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Abstract—Large scale multiple input multiple output
(MIMO), commonly referred to as massive MIMO, is one of
the most important physical layer disruptions in network evo-
lution that would lead to significant increase in spectral and
energy efficiency envisioned for 5G networks. However, the
computational complexity of massive MIMO system becomes
the key problem for its practical implementation. As known,
Differential Unitary Space-Time Modulation (DUSTM) has
been proposed as an efficient modulation choice for such
MIMO transmissions where channel state information (CSI)
is not required at the receiver. However, traditional DUSTM
implementation relies mainly on Maximum Likelihood De-
tection (MLD) achieving optimal performance, which is not
easily compatible with massive MIMO systems due to its
exponentially increasing complexity with increasing number
of transmitting and receiving antennas. Therefore, in this
paper, in order to overcome the aforementioned disadvan-
tages, we propose a new detection algorithm named Relaxed-
Bound K-Best Sphere Detection (RBKSD). Compared to the
traditional K-Best Sphere Detection (KSD) algorithm, the
main idea of our algorithm is to relax the bound K of the
conventional KSD to be K + I, thereby achieving quasi-
optimal performance with significantly reduced computational
complexity. Simulation results confirm that the proposed
RBKSD algorithm shows superior performance and reduced
complexity compared to other notable schemes such as MLD,
traditional sphere detection algorithm and the KSD.

I. INTRODUCTION

N recent years, advances in the physical layer with
I respect to antenna technologies are yielding very high
data rates with low error probabilities for multiple-antenna
communication links, especially when the wireless channel
response is known at the receiver. However, the continuous-
assumption that channel state information is readily avail-
able is often idealistic, since perfect channel estimation
is either costly or even impossible in complex and fast-
changing channel conditions. This is especially true for
multiple input multiple output (MIMO) systems and even
more so for massive MIMO transmissions. The traditional
modulation schemes may no longer be reliable in such
conditions. This motivates researchers to find new types
of modulation schemes without knowledge of channel
estimates. In this context, differential unitary space-time
modulation (DUSTM) emerges as an appropriate candidate
scheme [1-5].

The basic principle of DUSTM is to encode the trans-
mitted information into phase differences between two

consecutively received symbols, and at the receiving end,
we can decode the information by comparing the phase
between the currently accepted symbol and the previous
accepted symbol [3-4]. In this way, the signals can be used
to achieve lower probability of error without knowledge
of channel estimates. What’s more, DUSTM can also be
applied to different channels [6-8].

As one important topic, detection of DUSTM is usually
based on two consecutively received symbols, which is
referred to as conventional differential detection (CDD)[9-
14]. As the optimal detection method, maximum likelihood
detection (MLD) is widely used to decode the differential
unitary space-time signals [15-19]. By the aid of MLD,
performance of the decoder can be made better than
CDD. However, the complexity of the MLD algorithm
using exhaustive search increases exponentially with the
number of antennas. This will result in a high degree of
complexity, making the scheme difficult to implement. The
emergence of the sphere detection (SD) algorithm resolves
these challenges with moderate complexity [20-22].

The main advantage of SD algorithm is that it only
needs to search in a predetermined finite spherical region
instead of searching all the grid points in the whole box
[23-25]. However, use of the depth-first tree search in the
SD algorithm limits the decoding efficiency in non-constant
throughput [26-28]. Furthermore, the complexity of the SD
algorithm increases rapidly when SNR changes from high
to low.

Therefore, another SD detection algorithm called K-best
sphere detection (KSD) algorithm is proposed, which is
based on tree search to obtain the log likelihood ratio (LLR)
of two Euclidean distances. Unlike the conventional SD, the
KSD performs a breadth-first search strategy and retains
only K best nodes at each layer instead of a depth-first
tree traversal. The KSD algorithm selects only the specified
surviving paths in all paths as the next path to be computed.

For DUSTM, KSD has received significant attention
recently due to its fixed throughput, fixed detection, com-
putational complexity and parallel implementation. Despite
these advantages, the KSD typically requires very large
values of K to guarantee an optimal performance, which
results in a higher computational complexity than that of
the conventional SD.

The performance loss of the KSD may be due to the



likelihood of inadvertently discarding the ML solution. In
this paper, we propose a relaxed-bound K-best sphere de-
tection (RBKSD), which replaces the strict value K in the
conventional KSD with a hyper-sphere radius determined
by the cost of the K-th best node and a threshold. The
proposed RBKSD requires a smaller K value while still
achieving a better and near optimal performance compared
to the conventional KSD with a larger K. The RBKSD
achieves a near-optimal performance with a much lower
computational complexity than that of the conventional
KSD.

Unlike the conventional KSD which keeps K nodes for
each layer, the RBKSD searches the fixed K nodes and all
nodes with a partial cost equal to or less than the K-th node
cost plus a small value I'. The parameter I' controls the
extra number of nodes visited by the RBKSD. The RBKSD
expands the fixed K nodes at each layer to a slightly bigger
list, which includes all the nodes with a partial cost of
newdist equal to or less than the K'-th node cost newdist i
plus a small value I'. This I' could be derived by off-
line computation. Furthermore, the RBKSD increases the
possibility of the candidate list including the optimal ML
point and reduces the complexity with close performance
to the conventional KSD detection.

The rest of the paper is organized as follows. Section II
outlines the system model. In section III, we analyze several
conventional detection algorithms for differential unitary
space-time modulation. We introduce our relaxed-bound
K-Best SD algorithm in section IV while the simulation
results and discussions are presented in section V. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL

We consider a DUSTM system using Nt transmitter
antennas and g receiver antennas, and use R (bits/channel
use) to represent the data rate in bit per channel use. At
the transmitter N7 R bits of signals are organized into a
(N1 x Nr) -dimensional unitary matrix G[r], which has
the form

j27 J2mp
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The generator u = {1, us, us, ..., un,. } could be derived to
maximize the diversity product [4]. The data symbols G;[n]
are then differentially encoded into transmit symbols

Sl = GniSin — 1], S[0] =1In;. 2)

Subsequently, a (Ng X Nt) channel matrix H|[n] is defined
where h; ;j[n] denotes the complex fading gain between
transmit antenna j and the receive antenna i. The fading
channels are assumed to be spatially uncorrelated with
identical temporal correlation according to Clarke’s fading
models[12].

According to the model, the received signals can be
expressed by Y([n] = H[n|S[n] + Nn|. The n; ;[n] of
N[n] denotes the zero-mean complex additive spatially

and temporally white Gaussian noise(AWGN) with vari-
ance 02 = N, /T effective at the receive antenna at
time 7. While Ny is the two-side noise-power spectral
density in the equivalent complex baseband (ECB) and the
NNpg x Ny matrix Y] of N received matrix symbols can
be expressed as

Yn] = H[nSpn] + N[n], 3)

where the N N7 x N Npr matrix block -diagonal matrix
is given by Spn] = diag{ST[n — N + 1], ..., ST[n]}, the
NNg
x Ny matrices given by H|[n] = diag{HT[n — N + 1], ...,
HT[n)} and N[p) 2 diag {NT[p— N +1],..., NT[]},
respectively.

III. DETECTION ALGORITHMS

In this section, we first provide a suitable representation
of the ML decision rule in Section III-A. Subsequently, the
SD algorithm and the conventional KSD are presented.

A. Maximum-likelihood Detection

Single-symbol differential ML detection processes two
consecutively received matrix symbols to find ML estimates

for the data symbols V[] 2 [GT[n — 1], GT[n]]T, which

is correspond to the transmit symbols S[r) = [ST[n —
1], ST [n]]*. For brevity, we will henceforth omit the ref-
erence [7] to time in some of the following mathematical
formulas.

In [4], the ML demodulator for a constellation of unitary
space-time signals is defined as a matrix noncoherent
correlation receiver, given as

ml = YH
Vi =arg _max - [[UY7], &)
where 2N x Np matrices V; obey VOHVO = ... =
VI Vi1 = Iy, According to Y[n] = H[n]S[n] + N[n],
the maximum-likelihood demodulator is:
(ot = axg_ms_[[Viy™]|
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where Y'[n] is an Nr x N7 matrix. Demodulation requires
looking at two successive matrices to form a matrix with
T = 2Nr rows as [4]

P

For the case of multiple-symbol differential ML detection,
according to (3) and the fact that Sp[n] denotes an uni-
tary matrix, we an obtain multiple-symbol differential ML
detection rule

2
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N
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Fig. 1 DUSTM system model.

N —

where Y, g = pj Y. pg) denotes the j-th coefficient of
the i-th order hnear backward minimum mean-squared er-
ror (MMSE) predictor for the discrete time random process
hyw[NNT] + n,[nN7] and 0! denotes the corresponding
error variance [12]. A

We obtain an estimate G for the vector G. The
brute-force approach can be used to evaluate (7) for all
2IN=D)Nr R corresponding to all possible G. Howev-
er, this approach wou-1d quickly become computationally
infeasible because the complexity of the straightforward
approach is exponentially increased in N, the number of
transmit antennas N and the rate R.

B. Sphere Detection

As earlier mentioned, ML algorithm has an inherent
complexity that is exponential in N, Np, and R [27-
28]. We can use SD algorithm to decode from a lattice
viewpoint. It can be observed that the ML for diagonal

constellations is given by
Nr Ng

(2)mi[n] = arg =0, L1 mzzl 7;1 " )

. . J 27 piam L .
It is obvious that e %™ does not depend on index n, thus
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Furthermore, It is given as
Ngr
\Ilm = Z yn,m[n]y;,m[n - 1] ’
n=t (11)
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where 9,,¢[—L/2,L/2) and y, ,[n] is the element of
received matrix Y [n]. Then the simplified expression is

derived as
Nt
9 (Ul — V)2
(&)muln] = arg, Olrrlaoc_1 Z:I\If cos [L )
(12)

Based on some mathematical processes as presented in
(12), the best solution can be rewritten as

Nt
(2)ml[77] = argl:o{?.i,ri—l Z:l[(\l’muml
—,,®,,)mod*V,, L]?
(13)

If a basis is defined
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The point set {Cx : xeZN T} will form an infinite lattice in
R™T . For easier reading, we define t as a target with com-
ponents ¥, 1,,. So ML decision can minimize the value
of ||Cx — t||>. However, such decoding in an infinite lattice
has the convenient feature that is suitable for formulating
the SD algorithm, let us define

dtZHo

Where C(k,:) denotes the i-th row submatrix of C.
Starting at k = Ny, the SD algorithm selects candidates

xreZ and continues to decrease k as long as the current

metric d,, does not exceed a given metric p,, such that

di < pr. 15)

Nx— ). (14)

But if the SD algorithm reaches £ = 1, we can reduce
the size of the search space by updating p, = d;. If dj
exceeds p, for any values of k, k is increased and a new
candidate for k is examined. Furthermore, if there are no
further candidates inside the current sphere and it means
that the ML solution & = x;modL has been found.

C. Conventional K-best Sphere Detection

The conventional SD algorithm uses the depth-first
search strategy. Though its performance may be quite
optimal, its variable complexity still makes it impossible
to apply in practice. That is why the conventional KSD
was proposed.

Conventional KSD is not optimal compared to traditional
algorithm because it has further reduced the search space
and performance is also degraded. Nevertheless, its ability
to maintain simpler and non-varying complexity makes its
implementation feasible in practical applications. First of
all, it is defined as



522 |C(k, ) — tal 2. (16)
To formulate the KSD algorithm, the radius is defined as

Nr
A
4 =Y NCHk, e — P =iy + 6. (A7)
i=k

First, it is assumed that the k-th layer of the search
tree retains the K-best path corresponding to K vectors:
iy »-0ip- Then the (k+1)-th layer needs to expand the
K nodes, and KSD requires calculation of each child
node. Furthermore, for the remaining point of next layer,
in an ascending order, K nodes are with the smallest d
are maintained while others are deleted. This process is
repeated until k£ = 1, where the last layer of the path with
the smallest d is the final path.

IV. RELAXED-BOUND K-BEST SPHERE DETECTION

The proposed Relaxed-bound K-best Sphere Detection
scheme provides improvements from the conventional KSD
scheme in terms of reduced computational complexity as
described in the following section.

A. Relaxed-bound K-best Algorithm

Algorithm 1: The RBKSD Algorithm
Input: I', C, t, d, K
Output: &

1 Input I, C, t, d, K and initial the sphere radius d is
large enough to guarantee that the sphere contains the
solution. The partial cost bestdist = 0, level k = Nr;

2 for ¢ = 1: 1: length (bestdist), where i is the number
of elements, calculate: newdist = bestdist; + (5?;

52 = 10k, ) — el
end

3 Sort all the calculations of newdist in an ascending
order;

4 if The number of all sorted newdist is less than K;
then Keep all the sorted newdist which satisfy
newdist < d? to obtain x;
else Keep the candidates whose cost satisfy newdist
< newdistg+I";
end

5 Replace the bestdist to be the adjusted newdist;

6 if level # 1 then Go to step 2 with &k =k — 1;
else Return x;modL as the estimated &
end

Since the performance loss of the KSD may be due to
the likelihood of inadvertently discarding the ML solution,
the proposed RBKSD replaces the strict value K in the
conventional KSD with a hyper-sphere radius determined
by the cost of the K-th best node and a threshold I'.
As a result, the proposed RBKSD achieves a near ML
performance with a much lower computational complexity
than that of the conventional KSD. As mentioned in Section
III, the conventional KSD keeps K nodes for each layer.
However, the proposed RBKSD searches the fixed K nodes
and all the nodes with a partial cost equal to or less than the

K -th node cost plus a small value I'. Thus, the probability
of finding the ML solution is increased compared to the
probability of doing so with the conventional KSD.

The detailed process for the proposed RBKSD algorithm
is illustrated as follows. bestdist and k indicate the partial
cost and the level, respectively. What’s more, the radius
d is set to be large enough to guarantee that the sphere
contains the solution. For each layer, the proposed RBKSD
calculates the cost of each point like KSD,

57 = ||C(k, )z — ti]|° . (18)
Then we can obtain the newdist
newdist = bestdist; + (52. (19)

What’s more, we sort all the calculations of newdist in
an ascending order. The proposed RBKSD is described in
Algorithm 1.

From Algorithm 1, we can obviously see the difference
between KSD and the proposed RBKSD. It is obvious that
we keep the additional nodes whose costs are close to
the cost of the K-th node newdisty instead of choosing
exactly K nodes in KSD. Let us take an example: after
sorting the nodes at the k-th layer, if the cost difference
between the K-th node and the (K + p)-th node (p = 1,2,...)
is less than I" then all K + p nodes are retained.

B. Complexity Analysis

According to Algorithm 1, it is significant to choose a
suitable I" for this algorithm. If I" is too large, then more
nodes are visited and the computation complexity increases,
where as if I is too small, the performance improvement
is limited compared to of the KSD. In order to achieve a
flexible performance and computational complexity trade
off, I' could be predefined and changeable for different
system requirement. The choice is motivated by the need
to prune less aggressively in the early stage. However, the
theoretical complexity analysis is difficult for the proposed
RBKSD, because it is infeasible to count the number of
nodes within newdist < newdistx + I'. Therefore, we
begin with analysis of the conventional SD algorithm in
multi-antenna DUSTM systems.

Since the operation for each possible V is almost the
same, the computational complexity denoted by the number
of visited points can be defined as [20]

NR NT
A . .. . N2
S = arg mén; Zl Y, (4, 7) — Yy—1(i,m)G(m, j)|",
=1 y=
(20)
®,,; = Np N2Vt (1)

We define a variance v for SD
VAN .. . .
v(i,7) = Yy(i,5) = Yy1(4,m)G(m,j)  (22)
and
Y, (i, 5) = Yo_1(i,m)G(m, ) +n'. (23)

Then we have
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We define
u(7’7 .7) = Y77—1 (Za m/)G(m/7 ]) - Y’V]—l (Z’ m)G(ma j)
(25)
Therefore the probability density function of v(i, ) is

.. A 1 _lvGi)—ug)l
f(V(ZaJ)|X7Yn71;NO) = 77'7]\[06 No . (26)

Furthermore, SD algorithm implements the accumulation
of distances until the k-th level

y(k) = > |v(i,5) @7
v (i,5)
Accordingly, the probability of having a unitary at the k-th
level inside the sphere with radius d is

P(d,k) = P(y(k) < d*|X,,Y,—1,No).  (28)

For the need of analysis we define

-2
v(i, j
(k)= LUl (N S 29)
—~ 0
v(i.7)
So P(d, k) can be rewritten as
d2
P(d, k) = P(Y(k) < FO|X,,7,Y,7_1,N0). (30)

T (k) obeys the non-central chi-squared distribution, which
has a non-central parameter

|u(i, j)|?
Ak) = D = 31
— 0
v(i,5)
The probability of having a matrix G at the k-th level inside
the sphere with radius d can be rewritten by utilizing the
generalized Marcum’s Q function [13]
d

PSD(k):l_Qk(VA(k),ﬁ)' (32)

If P(Nr) is large than the threshold value p,., d is updated
by
L2
d? = Z [n’ 4+ u(i, 7). 33)
V(i.5)
Therefore the total computational complexity for DUSTM-
SD is

Nt
Dsp = Z Z Py (k). (34

G k=1

However, for the KSD algorithm, it keeps just K nodes
for each layer. Therefore the total computational complex-
ity for DUSTM-KSD is

& . = KNrp. (35)

KSD

While for the proposed RBKSD algorithm, the points
selected at each layer are not necessarily the same due to
the existence of threshold I', so we define a a variance )
In this situation

N

T
Q= Z P(newdist < newdistyx + I'| X4, Yi—1, Np).
G k=1
(36)
So
¢RBKSD = @KSD + Q. (37)

It is difficult to analyze its computational complexity be-
cause of its threshold I' but we can carry out the actual
verification according to simulation results. So we define
a variable © to measure computational complexity of the
proposed RBKSD

o) = Lo~ Punxsn

BBESD % 100%. (38)
¢SD
© is measured by the reduced complexity of the proposed

RBKSD compared to SD to obtain the same performance.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section we firstly compare the performance and
computational complexity of four detection algorithms
(MLD, SD, KS, the proposed RBKSD).
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Fig. 2 BER performance comparison among MLD, SD, KSD, the
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Fig. 3 Computational complexity comparison of SD, KSD, the proposed
RBKSD.



Fig. 2 and Fig. 3 show the comparison of the BER
performance and computational complexity of four detec-
tion algorithms: MLD, SD, KSD, the proposed RBKSD. A
DUSTM system in the case of Nr = 4 is simulated over
the flat Rayleigh fading channel (02 = 1). It is noted that
the BER performance of the proposed RBKSD with index
K =2, I' = 0.28 is quite close to the MLD performance,
while the KSD with same index K = 2 achieves a poorer
performance. As for computational complexity comparison
among four algorithms, the complexity of the proposed
RBKSD is lower than that of SD when they both achieve
the quasi-optimal performance. For instance, for K = 2,
with slightly increase in complexity, the proposed RBKSD
provides about 10dB gain over the KSD when SNR =
20dB. Furthermore, SD visited about 200 nodes while the
proposed RBKSD searched about 90 nodes when reaching
similar BER and © = 55%.
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Fig. 4 BER performance of the proposed RBKSD
with Np =3, 4,5, R=2.
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Fig. 5 Computational complexity of the proposed RBKSD

with Ny =3,4,5, R=2.

In Fig. 4, we consider DUSTM with R = 2, Np =
3, 4 and 5 for the proposed RBKSD. It can be found
that the proposed RBKSD achieves a full diversity order
for MIMO DUSTM system, which is consistent with the
MLD. As is shown in Fig. 5, we compare the computational
complexity of the proposed RBKSD with different number
of transmit antennas. It can be found that the performance

is improved with increasing number of transmit antennas,
but the computational complexity is increased. Thus, for
massive MIMO system, low-complexity detection methods
must play an important role for its implementation.
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Fig. 6 BER performance comparison between the proposed RBKSD and
KSD

with Np =4, R=2, K =2, N =2,3,4.

- = KSD,K=2,N=2
450 = RBKSD,K=2,N=2| ]
—#—KSD,K=2,N=3
o 400 F ~h=RBKSD, K=2,N=3 | |
3 KSD.K=2N=4 |
K v v 7| —~€—RBKSD, K=2,N=4[Y
> 350 A KSD, K=6,N=2
3 57~ KSD,K=6,N=3
8 300 KSD,K=6,N=4
=z
5
5 2504 y. A A A 4
e}
S 200l — & i a —
% < < N l
S e e
150 e 2 e
* 5 * 3
100
50 ‘
0 5 10 15 20 25

SNR(dB)

Fig. 7 Computational complexity comparison between the proposed
RBKSD and KSD

with Nr =4, R=2, K =2, N =2,3,4.

Fig. 6 and 7 gives the performance and complexity
comparison of the proposed RBKSD and KSD for multi-
symbol DUSTM systems. It is seen from Fig. 6 that the per-
formance of the proposed RBKSD at the fixed threshold (K
=2, I' = 0.28) performs much better than that of KSD with
same K as N increases. And with the N (N = 3, 4, 5)
increasing, an obvious increase in performance is observed
obviously. Fig. 7 shows the computational complexity of
both the proposed RBKSD and traditional KSD schemes.
As seen, the complexity is increased with increasing NN,
but both the proposed RBKSD and KSD break the ex-
ponential computation complexity for MLD. Furthermore,
the proposed RBKSD can greatly reduce the computational
complexity in the case of the same performance. It can be
seen that the proposed RBKSD shows the best trade-off
between performance and complexity.



VI. CONCLUSION

In this paper, we proposed a Relaxed-Bound K-best
sphere detection (RBKSD) for multi-antenna DUSTM sys-
tem. Compared with the conventional KSD, the proposed
RBKSD achieves the quasi-optimal performance at a re-
duced and roughly fixed complexity. Our main idea is to
define a threshold I" to overcome the disadvantages of the
conventional KSD. It is proved by the simulation that the
condition with the same index K, the proposed RBKSD
algorithm significantly improves the system performance
at the expense of slightly increasing the computational
complexity. More importantly, if the near-optimal perfor-
mance is guaranteed, the proposed RBKSD clearly obtains
much lower complexity compared to the conventional KSD.
Besides, compared with SD, the proposed RBKSD obtains
almost the same performance via much lower complexity.
Thus, utilization of the proposed RBKSD in DUSTM for
massive MIMO would be also more attractive in compari-
son with other detection algorithms.
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