3.3 Integral reinforcement learning SPI algorithm

The identification process additionally increases the computational complexity and extends
the learning time. It is more desired to develop direct online ADP algorithms that learn
the critic and the actor using online trajectories. For this reason, Vamvoudakis et al. (2014)
combine integral reinforcement learning (IRL) with their SPI algorithm and propose the
algorithm which we denote as SPI-IRL. Reviewing the Hamiltonian error defined by (10),
along the system evolution ẋ = f + gû, after integrating both sides over interval [t − T, t],
the integral Hamiltonian error is defined as

δ = Ŵ T
1 [φ1(x(t)) − φ1(x(t − T ))] +

∫ t

t−T

(
xT Qx + ûT Rû

)
dτ (13)

Based on the error, the critic can be updated by using the gradient descent method

˙̂W1 = −α1
Δφ1

m2
s

(
Ŵ T

1 Δφ1 +
∫ t

t−T
(xT Qx + ûT Rû)dτ

)
(14)

whereΔφ1 is defined asΔφ1 = φ1(x(t))−φ1(x(t−T )), andms = ΔφT
1 Δφ1+1. The actor

updating law resembles the original SPI algorithm but with minor adjustment as follows

˙̂W2 = −α2

{(
F2Ŵ2 − F1T

ΔφT
1

ms
Ŵ1

)
− 1

4
D̄1Ŵ2

ΔφT
1

m2
s
Ŵ1

}
(15)

where F1, F2, and D̄1 are defined in the same way as the SPI algorithm. It is also proved that
with the critic/actor and their updating laws, the system states and the critic/actor errors are
UUB.

Reviewing (11), the critic convergence rate of SPI is mainly determined by
σ1σ

T
1

m2
s
, more

precisely the minimum eigenvalue of
σ1σ

T
1

m2
s
. As for SPI-IRL, the critic convergence rate is
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determined by
Δφ1ΔφT

1
m2
s

according to (14). It is known Δφ1 is the integration of σ1 between

interval t − T and t , i.e.

Δφ1(t) =
∫ t

t−T
σ1(τ )dτ

So Δφ1(t) generally contains more data information than σ1(t). The minimum eigenvalue

of
Δφ1ΔφT

1
m2
s

is larger than the one of
σ1σ

T
1

m2
s
. Hence SPI-IRL converges faster than SPI.

After the combination of IRL and SPI, the internal drift dynamics f is no longer needed,
but the input gain matrix g is still necessary to define the actor. In addition, in the above
updating laws, only instant online observations are utilized. Old observations in the past
time, which also contain the complete dynamics information, are discarded. If the past data
can be reutilized, the algorithm will exhibit high data efficiency and high learning speed.

3.4 Integral reinforcement learning and experience replay SPI algorithm

To reutilize the past data, Modares et al. (2014) adopt the idea of concurrent learning in the
adaptive control, and propose the experience-replay based online algorithm. Their work is
based on the SPI-IRL algorithm but considers actuation constraints. To keep the consistence
of the study scope, some manipulations are made to their algorithm to fit the problem herein.
Reviewing the integral Hamiltonian error in (13), it only uses the instant observation to
define the error. Past observations are also capable of defining errors. Suppose the past data
are stored in a history stack, with the time intervals {[t j − T, t j ]}Nj=1. For the past time t j ,
together with the critic and the actor coefficients, its error is defined by

δ j = Ŵ T
1

[
φ1(x(t j )) − φ1(x(t j − T ))

] +
∫ t j

t j−T

(
xT Qx + ûT Rû

)
dτ

We have the experience-replay based gradient-descent updating law for the critic as follows

˙̂W1 = − α1

N + 1

Δφ1

m2
s

(
Ŵ T

1 Δφ1 +
∫ t

t−T
(xT Qx + ûT Rû)dτ

)

−
N∑
j=1

α1

N + 1

Δφ1 j

m2
s j

(
Ŵ T

1 Δφ1 j +
∫ t j

t j−T
(xT Qx + ûT Rû)dτ

) (16)

where φ1 j is defined by the past data as φ1 j = φ1(x(t j )) − φ1(x(t j − T )), and msj =
ΔφT

1 jΔφ1 j + 1. The updating law of the actor is the same as (15).
In comparison to the original SPI-IRL algorithm in which only the current observation

defines the updating law, the ER-based algorithm improves the data utilization. After ana-
lyzing the dynamics of critic errors, the following matrix determines the convergence of the
learning process

H̄ = Δφ1ΔφT
1

m2
s

+
N∑
j=1

Δφ1 jΔφT
1 j

m2
s j

To ensure the convergence, matrix H̄ must be full rank. So the original PE condition required
by the above algorithms now is replaced by a more easily-checked full rank condition.
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3.5 Robust ADP algorithm

With the introduction of IRL technique, the internal dynamics f is no longer needed in ADP
algorithms. But the input gain matrix g must be known. To overcome this, Jiang and Jiang
(2014) develop a robust ADP (RADP) algorithm for the uncertain CT system. One of their
contributions is to employ the off-policy idea. Review the i-th policy iteration in (6) and
(7). Consider an arbitrary control input us and execute it on the system to produce solutions
( f + gus). Differentiate the value function Vi along the solutions and utilize the relationship
[∇V (i)]T g = −2[u(i+1)]T R,

V̇ (i) = [∇V (i)]T (
f + gu(i) + g(us − u(i))

)
= −2[u(i+1)]T R(us − u(i)) − xT Qx − [u(i)]T Ru(i)

After applying the IRL technique and making some manipulations, we get the following
equation over an arbitrary interval [t − T, t)

V (i)(x(t)) − V (i)(x(t − T ))

+
∫ t

t−T

(
2[u(i+1)]T R(us − u(i)) + xT Qx + [u(i)]T Ru(i))dτ = 0 (17)

Note that by solving the above equation, we get the value function V (i) and the improved
policy u(i+1) at one calculation. In addition, computing the equation needs no knowledge of
dynamics, making it completely model-free. After getting the new policy u(i+1), we continue
the next iteration until finding the converged optimal policy u∗. The closed-loop stability of
the system is ensured by the following assumption about the control us .

Assumption 1 Suppose the control us is a stabilizing input such that the closed-loop system
remains in the compact set Ω for any starting state x(0) ∈ Ω0, where Ω0 ⊆ Ω .

At the beginning of Sect. 2, we have mentioned the state space is defined in a compact
set Ω . The core formula (17) of Robust ADP algorithm indicates that value functions and
policies are learned along the system data under the control input us . To guarantee the validity
of data, the control input should force the system within the predefined compact set.

When using the actor-critic structure to approximate the value and the policy functions, the
algorithm first collects online data from the system, and then calculates the NN coefficients
based on the data. The critic and the actor are approximated by NNs independently with

V̂ (i)(x) = Ŵ T
1 φ1(x)

û(i+1)(x) = Ŵ T
2 φ2(x)

where Ŵ1 ∈ R
K1 and Ŵ2 ∈ R

K2×m are coefficients of the critic and the actor, and φ1 and φ2

contain the basis functions separatively. After inserting into (17), a new error is defined as

e = Ŵ T
1

[
φ1(x(t)) − φ1(x(t − T ))

]

+
∫ t

t−T

(
2φT

2 Ŵ2R(us − u(i)) + xT Qx + [u(i)]T Ru(i)
)
dτ

By using the Kronecker product ⊗, the equation is rewritten into a linear form with

e = Ŵ T
1

[
φ1(x(t)) − φ1(x(t − T ))

] + vec(Ŵ2)
T

∫ t

t−T
2
[
R(us − u(i))

] ⊗ φ2dτ

+
∫ t

t−T

(
xT Qx + [u(i)]T Ru(i)

)
dτ
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where vec(·) is the vectorizing operator that stacks the matrix elements into a column. Given
a sequence of online data with the time intervals {[t j − T, t j ]}Nj=1, a vector of errors are
defined by

⎡
⎢⎣

e1
...

eN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ΔφT
1 (x(t1)),

[∫ t1
t1−T 2

[
R(us − u(i))

] ⊗ φ2dτ
]T

...

ΔφT
1 (x(tN )),

[∫ tN
tN−T 2

[
R(us − u(i))

] ⊗ φ2dτ
]T

⎤
⎥⎥⎥⎥⎦

[
Ŵ1

vec(Ŵ2)

]

+

⎡
⎢⎢⎣

∫ t1
t1−T (xT Qx + [u(i)]T Ru(i))dτ

...∫ tN
tN−T (xT Qx + [u(i)]T Ru(i))dτ

⎤
⎥⎥⎦

= ΘW̄ + Ξ

where W̄ = [Ŵ T
1 , vec(Ŵ2)

T ]T . Based on the least-squares principle, the coefficients are
determined by

W̄ = −
(
ΘTΘ

)−1
ΘTΞ (18)

In order to get the final result, matrix ΘTΘ must be full rank. So during the algorithm, one
needs to check the eigenvalues ofΘTΘ and add new observations into the history stack until
meeting the full-rank condition. After computing the solution, a new policy is obtained with
u(i+1) = Ŵ T

2 φ2. Then, the iteration is continued until the final converged optimal policy is
obtained.

Jiang and Jiang (2014) give a complete convergence proof of their RADP algorithm. Even
though the algorithm is model-free, its implementation is not in a real-timemanner. The critic
and the actor are not tuned along the system evolution. Their coefficients are computed and
updated following a batch process with a group of online data. In the next, we present our
latest research that designs a synchronous online ADP algorithm without any knowledge of
dynamics.

3.6 Off-policy SPI algorithm

Now take a look at (17). If u(i) equals u∗, then V (i) = V ∗ and u(i+1) = u∗. The equation
becomes the following integral off-policy HJB equation

V ∗(x(t)) − V ∗(x(t − T )) +
∫ t

t−T

(
2[u∗]T Rus − [u∗]T Ru∗ + xT Qx

)
dτ = 0 (19)

Similarly, we define the critic NN and the actor NN for V ∗ and u∗ with

V̂ ∗(x) = Ŵ T
1 φ1(x)

û∗(x) = Ŵ T
2 φ2(x)

After inserting into (19), we have

e(t) = Ŵ T
1 [φ1(t) − φ1(t − T )]

+
∫ t

t−T

(
2φT

2 Ŵ2Rus − φT
2 Ŵ2RŴ

T
2 φ2 + xT Qx

)
dτ (20)
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Under the representation of Kronecker product, define the following

Δφ1(t) = φ1(t) − φ1(t − T )

μ(t) =
∫ t

t−T
(Rus) ⊗ φ2dτ

D(t) =
∫ t

t−T

(
φT
2 ⊗ R

)
⊗ φ2dτ

p(t) =
∫ t

t−T
xT Qxdτ

(21)

and let

η(t) = 2μ(t) − 2D(t)vec(Ŵ2)

Then e is rewritten as

e(t) = Ŵ T
1 Δφ1(t) + vec(Ŵ2)

T η(t) + vec(Ŵ2)
T D(t)vec(Ŵ2) + p(t)

Under the gradient descent method, the updating laws for the critic and the actor have

˙̂Wc = −α1
Δφ1(t)
m2
s (t)

e(t)

vec( ˙̂W2) = −α2
η(t)
m2
s (t)

e(t)

where ms is defined as ms = ΔφT
1 Δφ1 + ηT η + 1. The off-policy based online algorithm

without system dynamics is proposed. We term it as SPI-IRL-OffPo algorithm to indicate it
is a SPI algorithm based on IRL and off-policy techniques.

Inspired by Modares et al. (2014), past data are reutilized to accelerate the learning rate
by the experience replay technique. Under the current coefficients Ŵ1 and Ŵ2, for arbitrary
time t j , the past data form the errors as follows

e(t j ) = Ŵ T
1 Δφ1(t j ) + vec(Ŵ2)

T η(t j ) + vec(Ŵ2)
T D(t j )vec(Ŵ2) + p(t j )

where

η(t j ) = 2μ(t j ) − 2D(t j )vec(Ŵ2)

and Δφ1(t j ), μ(t j ), D(t j ), p(t j ) are defined in the same way as (21). Then the experience-
replay based algorithm is designed on the basis of a history data set

{(
Δφ1(t j ), μ(t j ),

D(t j ), p(t j )
)}N

j=1 with the following updating laws

˙̂W1 = − α

N + 1

[
Δφ1(t)

m2
s (t)

e(t) +
N∑
j=1

Δφ1(t j )

m2
s (t j )

e(t j )

]
(22)

vec( ˙̂W2) = − α

N + 1

[
η(t)

m2
s (t)

e(t) +
N∑
j=1

η(t j )

m2
s (t j )

e(t j )

]
(23)

The new algorithm is termed as SPI-IRL-OffPo-ER. The convergence property is given as
follows. According to theWeirstrass high-order approximation theorem, suppose the optimal
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value function V ∗ and the optimal policy u∗ are expressed by NNs over the compact set Ω

as

V ∗(x) = WT
1 φ1(x) + ε1(x)

u∗(x) = WT
2 φ2(x) + ε2(x)

whereW1 ∈ R
K1 andW2 ∈ R

K2×m represent the ideal coefficients of V ∗ and u∗, and ε1 ∈ R

and ε2 ∈ R
m are the approximation errors. If the hidden neurons increase to infinity, the

approximation errors are reduced to zero, i.e. ε1 → 0, ε2 → 0 when K1 → ∞, K2 → ∞.
After inserting into the integral off-policy HJB equation (19), we get

εHJB(t) = WT
1 [φ1(t) − φ1(t − T )]

+
∫ t

t−T

(
2φT

2 W2Rus − φT
2 W2RW

T
2 φ2 + xT Qx

)
dτ (24)

where

εHJB(t) = −ε1(t) + ε1(t − T )

+
∫ t

t−T

( − 2εT2 Rus + 2εT2 RW
T
2 φ2 + εT2 Rε2

)
dτ

Assumption 2 (a) g is bounded by a constant

‖g(x)‖ ≤ ‖g‖max

(b) The critic and the actor NN approximation errors are bounded on the compact Ω

‖ε1‖ ≤ ‖ε1‖max

‖ε2‖ ≤ ‖ε2‖max

(c) The critic and the actor NN basis functions are bounded

‖φ1(x)‖ ≤ ‖φ1‖max

‖φ2(x)‖ ≤ ‖φ2‖max

Under Assumption 2, εHJB is also bounded. The following theorem gives the convergence
property of SPI-IRL-OffPo-ER. Note that in our previous work Zhu et al. (2016b), we have
used the algorithm to the optimal tracking control of nonlinear CT systems. Here we study
the optimal control of nonlinear CT systems. For the sake of completeness, the proof of
Theorem 1 is also presented.

Theorem 1 Let W1 be the ideal critic coefficients of V ∗, W2 be the ideal actor coefficients
of u∗, and Ŵ1 and Ŵ2 be the estimations of W1 and W2 in the critic and the actor. Let
ρ = [ΔφT

1 , ηT ]T and assume signal ρ̄ = ρ/ms is persistently exciting. Let Assumptions 1
and 2 hold. If the integral interval T satisfies the requirement as described in the sequel and
NN coefficients are appropriately initialized, the errors W̃1 = W1 − Ŵ1 and W̃2 = W2 − Ŵ2

converge exponentially to a residual set in the neighbor of zero under the laws provided by
(22) and (23).

Proof Subtract (24) from (20)

e(t) = −W̃ T
1 Δφ1(t) − vec(W̃2)

T η(t) + vec(W̃2)
T D(t)vec(W̃2) + εHJB(t)
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The above equation also holds for past time t j . Define the Lyapunov candidate L =
1
2 W̃

T
1 α−1W̃1 + 1

2vec(W̃2)
Tα−1vec(W̃2). Its time derivative has

L̇ = W̃ T
1 α−1 ˙̃W1 + vec(W̃2)

Tα−1vec( ˙̃W2)

= 1

N + 1

{
Z̃ T ρ(t)

m2
s (t)

[
− Z̃ T ρ(t) + vec(W̃2)

T D(t)vec(W̃2) + εHJB(t)
]

+
N∑
j=1

Z̃ T ρ(t j )

m2
s (t j )

[
− Z̃ T ρ(t j ) + vec(W̃2)

T D(t j )vec(W̃2) + εHJB(t j )
]}

where Z̃ = [
W̃ T

1 , vec(W̃2)
T
]T . Under the assumptions that φ2 is bounded and ρ̄ satisfies the

PE condition, D is bounded by

D(t) ≤ T κρ̄(t)ρ̄T (t)

where 0 < κ(t) < ∞. Then the following is inferred

vec(W̃2)
T D(t)vec(W̃2) ≤ T κ(t)Z̃ T ρ̄(t)ρ̄T (t)Z̃

Define a large bound B and set T to a small value such that for arbitrary
∥∥Z̃∥∥ < B,

T κ(t)
∣∣Z̃ T ρ̄(t)

∣∣ < εT < 1 where εT is a fixed constant. L̇ becomes as follows

L̇ ≤ − 1 − εT

N + 1
Z̃ T

[
ρ̄(t)ρ̄T (t) +

N∑
j=1

ρ̄(t j )ρ̄
T (t j )

]
Z̃

+ 1

N + 1
Z̃ T

[
ρ(t)

m2
s (t)

εHJB(t) +
N∑
j=1

ρ(t j )

m2
s (t j )

εHJB(t j )

]

≤ − 1 − εT

N + 1
λmin(H̄)

∥∥Z̃∥∥2 + ∥∥Z̃∥∥ ‖εHJB‖max

where

H̄ = ρ̄(t)ρ̄T (t) +
N∑
j=1

ρ̄(t j )ρ̄
T (t j )

So the estimation error Z̃ converges exponentially to the residual set
{
Z̃ : ‖Z̃‖ ≤

(N+1)‖εHJB‖max
(1−εT )λmin(H̄)

}
. The proof is complete. �

The convergence region is related to approximation errors. If the value function and the
policy are explicitly approximated by NNs, i.e. ε1 = 0 and ε2 = 0, then εHJB = 0, and Ŵ1

and Ŵ2 converge explicitly to the optimal solutions.
The convergence rate of the learning process depends on the minimum eigenvalue of H̄ ,

which is lower bounded by the minimum eigenvalue of the following H

H =
N∑
j=1

ρ̄(t j )ρ̄
T (t j )

The history data set can be updated by letting newly observed data replace some old data to
increase λmin(H). It will be illustrated in the simulated experiments that experience replay
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Fig. 1 The structure of the SPI-IRL-OffPo-ER algorithm

Table 1 Comparison of online ADP algorithms

Dynamics dependency Learning mode Data reutilization

SPI f , g Real time No

SPI-IRL g Real time No

SPI-IRL-ER g Real time Yes

RADP None Batch process Yes

SPI-IRL-OffPo None Real time No

SPI-IRL-OffPo-ER None Real time Yes

will remarkably accelerate the learning rate in comparison to non-experience-replay algo-
rithms. The structure of SPI-IRL-OffPo-ER is depicted in Fig. 1. With the IRL and off-policy
methods, no dynamics is needed, and the critic/actor are tuned along system trajectories in
real time. Past data are repeatedly utilized by experience replay.

The comparison of the above mentioned algorithms is summarized in Table 1. SPI tunes
the critic and the actor in real time. SPI-IRL extends SPI with integral reinforcement learning
to eliminate the dependency of f . SPI-IRL-ER extends SPI-IRL with experience replay to
reutilize past data. RADP makes the algorithm completely model-free, but the critic and
the actor are learned by a batch process. Our proposed SPI-IRL-OffPo-ER combines their
advantages.

4 Numerical evaluation

The benchmark considered here for numerical evaluation is the F16 aircraft plant (Stevens
and Lewis 2003; Vamvoudakis and Lewis 2010) with the linear dynamics

ẋ =
⎡
⎣−1.01887 0.90506 −0.00215

0.82225 −1.07741 −0.17555
0 0 −1

⎤
⎦ x +

⎡
⎣ 0
0
1

⎤
⎦ u

The costmatrices select Q = I and R = I . As the system is linear and the cost is quadratic, the
problem reduces to the linear quadratic regulator (LQR) problem and the optimal controller
is linearly state-feedback in the form u∗(x) = −K ∗x , whose gains are determined by solving
the algebraic Riccati equation (ARE). The optimal value function is quadratic in the state
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Fig. 2 Trajectories of critics by different online ADP algorithms

variables. So the critic and actor NNs select the following basis functions

φ1(x) = [x21 x1x2 x1x3 x22 x2x3 x23 ]T
φ2(x) = [x1 x2 x3]T

and the optimal solutions are as follows

W1 = [1.4245, 2.3364,−0.2705, 1.4349,−0.3002, 0.4329]T
W2 = [0.2057, 1.9089, 1.4145]T

Now we apply the 6 algorithms listed in Table 1 to solve the optimal control problem. To
make a fair comparison, the critic learning rates in the synchronous algorithms all select 50,
and the actor learning rates are set to 1. As for RADP, we check the full-rank condition of
ΘTΘ (18) online. Once the condition is held, we compute (18) and start the next iteration.
The rest parameters are set according to their references.

Trajectories of the critic and the actor coefficients are depicted in Figs. 2 and 3. For ease
of comparison we only depict the first 1000s trajectories in these two figures. In Fig. 4, the
10,000s trajectories with logarithmic time axis is plotted. All algorithms tend to converge
to the optimal solutions if sufficient time is provided. It is because the value and the policy
are explicitly approximated by NNs. SPI-IRL-OffPo algorithm has the slowest convergence
rate. When it is combined with experience replay, the learning speed is improved notably,
faster than SPI algorithm, but still slower than SPI-IRL and SPI-IRL-ER. The reasons are
twofold. First, it does not learn from the original HJB Eq. (2), but from the off-policy HJB
Eq. (19), which makes the computation less straightforward. Second, the system dynamics
is completely unknown, also increasing the learning difficulty. But SPI-IRL-OffPo-ER algo-
rithm allows much larger learning rates during the implementation, which is rarely observed
in other algorithms since large learning rates can easily diverge their learning process. We
repeat the SPI-IRL-OffPo-ER but set α1 to 50,000. The learning speed is almost as fast as
RADP. It is also observed that SPI is slower than SPI-IRL, and the reason has been elaborated
in the above section. In Fig. 4, it is observed that the update of RADP is a jumping process,
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Fig. 3 Trajectories of actors by different online ADP algorithms

Fig. 4 Trajectories of critics by different online ADP algorithms with logarithmic time axis

since its critic and actor are learned in a batch manner. While the rest algorithms all update
coefficients in real time.

Note that in our simulation, the learning rates between SPI-IRL and SPI-IRL-ER are very
close. It is against the results of Modares et al. (2014) where SPI-IRL-ER exhibits faster
learning rate. The discrepancy is due to the adjustment of updating laws. In this paper, the
updating law (16) of SPI-IRL-ER is normalized by the history stack size. While in Modares
et al. (2014), the law is not normalized, so the learning rate is improved partly because of the
increase of the learning rate.
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5 Conclusion

In this paper, we review the state-of-the-art onlineADP algorithms. The series of synchronous
policy iteration algorithms update the critic and the actor in real time during the learning
process. The RADP algorithm updates the critic and the actor with a batch process and
needs no knowledge of dynamics. We present the SPI-IRL-OffPo algorithm that combines
the advantages of two kinds of algorithms, and its learning rate is significantly improved by
experience replay.
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