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Contextual Exemplar Classifier-Based Image
Representation for Classification

Chunjie Zhang, Qingming Huang, and Qi Tian, Fellow, IEEE

Abstract— The use of local features for image representation
has become popular in recent years. Local features are often used
in the bag-of-visual-words scheme. Although proven effective,
this method still has two drawbacks. First, local regions from
which local features are extracted are not discriminative enough
for visual tasks. Hence, the combination of local features is
necessary. Second, the semantic gap between visual features and
human perception also hinders the performance. To address
these two problems, in this paper, we propose a novel contextual
exemplar classifier-based method for image representation and
apply it for classification tasks. Each exemplar classifier is
trained to separate one training image from the other images
of different classes. We partition each image into a number of
regions and use the responses of these exemplar classifiers as the
image region’s representation. The contextual relationship is then
modeled using mixture Dirichlet distributions. A bilayer model is
used to predict image classes with L2 constraints. Experimental
results on the Natural Scene, Caltech-101/256, Flower-17/102, and
SUN-397 data sets show that the proposed method is able to
outperform the state-of-the-art local feature-based methods for
image classification.

Index Terms— Computer vision, image processing, pattern
classification.

I. INTRODUCTION

LOCAL features are widely used for various visual appli-
cations, such as image classification [1], retrieval [2], and

segmentation [3]. There are many local features (e.g.,Scale-
invariant feature transform (SIFT) [4], histogram of gradi-
ents (HoG) [5], speeded up robust features SURF [6], multiple
support regions of gradient histogram [7], KAZE [8], color [9],
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and texture [10]) designed for various visual tasks. Usually,
local features are encoded to get the histogram representations
of images. This method is very efficient as it makes use of
the discriminative power of local features and can also be
computed very efficiently.

However, there are mainly two problems with the local
feature-based image representation scheme. First, a local
region should be predefined in order to extract the
local feature. Usually, the local region is determined by dense
sampling [11] or by detection [12]. However, local regions
are often too small to be discriminative enough for reliable
recognition. To solve this problem, local features are often
combined together using the predefined rules [13], [14] or
by region detection [15]. However, predefining the combining
strategy may not be able to cope with the complex situations.
Besides, the objectiveness of the region detection method is
inconsistent with classification tasks. Another way to solve
this problem is by image region selections [16], [17] or by
inferring the locations of objects [18].

Second, the semantic gap between visual features and
human perception also hinders the performances. To alleviate
this drawback, researchers try to use the semantic-based rep-
resentation methods [19]–[30]. Some try to use the training
images directly [19]–[25], while others make use of the
information from other sources [26]–[30]. However, training
images are often used per class without considering the intra-
class and inter-class variations. Besides, the performances
decrease with the increment of classes. The use of images
from other sources helps to alleviate this problem. However,
images from other sources may be biased and contaminated
with irrelevant images. Attribute is also used for bridging
the semantic discrepancy between the visual features and the
human perception [31]–[34]. An attribute is defined as the
specification of a property of an object. This strategy is
efficient for images with separatable properties. However,
attributes are often predefined by human experts. This requires
domain knowledge and is also labor-intensive. Besides, there
are many images that cannot be efficiently represented by
predefined attributes. Exemplar image is also used for semantic
representation [21], [22], [35]. This method copes with the
intra- and inter-class variations by separating each training
image from other images.

To solve the above-mentioned problems, in this paper, we
propose a novel contextual exemplar classifier (CEC)-based
representation method for image classification tasks.
We densely select multiscale image regions with overlap.
Each exemplar classifier is trained to separate one training
image from the other images of different classes. For
each image region, the response of the exemplar classifier
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can indicate the semantic relationship with the particular
training image, and hence, bears some semantic meanings.
We then model the contextual relationships of exemplar
classifiers using mixture Dirichlet distributions. We combine
each image region’s representation in a predefined order to
form a matrix-based image representation. A bilayer model
is then learned for image-class predictions. L2 norm is also
used to avoid overfitting. We evaluate the proposed method
on several public data sets. The experimental results show the
usefulness and efficiency of the proposed method.

The main contributions of this paper lie in three aspects.
First, we combine the region-based image representations with
exemplar classifiers to obtain the semantic representations of
images. This makes the image representations more consistent
with human perception compared with directly using visual
features. Second, we model the contextual relationships of
the exemplar classifier-based representations with mixture
Dirichlet distributions. This ensures us to combine the dis-
criminative power of training images for more efficient rep-
resentations. Third, a bilayer model is proposed to use the
relationships of the semantic image representations, which
finally improves the classification performances.

The rest of this paper is organized as follows. Related
work is given in Section II. The details of the proposed
CEC-based method are given in Section III. Section IV gives
the experimental results on several public data sets. Finally,
the conclusion is drawn in Section V.

II. RELATED WORK

Local features were efficiently used for various visual
tasks [1]–[3]. Many local features [4]–[10] had been proposed
for different applications. The SIFT feature was proposed
in [4] and widely used for classification, retrieval, and match-
ing. To speed up the computation, the HoG feature was
proposed in [5]. Bay et al. [6] proposed the SURF descriptor
which was scale and rotation invariant and was also robust to
noise. Fan et al. [7] tried to aggregate the gradient information
to intensity orders for object matching. Alcantarilla et al. [8]
proposed the KAZE feature which used an additive operator-
splitting technique for nonlinear scale space. Rao et al. [9]
explored the color information for person detection to cope
with the variations of different scenarios. Nguyen et al. [10]
used support local pattern for visual applications.

Usually, the local regions from which local features were
extracted were often determined by dense sampling [11] or
by detection [12]. Local features were often combined to
increase the discriminative power [13]–[15]. Ni et al. [13]
modeled the local feature’s spatial context by random forest,
while Zhang et al. [14] used the Haar-like transformation.
Wu et al. [15] tried to bundle local features for partial-
duplicate image search with heavy computational cost. Other
researchers leveraged less computational cost methods
for spatial information usages [16]–[18], [36], [37].
Lazebnik et al. [16] proposed the spatial-pyramid matching
technique that was widely used with good performance.
Zhang et al. [17] used the component for image representation
and proposed boosted bilinear model for object recognition.
In order to make use of the detection information,

Russakovsky et al. [18] tried to detect objects and
then separate the object and background representations.
Marin et al. [36] used random forests for pedestrian
detection, while Wang et al. [37] detected human action as
the spatiotemporal tube.

To get semantically meaningful representations, many
works had been done [19]–[30]. Some researchers made
use of the training samples for semantic modeling.
Rasiwasia and Vasconcelos [19] proposed to use low-
dimensional semantic spaces for scene classification, while
Vogel and Schiele [20] used the semantic modeling for image
retrieval. A weak semantic representation was proposed in [21]
and then extended as subsemantic space [22]. A holistic
context model was used in [23] for image classification, while
Oliva and Torralba [24] used the holistic representation of
scenes for recognition. Inoue and Shinoda [25] proposed a
fast video semantic-indexing method. Other researchers tried
to construct semantic spaces using images collected from
the Internet. Yang et al. [26] used Web images for seman-
tic video indexing by minimizing the sample-specific loss.
Hauptmann et al. [27] evaluated the usage of semantic
concepts for video retrieval using the broadcast news.
Russell et al. [28] introduced the Labelme data set. An interac-
tive image-tagging scheme was proposed in [29] by reducing
the human-labeling effort. The object bank was proposed
in [30] to semantically represent images. Vázquez et al. [38]
explored the domain adaptation problem for human detection
with active learning, while Xu et al. [39] proposed the domain
adaptation of deformable part-based models and improved the
detection accuracy.

Attribute-based methods [31]–[34] were also widely
explored. Torresani et al. [31] proposed to use classesmes
for object categorization. Farhadi et al. [32] described
objects by attributes, while Parikh and Grauman [33] used
the relative attributes to model the relativeness of different
attributes for ranking. In order to detect unseen objects,
Lampert et al. [34] proposed an attribute transfer method
among image classes. The exemplar classifier-based
method was also widely explored [21], [22], [35], [40].
Malisiewicz et al. [35] used an exemplar support vector
machines for object detection in an ensemble way and then
extended to subsemantic spaces [22]. Xu et al. [40] adapted
the pedestrian detector using the boosted-latent dirichlet
allocation exemplar classifiers.

III. CLASSIFICATION WITH CONTEXTUAL SEMANTIC

SPACE-BASED REPRESENTATION

In this section, we give the details of the proposed con-
textual semantic space-based representation method for image
classification. We densely extract image regions with overlap
and train exemplar classifiers. The responses of exemplar
classifiers are combined with mixture Dirichlet distributions to
get the semantic representations of image regions. A bilayer
model is learned to predict image classes with L2 constraints.
Fig. 1 shows the flowchart of the proposed method.
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Fig. 1. Flowchart of the proposed contextual semantic space-based
representation method for image classification.

A. Exemplar Classifier Training and Image Region Selection

We use the bag-of-visual-words model (BoW) with spatial
pyramid (L = 0, 1, 2) as the initial image representation [16].
Exemplar classifiers are then trained to separate each training
image from the other images of different classes. Let
X = [x1, . . . , xN ] ∈ R

D×N be the N training images with the
corresponding labels Y = [y1, . . . , yN ] of C classes. Linear
classifier is used as the exemplar classifier

ŷn,i = wn
T xi + bn, n = 1, . . . , N; i = 1, . . . , N (1)

where (wn, bn), n = 1, . . . , N are the parameters for the
n-th exemplar classifier. ŷn,i is the predicted label of
the n-th exemplar classifier for the i -th image. To learn
the parameters, we try to minimize the summed loss of training
images as

(wn, bn) = argmin
(wn,bn)

‖wn‖2 + λ1�(ŷn,n, yn)

+
N∑

i=1,yi �=yn

�(ŷn,i , yn) (2)

where λ1 is the parameter, which controls the relative
influences of the exemplar image, and �(∗, ∗) is the loss
function. For classification tasks, the hinge loss is often used.
However, the hinge loss does not differentiable. To alleviate
this problem, we adopt the quadratic hinge loss as

�(ŷn,i , yn) = (max(ŷn,i × yn − 1, 0))2 (3)

and learn the exemplar classifier for each training image.
Besides, to use the spatial and context information of local
features, we use image region as the basic element for image
representation.

Suppose, we select M regions for the n-th image with the
BoW representation as xm

n ∈ R
D×1, m = 1, . . . , M . We use

the responses of exemplar classifiers as the initial semantic
representations of image regions: x̃m

n = [̃xm
n,1; . . . ; x̃m

n,N ] ∈
R

N×1. Each dimension can be calculated as

x̃m
n,i = wi

T xm
n + bi , i = 1, . . . , N. (4)

We combine x̃m
n,i in a predefined order (left to right and

top to bottom) as X̃n = [̃x1
n, . . . , x̃M

n ]. Instead of representing
each image as a vector, we go one step beyond by representing
the image as a matrix. Note that this strategy is different
from simply organizing the local features into the matrix form.
By imposing image regions, we can cope with the variations
of images. Besides, it is also more semantically meaningful
than directly using local features.

B. CEC-Based Image Representation

We can use X̃n for image representation and apply it for
classification tasks directly. However, since each exemplar
classifier is learned with only one positive sample, it may be
unable to distinguish the complex semantics well. Besides, the
dimension of exemplar-based representation increases with the
number of training images N .

We use the mixture Dirichlet distributions to model the
contextual relationships of exemplar classifier-based repre-
sentation. Let X̃ = [X̃1, . . . , X̃ N ], the mixture Dirichlet
distribution can be written as

PX̃ |Y (̃x|y,�y) =
K∑

k=1

γ
y

c Dir
(
x̃; ξ

y
k

)
(5)

where �y = {γ y
c , ξ

y
k } are the parameters with

∑
c γ

y
c = 1.

Y is a random variable defined on the classes of images
y ∈ {1, . . . , C}. K is the mixture number. The Dirichlet
distribution Dir(̃x; ξ) is calculated as

Dir(̃x; ξ) = �

(
N∑

n=1

ξn

)
N∏

n=1

(̃xn)ξn−1
/ N∏

n=1

�(ξn) (6)

where ξ = {ξ1, . . . , ξN }. �(.) is the Gamma function. We learn
the parameters using the generalized expectation-maximization
algorithm [23]. An image region’s posterior probability is
predicted as

PY |X̃ (y |̃x) = PX̃|Y (̃x|y)PY (y)/PX̃ (̃x) (7)

where PY (y) and PX̃ (̃x) are set to 1/C and 1/N , respectively.
The posterior probabilities are used for image region’s rep-
resentation h as h = (PY |X̃(1|̃x), . . . , PY |X̃ (K |̃x))T . In this
way, we can ensure the new semantic representation does not
increase with the number of training images as long as the
number of mixture distributions is fixed.

C. BiLayer Model for Classification
Each image region can be classified as belonging to a

particular class using h. We use a nonlinear function f (h)
to model this relationship as

z = f (h) = αT q (8)

with q defined as the linear and quadratic correlations between
each element of h as

q = [h1; . . . ; hK ; h1h1; h1h2; . . . ; hi h j ; . . . ; hK hK ]. (9)

We use the linear term to model the influences of each
semantic index and use the quadratic term to model the cor-
relations. Higher order relationships can also be incorporated
to improve the performance with the dimension of q increases
rapidly.

Let z = [z1; . . . ; zM ], we use the linear combination of
each zm , m = 1, . . . , M for the image-level prediction as

y = zT β. (10)

Equations (8) and (10) can be rewritten in a matrix form as

y = αT Qβ (11)

with Q = [q1, . . . , q M ].
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Algorithm 1 Procedures for Solving (14)
Input:

The initial parameters α, β; the regularization parameters
λ2 and λ3; training images ( Qn, yn), n=1,…, N; maximum
iteration number maxi ter ; stopping threshold θ

Output:
The learned parameters α, β;

1: for i ter = 1, 2, . . . , maxi ter
2: Solve for the optimal α while keeping β fixed by

solving Eq. 15;
3: Solve for the optimal β while keeping α fixed by

solving Eq. 16;
4: Calculate the change of objective value of Eq. 14 falls

below θ .
If not satisfied,

Go to Step 1;
else

Break, go to step 5.
5: return The learned encoding parameters α, β.

To learn the parameters α and β, we try to minimize the
prediction errors on the training images as

[α,β] = argmin
α,β

N∑

n=1

loss
(
αT Qnβ, yn

)
(12)

where Qn is the new image representation with its
corresponding label as yn , n = 1, . . . , N . We use the
exponential loss as

loss(αT Qβ, y) = e−αT Qβ×y . (13)

To avoid overfitting, we add L2 norm to α and β. The final
objective function can be written as

[α,β] = argmin
α,β

N∑

n=1

e−αT Qβ×y + λ2‖α‖2
2 + λ3‖β‖2

2

(14)

where λ2 and λ3 are the two parameters, which control
the L2 norm influences of α and β, respectively. However,
(14) cannot be optimized jointly over α and β. Hence, we
resort to the alternative optimization strategy by optimizing
over α/β while keeping β/α fixed. When β is fixed, the
optimization over α can be solved as

[α] = argmin
α

N∑

n=1

e−αT Qβ×y + λ2‖α‖2
2. (15)

When α is fixed, the optimization over β can be solved as

[β] = argmin
β

N∑

n=1

e−αT Qβ×y + λ3‖β‖2
2. (16)

This alternative optimization over α and β can be iterated
for a predefined times or the decrease of objective value of (14)
falls below a threshold. Algorithm 1 gives the procedures for
solving (14).

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed CEC-based
method, we conduct experiments on several public image
data sets: the Natural Scene data set [16], the Caltech-101 data
set [41], the Caltech-256 data set [42], the Flower-17 data
set [43], and the Flower-102 data set [44]. Fig. 2 shows some
example images of these data sets.

A. Experimental Setup

To extract local features, we densely choose local regions
with multiscales. Images are first resized to the same size
for each data set. The smallest local region is set to
16 ×16 pixels with an overlap of 6 pixels. We use the sparse-
coding technique [45] and set the codebook size to 1000.
Max pooling with spatial pyramid matching (L = 0, 1, 2) is
used to get the initial BoW representation of images. The
minimum size of image region is set to 64 × 64 pixels
with 16 pixels overlap. Hence, we can get about 150 image
regions for a 300 × 200 image. The initial image region’s
visual representation is obtained by max pooling the encoded
parameters within this region. The learned exemplar classifiers
are then used to predict image region’s classes. We set the
maximum number of iterations in Algorithm 1 to 50. For a
fair comparison, we compare the performances reported by
other methods directly. We also give the performances of using
CEC-based representation on the image level (CE).

B. Natural Scene Data Set

There are 15 classes of images in this data set. Each class
has 200–400 images with the average size of 300×250 pixels.
We resize all the images to 300 × 250 pixels and randomly
select 100 images per class for training. The other images are
used for the performance evaluation. This process is repeated
for ten times to get reliable results.

We give the performance comparisons of CE and CEC
with other methods [11], [16], [19], [21]–[23], [30], [45]–[47]
in Table I. Since the visual representations of images do
not have semantic correspondences with human perception,
directly using the text-processing technique cannot achieve
comparable performances [19], [46] as the semantic-based
methods. The visual only based methods [11], [16], [45], [47]
improve the recognition by designing discriminative models
and making use of the spatial and correlation relation-
ships, and hence, can boost the performances compared
with [19] and [46]. The semantic-based methods [19],
[21]–[23], [30] can alleviate the semantic and visual discrep-
ancy problems and can improve the recognition accuracy.
However, the histogram-based image representation cannot
fully explore the spatial layout and the structure relationships
of visual features. By combining semantic correspondences
with image regions for joint representation, the proposed
CEC can eventually outperform visual only and semantic-
only-based methods. Besides, compared with [23], which also
explores the contextual relationships of semantics, CEC can
make use of the discriminative property of exemplar classi-
fiers for representation. The use of region-based strategy also
helps to make use of more information. Moreover, compared
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Fig. 2. Example images of the Natural Scene data set, the Caltech-101 data set, the Caltech-256 data set, the Flower-17 data set, and the Flower-102 data set.

TABLE I

PERFORMANCE COMPARISON OF THE PROPOSED CONTEXTUAL

EXEMPLAR SPACE-BASED IMAGE REPRESENTATION AND

CLASSIFICATION METHOD WITH OTHER METHODS ON THE
NATURAL SCENE DATA SET. SS: SEMANTIC SPACE,

CM: CONTEXTUAL MODELS, AND KC: KERNEL

CODEBOOK. NUMERICAL VALUES STAND
FOR MEAN AND STANDARD DERIVATION

with [11], which uses the bilinear model with visual clues
only, CEC jointly uses the visual and semantic information.
We give the confusion matrix in Fig. 3.

C. Caltech-101/256 Data Sets

There are more than 9000 images of 101 classes in the
Caltech-101 data set. The number of images per class varies
from 31 to 80. The 15 and 30 training images per class are
randomly selected for training. We repeat the random selection
process for ten times.

Fig. 3. Confusion matrix on the Natural Scene data set.

The performance comparisons of CEC with
others [11], [38], [42], [47]–[51] are given in Table II.
Compared with the visual-based methods, the proposed CEC
method can improve the recognition accuracy dramatically.
By learning discriminative models instead of using visual
distances [48] directly, CEC can outperform [48] by
9.5%/8.4% with 15/30 training images, respectively. Besides,
using the matrix-based technique can preserve more
information for accurate recognition compared with the
histogram-based methods, and hence, the proposed CEC and
sparsity-constrained bilinear model (SBLM) [17] are able to
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TABLE II

PERFORMANCE COMPARISONS ON THE CALTECH-101 DATA SET

outperform [41], [45], [46], [49], [51]. Moreover, by only
using the SIFT features, the proposed CEC can outperform
[50], which combines the different types of features. This
proves the effectiveness of the proposed method.

The Caltech-256 data set is an extension of the
Caltech-101 data set. There are 29 780 images of 256 classes.
The intra-class variability is also larger compared with the
Caltech-101 data set. There are at least 80 images per class.
15/30/45 training images per class are randomly selected for
ten times for the performance evaluation.

We give the classification performances of CEC and
others [11], [41], [45], [47]–[51] in Table III. We can have
similar conclusions as on the Caltech-101 data set. The pro-
posed CEC is able to outperform many visual- and semantic-
based methods. This is not only because we explore the
discriminative power of exemplar classifiers and contextual
relationships, but also because the use of region-based rep-
resentation can incorporate more spatial and structure infor-
mation. Besides, CEC is able to outperform ObjectBank [30]
which leverages images beyond training samples. Moreover,
CEC also outperforms methods which only use exemplar
semantic spaces [21], [22].

The proposed method can also be combined with the
other visual-based representation methods, such as the
Fisher Vector (FV) [53] and the convolutional neural
network (CNN) [54]. This is achieved by first obtaining the
visual representation of images using the FV/CNN and then
using the proposed CEC-based image representation method
for classification. In this way, we are able to achieve 49.7%
classification rate on the Caltech-256 data set when 30 training
images are used. This outperforms FV [53] by 2.3%. Besides,
on the Caltech-101 data set, we are able to achieve a classifi-
cation rate of 86.1% which is 1.4% better than the CNN-based
strategy when 30 training images per class are used.

D. Flower-17/102 Data Sets

There are 17 classes (buttercup, colts’ foot, daffodil, daisy,
dandelion, fritillary, iris, pansy, sunflower, windflower, snow-
drop, lilyvalley, bluebell, crocus, tigerlily, tulip, and cowslip)
of flower images in the Flower-17 data set. Each class has
80 images with a total number of 1360 images. We follow the
same experimental setting as in [26] using the three splits of
images (40/20/20 for train/validate/test, respectively). As color

Fig. 4. Confusion matrix on the Flower-17 data set.

plays an important role for flower recognition, we also extract
color SIFT features [55].

There are 8189 images of 102 classes with 40–250 images
per class in the Flower-102 data set. This data set is more
difficult to distinguish than the Flower-17 data set, as there
are more images and classes. We follow the same experimental
setup as [44] and [50] did and use ten images per class for
training, ten images per class for validation, and the rest of
images for testing.

Tables IV and V give the performance comparisons on the
Flower-17 data set and the Flower-102 data set, respectively.
For the Flower-17 data set, we also give the confusion
matrix in Fig. 4. Compared with the simple local feature
transformation [14], CEC makes use of the local features more
sufficiently, and hence, it outperforms [14] by 3.5%/2.5% on
the Flower-17/102 data sets, respectively. Besides, the use
of discriminatively trained classifiers is more efficient than
simple nearest-neighbor-based strategy [47]. Moreover, region-
based representation is more efficient than the histogram-based
methods [43], [56]–[58]. These results again demonstrate the
effectiveness of the proposed CEC method.

E. Parameter Influences

Larger λ1 places more importance on the exemplar training
image, while smaller λ1 encourages the learned classifier to
predict images as not belonging to the particular class. We give
the performance changes with λ1 in Fig. 5. We can observe
from Fig. 5 that the proposed method is able to achieve a
good performance with a wide range of λ1. This is because
the proposed CEC does not rely on the output of one particular
exemplar classifier, but combines them for joint representation.
The performances are relatively stable as long as the learned
exemplar classifiers can make consistent predictions. This
increases the robustness of the proposed CEC method.

λ2 and λ3 are the two parameters, which control the
regularization terms of α and β. Larger λ2/λ3 places more
importance on the regularization term α/β. We set λ2 and λ3



ZHANG et al.: CEC-BASED IMAGE REPRESENTATION FOR CLASSIFICATION 1697

TABLE III

PERFORMANCE COMPARISONS ON THE CALTECH-256 DATA SET

TABLE IV

PERFORMANCE COMPARISON ON THE FLOWER-17 DATA SET

TABLE V

PERFORMANCE COMPARISON ON THE FLOWER-102 DATA SET

to be equal in this paper. We give the influences of λ2/λ3 in
Fig. 6. We can observe from Fig. 6 that if we set λ2/λ3 too
large or too small, the performances decrease. We set λ2/λ3
to 0.2 for the Natural Scene data set and Flower-17 data set.
0.8 is used for the rest three data sets.

The mixture Dirichlet number K is another important para-
meter which influences the performances. Fig. 7 shows the
performance changes with K on the five data sets. We can
observe that a small K is unable to separate images well.
With the increment of K , we can gradually improve the
performance. However, if K is too large, the computational
cost increases as the image representation is of O(K 2).

F. Convergence

During each iteration, the optimization over (15) and (16)
can reduce the objective value of (14). Besides, the objective
value of (14) is larger than zero. This means, we can gradually
reduce the objective value of (14). For intuitive illustration,

Fig. 5. Performances change with λ1 on the five data sets.

Fig. 6. Performances change with λ2/λ3 on the five data sets.

we give the changes of objective values of (14) with the
number of iterations in Fig. 8.

G. SUN-397 Data Set

We also evaluate the proposed method on the SUN-397
data set [60]. This data set has 397 classes of
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Fig. 7. Performances change with K on the five data sets.

Fig. 8. Objective value changes of (14) with the iteration number on the
five data sets (the objective value is normalized using the initial value to show
the relative decrease of objective values).

approximately 100K images. We follow the same experimental
setup in [60] did and use 5/50 images per class for
training/testing, respectively, for ten times. We use the
combined feature matrix provided in [60] to make use
of various types of features (GIST, HoG, Dense SIFT,
and so on). The proposed CEC/CE achieves 16.2%/15.1%
accuracy, which outperforms [60] by 1.7%/0.6%, respectively.

V. CONCLUSION

In this paper, we proposed a novel contextual semantic
space-based method for image representation and classifi-
cation. Exemplar classifiers were trained to separate each
training image from the other images of different classes.
We densely selected image regions to use the spatial and
structure information of local features. Each image region was
represented as the responses of the learned exemplar classifiers
and then refined with the mixture Dirichlet model for semantic
representations. A bilayer model was used to predict image’s
classes by modeling the linear- and high-order relationships.
We conducted experiments on several public data sets, and the
results proven the effectiveness of the proposed method.
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