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Structured Weak Semantic Space Construction
for Visual Categorization
Chunjie Zhang, Jian Cheng, and Qi Tian, Fellow, IEEE

Abstract— Visual features have been widely used for image
representation and categorization. However, visual features are
often inconsistent with human perception. Besides, constructing
explicit semantic space is still an open problem. To alleviate
these two problems, in this paper, we propose to construct struc-
tured weak semantic space for image representation. Exemplar
classifier is first trained to separate each training image from
other images for weak semantic space construction. However,
each exemplar classifier separates one training image from other
images, and it only has limited semantic separability. Besides, the
outputs of exemplar classifiers are inconsistent with each other.
We jointly construct the weak semantic space using structured
constraint. This is achieved by imposing low-rank constraint
on the outputs of exemplar classifiers with sparsity constraint.
An alternative optimization procedure is used to learn the exem-
plar classifiers. Since the proposed method does not dependent
on the initial image representation strategy, we can make use of
various visual features for efficient exemplar classifier training
(e.g., fisher vector-based methods and convolutional neural
networks-based methods). We apply the proposed structured
weak semantic space-based image representation method for
categorization. The experimental results on several public image
data sets prove the effectiveness of the proposed method.

Index Terms— Exemplar classifier training, image classifica-
tion, structure learning, visual categorization, weak semantic
space.

I. INTRODUCTION

IN RECENT years, local features have been widely used
for image classification [1], [2], object detection [3],

segmentation [4], and retrieval [5]. Local features [3], [6]–[9]
are designed to cope with deformations and can also be
computed efficiently. To represent images, the bag-of-visual-
word scheme is often used.
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Although effective, visual feature-based representations lack
semantic correspondences with human perception due to
the semantic gap [10]. To alleviate this problem, many
works [11]–[18] have been done. Some researchers [11]–[14]
try to construct semantic space directly using training sam-
ples. However, the discriminative power of the corresponding
semantic spaces would be degenerated if the training samples
are biased. Others [15]–[18] try to annotate images at first.
However, the contamination of irrelevant objects hinders its
performances. Besides, the training samples are often imbal-
anced, which restricts the annotation accuracy.

Instead of only using training images collected by human
experts, researchers also try to transfer useful informa-
tion [19]–[24] for image representation and classification.
The Internet has abundant information, which has been
explored both for annotation [19], [20] and classification [21].
However, the Internet often contains noisy information,
which cannot be used directly for classification. To make
use of other data sets, researchers propose various transfer
learning-based methods [22]–[24]. However, the performances
are not satisfactory for images with large interclass variations.
To alleviate these problems, attributes [25]–[29] and exemplar
classifier-based [30]–[33] methods become popular. However,
attributes are often predefined and of limited discriminative
power. There are also many images, which cannot be well
represented by attributes. Besides, exemplar classifiers are
often trained independently, which makes the resulting
representation inconsistent with each other.

To solve these problems, in this paper, we propose a novel
structured weak semantic space construction method for visual
representation. We first train exemplar classifiers to separate
each training image from other images of different classes. The
output of the learned exemplar classifier has weak semantic
meanings as it measures the semantic similarity between the
testing image and the exemplar image. Besides, to make the
exemplar classifiers consistent with each other, we impose
low-rank constraint to the outputs of exemplar classifiers.
Sparsity constraint is also used to train exemplar classifiers
for final image representation. To evaluate the effectiveness of
the proposed method, we apply it for the categorization tasks
on several public image data sets. Experimental results prove
that the proposed method can achieve superior performances
than many visually based methods.

The main contributions of this paper lie in three aspects.

1) First, we propose a novel structured weak semantic
space-based image representation method. Images are
semantically represented for better categorization.
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2) Second, we generate the structured weak semantic space
by alternative optimization, which can be computed
efficiently.

3) Third, the proposed method can be combined with more
discriminative representation strategies [e.g., convolu-
tional neural network (CNN)-based methods] to further
improve categorization performances.

The rest of this paper is organized as follows. Related work
is given in Section II. The details of the proposed structured
weak semantic space-based representation method are given
in Section III. To evaluate the effectiveness of the proposed
method, we apply it for classification tasks on several public
data sets in Section IV. Finally, we conclude in Section V.

II. RELATED WORK

Various visual features [3], [6]–[9] had been proposed in
recent years. Scale-invariant feature transform (SIFT) feature
was proposed by Lowe [6] and widely used for categorization.
To speed up computation, Dalal and Triggs [3] proposed the
histograms of oriented gradients feature for human detection.
Nguyen et al. [7] proposed the support local pattern while Fan
et al. [8] targeted object matching with aggregated gradient
distributions. The Speeded up robust features was proposed
by Bay et al. [9]. However, the visual features lacked explicit
semantic meanings due to the semantic gap [10]. To solve this
problem, many works [11]–[18] had been made. Rasiwasia
and Vasconcelos [11] tried to classify scene images with low-
dimensional semantic spaces while Vogel and Schiele [12]
semantically modeled natural scenes for retrieval. Zhang et
al. [13] proposed to categorize objects in subsemantic spaces
while Rasiwasia and Vasconcelos [14] used holistic context
models.

Researchers also tried to annotate images [15]–[18].
Duygulu et al. [15] viewed object recognition as translat-
ing words from a fixed vocabulary by visual similarities.
Jeon et al. [16] proposed a cross-media relevance model
for automatic image annotation. The use of metric learn-
ing technique was proposed by Guillaumin et al. [17] with
nearest neighbor models for annotation. Wang et al. [18]
simultaneously conducted image classification and annotation.
To harvest the information of other sources, many works had
been made. Wang et al. [19] tried to annotate images by
searching and mining technologies [20]. Hierarchical synthetic
image classification was conducted using image search and
generic features by Wang and Kan [21]. Zhang et al. [22]
tried to used prelearned codebooks for new application with
linear [24] and nonlinear codebook transfer. Zhu et al. [23]
classified images with heterogeneous transfer learning.

Attribute was also used to alleviate the semantic gap
problem. Farhadi et al. [25] tried to describe objects by
their attributes while Parikh and Grauman [26] compared the
relativeness of different attributes. Lampert et al. [27] proposed
to detect unseen object classes by between-class attribute
transfer. Patterson et al. [28] collected various attributes
for scene understanding while Lampert et al. [29] targeted
zero-shot categorization by attribute-based classification.
Exemplar classifier-based method was also widely used.

Malisiewicz et al. [30] combined exemplar support vector
machine (SVM) classifiers for object detection while Zhang et
al. [31] proposed to use exemplar classifiers for weak semantic
representation. Zepeda and Perez [32] viewed exemplar SVMs
as visual feature encoders while Modolo et al. [33] calibrated
ensemble of exemplar classifiers for detection.

Sparse coding [34] had been widely used for visual cat-
egorization with good performance. Wang et al. [35] com-
bined locality constraint with sparse coding. Gao et al. [36]
encoded visually similar local features with similar para-
meters to reduce the quantization error. In order to encode
high-order information, fisher vector was used [37], [38].
Cinbis et al. [37] categorized images by combining fisher
kernels with nonindependent identically distributed image
models. Sánchez et al. [38] systematically evaluated fisher
vector for image classification. The direct usage of local
features was also proposed by Boiman et al. [39]. The
CNN-based methods [40]–[44] went one step further
by working on image pixels directly. Donahue et al.
[40] proposed a deep convolutional activation feature
(DeCAF) for generic visual recognition while Liang and
Hu [41] used recurrent CNN. Lin et al. [42] com-
bined localization, alignment, and classification with the
deep learning scheme. Perronnin and Larlus [43] pro-
posed a hybrid classification architecture by combing
fisher vectors with neural networks. The feature-sign-search
strategy [45] was often used for sparse coding.

Researchers had also proposed many data sets [46]–[49]
and algorithms [50]–[68] for efficient categorization.
Van de Sande et al. [50] extended the SIFT feature with
different color channels while Gemert et al. [51] explored
the hard assignment problem of local feature quantization.
Torresani et al. [52] proposed to semantically represent
objects. Li et al. [53] harvested information from the Google
to construct the ObjectBank for image representation. Zhang
et al. [54] used low-rank sparse coding to jointly encode
local features while Xie et al. [55] jointly considered
image classification and retrieval. Yuan and Yan [56] used
sparse reconstruction jointly for visual classification while
Angelova and Zhu [57] combined object detection and
segmentation for classification. Chai et al. [58] also combined
segmentation with classification. Ito and Kubota [59] explored
heterogeneous co-occurrence features while Bosch et al. [60]
used hybrid approach with generative and discriminative
models. Chatfield et al. [61], [63] tried to implement
different algorithms. Yang et al. [62] used multiple kernel
learning for object categorization. Zhang et al. [64] tried to
propagate discriminative information with graphlet path while
Li et al. [65] used locality constraint with codebook learning
for classification. Xiong et al. [66] explored the conformal
transformation kernel while Li et al. [67] tried to learn
ordinal distance metrics for image ranking. Li et al. [68] also
proposed a novel descriptor for efficient image classification.

In recent years, the CNN-based methods [69]–[75] had been
widely used for image classification. Krizhevsky et al. [69]
classified the ImageNet with CNNs and improved the accuracy
dramatically. Simonyan and Zisserman [70] increased
the depth of the network with improved performances.
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Perronnin and Larlus [43] combined the fisher vector and
CNNs while Zeiler and Ferugs [71] tried to visualize the
learned networks. Donahue et al. [72] introduced DeCAF for
classification while Wei et al. [73] targeted the multilabel
classification problem. He et al. [74] proposed a spatial pyra-
mid pooling strategy for classification with the convolutional
networks while Azizpour et al. [75] made classification by
exploring the deep representations from generic to specific
characters.

III. VISUAL CATEGORIZATION BY STRUCTURED

WEAK SEMANTIC SPACE CONSTRUCTION

In this section, we give the details of the proposed structured
weak semantic space method for visual categorization.

A. Structured Weak Semantic Space Construction

We first represent images using the sparse coding tech-
nique [34]. Formally, let xn ∈ R

D×1, n = 1, . . . , N , be the
visual representation of the nth image with its corresponding
label as yn , where N is the number of training images. We try
to train linear exemplar classifier

ŷn = wnxn n = 1, . . . , N (1)

to separate each training image from other images of different
classes, where wn ∈ R

1×D is the classifier parameter. This is
achieved by minimizing the loss of training images as

wn = argmin
wn

N∑

i=1,yi �=yn

�(wnxn, yi ) n = 1, . . . , N. (2)

We use exponential loss �(wnxn, y j ) = e−wn xn×y j in this
paper. To avoid overfitting, we add sparsity constraint on the
parameter of exemplar classifier as

wn = argmin
wn

N∑

i=1,yi �=yn

�(ŷn, yi ) + α‖wn‖1 (3)

where α is the parameter that balances the influences of
sparsity constraint and the summed loss.

The nth exemplar classifier is trained to separate image xn

from other images of different classes. Suppose we have two
other images xi and x j . xi is similar with xn while x j is
dissimilar. If we classify xi and x j using the nth exemplar
classifier, the predicted ŷi would be larger than ŷ j . In other
words, the exemplar classifier believes image xi is more
semantically similar with xn than image x j . However, the
exemplar classifier is trained with only one positive sample.
The output is relatively weak as it only measures the similarity
with one image instead of images of the same class. Although
the semantic information is weak for each exemplar classifier,
the joint representation using a number of exemplar classifiers
would be more discriminative. We use the outputs of exemplar
classifiers for image representation as h = [ŷ1; . . . ; ŷN ] and
call it weak semantic representation in this paper. If two
images are similar, their weak semantic representations would
be similar and consistent with each other. In this way, we
are able to replace image’s visual representation with weak

semantic representation, which is more semantically correlated
than visual features.

Let Ŷ = [h1, . . . , hN ], X = [x1, . . . , xN ], and W =
[w1; . . . ; wN ], and we can get the matrix representation of
images as

Ŷ = W X . (4)

The exemplar classifiers can be optimized as

W = argmin
W

‖e−W ˜X‖1,1 + α‖W‖1,1 (5)

with ˜X = X. × Y , where .× is the dot product. The exemplar
classifier can be trained one after another. However, due to the
interclass and intraclass variances, each independently trained
exemplar classifier only tries to separate the corresponding
training image from other images, leaving the other training
images of the same class unconsidered. Besides, the outputs
of different exemplar classifiers have varied degrees of scales.
The resulting representations may be dominated by the exem-
plar classifiers with large scales. It is more reasonable to jointly
learn exemplar classifiers.

We impose low-rank constraint on the outputs Ŷ with the
problem as

W = argmin
W

‖e−W ˜X‖1,1 + α‖W‖1,1 + β‖W X‖∗ (6)

where β is the parameter, which controls the influence of
low-rank constraint. We use the low-rank constraint for two
reasons. First, the consistency of exemplar classifiers means
they have similar predicted values for similar images. Second,
the low-rank constraint can model the intrinsic correlations
and suits our problem well. In this way, we can jointly learn
the exemplar classifiers for structured weak semantic space
construction.

The proposed method can alleviate the semantic discrepancy
between visual features and human perception for two reasons.
First, we use the outputs of exemplar classifiers for image
representation instead of using visual features. Each exemplar
classifier tries to predict the semantic relatedness with the
exemplar image. Since exemplar classifier is trained with one
positive sample, the corresponding semantic representation is
weak. Second, we jointly model the structured information
of exemplar classifiers with low-rank and sparse constraint.
The structured modeling strategy ensures exemplar classifiers
to consistently representing images with the same seman-
tic meaning. In this way, we are able to get semantically
consistent image representations and alleviate the visual and
semantic discrepancy to some extent.

Note that this strategy can be combined with other visual
feature-based representation methods (e.g., sparse coding,
fisher vector, and CNN). This is because the proposed method
first trains exemplar classifiers for semantic representations.
The exemplar classifier training process is independent of
the initial image representation. After exemplar classifiers are
learned, we can construct weak semantic spaces for represen-
tation. Since the neural network-based methods can achieve
more accurate classification performances, the learned seman-
tic representations are more discriminative and semantically
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consistent with human perception. Finally, we train linear
SVM classifiers to predict image categories. The procedures
of the proposed structured weak sematic space construction
method for visual categorization are given in Algorithm 1.

Algorithm 1 Procedures of the Proposed Structured Weak
Semantic Representation Method for Visual Categorization
Input:

Training images (xn, yn), n= 1, . . . ,N and the testing
images.

Output:
The predicted classes of test images;

1: Represent images using the sparse coding strategy with
local features;

2: Construct the weak semantic space by optimizing over
Problem 6 and represent images accordingly;

3: Train SVM classifiers using the weak semantic spaces
based representation for categorization;

4: return The predicted classes of testing images.

B. Optimization

Problem 6 is hard to optimize as both the nuclear norm
and the sparsity constraint are nonsmooth. To handle this
problem, we introduce two slack variables with equality
constraint as

[W, W1, W2] = argmin
W,W1,W2

‖e−W2 ˜X‖1,1

+ α‖W1‖1,1 + β‖W X‖∗
s.t. W = W1, W1 = W2. (7)

This problem can be solved by introducing augmented
lagrange multipliers as

L(W, W1, W2) = ‖e−W2 ˜X‖1,1 + α‖W1‖1,1 + β‖W X‖∗
+ tr

[
Y T

1 (W − W1)
] + u1

2
‖W − W1‖2

F

+tr
[
Y T

2 (W1 − W2)
] + u2

2
‖W1 − W2‖2

F

(8)

using the Inexact Augmented Lagrange Multiplier
method [44]. Problem 8 can be solved by alternatively
optimizing over W, W1, W2 while keeping the other two
parameters fixed.

1) Optimizing W1: When W and W2 are fixed, the opti-
mization over W1 can be achieved by

W1 = argmin
W1

α‖W1‖1,1 + tr
[
Y T

1 (W − W1)
]

+ u1

2
‖W − W1‖2

F + tr
[
Y T

2 (W1 − W2)
]

+ u2

2
‖W1 − W2‖2

F . (9)

Let L1 = tr[Y T
1 (W − W1)] + (u1/2)‖W − W1‖2

F +
tr[Y T

2 (W1 − W2)] + (u2/2)‖W1 − W2‖2
F , and Problem 9 can

be solved using the feature-sign-search [45] strategy with

∂L1

∂W1
= −Y1 + u1(W1 − W) + Y2 + u2(W1 − W2). (10)

2) Optimizing W2: When W and W1 are fixed, the opti-
mization over W2 can be done as

W2 = argminW2
‖e−W2 ˜X‖1,1 + tr

[
Y T

2 (W1 − W2)
]

+ u2

2
‖W1 − W2‖2

F . (11)

This problem can be solved with gradient descent. Let
L2 = ‖e−W2 ˜X‖1,1 + tr[Y T

2 (W1 − W2)] + u2
2 ‖W1 − W2‖2

F ; we
can have
∂L2

∂W2
= −‖e−W2 ˜X‖1,1W2e−W2 ˜X − Y2 + u2(W2 − W1). (12)

3) Optimizing W: When W1 and W2 are fixed, the opti-
mization over W can be equally rewritten as

W = argminW
β

u1
‖W X‖∗ + 1

2

∥∥∥∥W −
(

W1 − 1
u1

Y1

)∥∥∥∥
2

F
.

(13)

Let C = W X ; we have W = C X+, where X+ is the
pseudoinverse of matrix X . Since X is known, the optimization
over Problem 13 can be rewritten as

C = argminC
β

u1
‖C‖∗ + 1

2

∥∥∥∥C X+ −
(

W1 − 1
u1

Y1

)∥∥∥∥
2

F
.

(14)

Let (W1 − 1
u1

Y1)X = D; we can have

C = argminC
β

u1
‖C‖∗ + 1

2
‖(C − D)X+‖2

F . (15)

Since ‖(C − D)X+‖2
F is always no larger than

‖X+‖2
F‖(C − D)‖2

F , we can optimize over an upper
bound of the objective of Problem 15 as

C = argminC
β

u1
‖C‖∗ + 1

2
‖X+‖2

F‖(C − D)‖2
F

≥ β

u1
‖C‖∗ + 1

2
‖(C − D)X+‖2

F (16)

which can be easily solved as

C = T β

u1‖X+‖2
F

(D) (17)

with T(1/u1)(D) = UDSλ(
∑

D)V T
D is the soft-threshold sin-

gular value operator and UD
∑

DV T
D is the singular value

decomposition of D.
4) Updating Parameters: u1, u2, Y1, and Y2 can be updated

accordingly as

Y1 = Y1 + u1(W − W1), u1 = εu1

Y2 = Y2 + u2(W1 − W2), u2 = εu2, ε > 1. (18)

We alternatively optimizing over W, W1, W2 and update the
parameters Y1, Y2, u1, u2 for a number of times. In this way,
we can jointly learn the exemplar classifiers with structure
and sparsity constraint to get the semantic representations
of images. Compared with independently training exemplar
classifiers, we can speed up the process for about five times.
We give the procedures for solving Problem 8 in Algorithm 2.
We then train linear SVM classifiers to predict the categories
of images.
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Fig. 1. Example images of the four data sets (one data set for each row, from top to bottom: Caltech-256 data set, Flower-102 data set, Scene-15 data set,
and PASCAL VOC 07 data set).

Algorithm 2 Procedures for Solving Problem 8
Input:

The initial parameters W, W1, W2, Y1, Y2, α, β, u1, u2, ε;
the regularization parameters α and β; training images (xn,
yn), n= 1, . . . ,N; maximum iteration number M .

Output:
The learned exemplar classifiers W ;

1: for m = 1, 2, . . . , M
2: Solve for the optimal W1 while keeping W, W2 fixed

by solving Problem 9;
3: Solve for the optimal W2 while keeping W, W1 fixed

by solving Problem 11;
4: Solve for the optimal W while keeping W1, W2 fixed

by solving Problem 16 as the upper bound of Problem 15;
5: Update the parameters Y1, Y2, u1, u2 using Eq. 18;
6: end for.
7: return The learned exemplar classifiers W .

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed struc-
tured weak semantic space-based visual representation
method (SWSS), we conduct categorization tasks on several
public image data sets: the Caltech-256 data set [46], the
Flower-102 data set [47], the Scene-15 data set [48], and the
PASCAL VOC 07 data set [49]. Fig. 1 gives some example
images of the four data sets.

A. Experimental Setup

We densely extract SIFT features with multiscales and over-
lap. The minimum size of local features is set to 16×16 pixels.
We normalize the extracted local features with L2 norm. The
local features are encoded with sparse coding and pooled
with maximum values for initial image representation [34].

For the Flower-102 data set, multiple color SIFT features
[50] (red, green, blue-SIFT, hue, saturation, value-
SIFT, C-invariant SIFT, and the opponent SIFT) are
extracted. The codebook size is set to 1000. Spatial
pyramid matching with three pyramids is used (2s × 2s,
s = 0, 1, 2), for the Caltech-256 data set, the Flower-102
data set, and the MIT-Indoor data set. The mean of per-class
classification rate is used for performance evaluation. For the
PASCAL VOC 07 data set, we use the train/validation/test
images provided by [49] and leverage the average precision
for evaluation. We also combine the proposed method
with CNN-based methods [70], [72] (SWSS-VGG and
SWSS-DeCAF) by using the image representations
of [70] and [72] for exemplar classifier training. We compare
with the performances reported by other researchers directly
for fair comparisons.

B. Caltech-256 Data Set

There are 29 780 images of 256 classes in the Caltech-256
data set. Each class has at least 80 images. For fair comparison,
we follow the experimental setup as [46] did and randomly
select 15/30/45/60 training images per class for training. The
random selection process is repeated for ten times.

Table I gives the performance comparisons of SWSS
with other methods [13], [31], [34]–[36], [38]–[39], [46],
[51]–[54]. Since SWSS can also be combined with other
visual representations, we also give the performances of
SWSS using the Laplacian sparse coding and Fisher vector,
respectively (SWSS-LSc and SWSS-FV).

SWSS is able to outperform many visually based
methods [34]–[36]. Specially, SWSS and SWSS-LSc can
improve over sparse coding, spatial pyramid matching ScSPM
[34] and Laplacian sparse coding, spatial pyramid match-
ing LScSPM [36] dramatically. Besides, compared with
other exemplar-based methods, SWSS jointly learns exemplar
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TABLE I

PERFORMANCE COMPARISONS ON THE CALTECH-256 DATA SET

TABLE II

PERFORMANCE COMPARISONS ON THE FLOWER-102 DATA SET

classifiers with consistency. In this way, we are able to improve
the categorization accuracy over [13] and [31]. Moreover,
SWSS can also outperform ObjectBank [53]. The automati-
cally collected Internet images are often contaminated with
noise, which hinders the final accuracy.

The fisher vector [38] can encode more information com-
pared with sparse coding. The proposed SWSS can also be
combined with fisher vector by using fisher vector for initial
image representations. In this way, we are able to improve
over FV on the Caltech-256 data set. Besides, by combining
SWSS with DeCAF and VGG, we can further improve the
performance. These experimental results prove the usefulness
of the proposed SWSS method for categorization.

C. Flower-102 Data Set

The Flower-102 data set has 8189 images of 102 classes
with 40–250 images per class. Some of the flower images are
visually similar, which are hard to classify even for humans.
We follow the same experimental setup as [47] did by using the

data splits for fair comparison. Table II gives the performance
comparisons of SWSS with [13], [31], [47], and [55]–[59] on
the Flower-102 data set.

We can have similar conclusions as on the Caltech-256
data set. First, compared with visually based methods [47],
[55]–[59], modeling the semantic information can help to
improve the discriminative power. Second, detection and seg-
mentation of objects can help to improve the performance.
However, the detection and segmentation strategies are not
always satisfactory, especially when objects and background
are cluttered. Detecting and segmenting objects [57], [58] also
cost a lot of computational time. The proposed SWSS method
can improve over [57] and [58] and also does not need to
detect and segment objects. Third, by jointly learning exem-
plar classifiers, we are able to improve over weak semantic
representation using examplar classifier [31] and S3R [13].
By encoding local features using fisher vector strategy, we can
get finer initial representations of images over sparse coding.
Hence, the combination of SWSS with fisher vector can
improve over simple SWSS by about 3.6%. The performance
can be further improved by more than 5% when combining
SWSS with VGG. The results again show the usefulness of
the proposed method.

D. Scene-15 Data Set

This data set has 200 to 400 images with the 15 classes as:
store, office, tallbuilding, street, opencountry, mountain, insid-
ecity, highway, forest, coast, livingroom, kitchen, industrial,
suburb, and bedroom. We randomly select 100 images per
class for performance evaluation as [48] did and use the rest
images for evaluation. This process is repeated for ten times.

Table III gives the performance comparison on the Scene-15
data set. We compare with visually based methods
[34], [38], [51] and semantic-based methods [11], [13],
[14], [31], [53], [60]. SWSS is able to outperform both
visual and semantic-based methods. Since visual features
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TABLE III

PERFORMANCE COMPARISONS ON THE SCENE-15 DATA SET

TABLE IV

mAP COMPARISONS ON THE PASCAL VOC 07 DATA SET

are quite different from words, directly using the word
processing techniques [11], [60] cannot cope with image
categorization tasks well. It is more reasonable and efficient
to model the relationships with visual features. By encoding
local features more finely (SWSS-LSc/SWSS-FV), we can
improve the categorization accuracy. The performance can
be further improved with more discriminative representations
(SWSS-DeCAF/SWSS-VGG). The experimental results on
the Scene-15 data set again prove the usefulness of the
proposed method.

E. PASCAL VOC 07 Data Set

This data set has 20 classes (person, bird, cat, cow,
dog, horse, sheep, aeroplane, bicycle, boat, bus, car,
motorbike, train, bottle, chair, dining table, potted plant,
soft and tv/monitor) of about 10 000 images. We use the
train/validation/test data set provided by [49]. The validation
samples are used for parameter selection. After the parameters
are learned, we combine the train and validation samples
together for testing.

Table IV gives the mean average precision (mAP)
comparisons of different methods on the PASCAL VOC

Fig. 2. Performance changes with alpha on the four data sets (SWSS for the
Caltech-256 data set with 30 images per class and the Scene-15 data set, and
SWSS-FV for the Flower-102 data set and the PASCAL VOC 07 data set).

Fig. 3. Performance changes with beta on the four data sets (SWSS for the
Caltech-256 data set with 30 images per class and the Scene-15 data set, and
SWSS-FV for the Flower-102 data set and the PASCAL VOC 07 data set).

07 data set. We also combine SWSS with fisher vector
and CNN-based strategies (SWSS-FV/SWSS-DeCAF/
SWSS-VGG/SWSS-Hypotheses-CNN-Pooling) for
categorization. SWSS-FV outperforms FV by 2.4%. Besides,
the CNN-based strategy is able to outperform well-designed
features by exploring deep correlations among image pixels.
By combing CNN for initial image representation, we
can further improve the categorization accuracy by jointly
modeling the weak semantic correspondences among training
samples. Specially, SWSS-DeCAF improves over DeCAF
by about 2%. When combined with VGG, the mAP can be
further improved by 15%.

We also give the per-class average precision of different
methods in Table V. SWSS is able to improve the categoriza-
tion performances over other methods when combined with
fisher vector and CNN-based visual representation strategies.
Besides, the relative improvements of different classes vary for
rigid and nonrigid objects. Since nonrigid objects often have
large interclass variations, it is hard to model them properly
with visual features. The use of semantic representation would
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TABLE V

PER-CLASS PERFORMANCE COMPARISONS ON THE PASCAL VOC 07 DATA SET

be more appropriate. Moreover, CNN is able to improve the
performance by deeply exploring the visual information of
images. By combining CNN for initial image representation,
we can train more discriminative structured weak exemplar
classifiers for better categorization.

F. Influences of Parameters

α controls the degree of sparsity of exemplar classifiers.
β influences the structure consistency of exemplar classifiers.
We give the performance changes with α and β on the four
data sets in Figs. 2 and 3, respectively. The performances vary
for different parameters on different data sets. We can see from
Figs. 2 and 3 that if we set α and β too large, the performances
decrease. α should be set to smaller values for data sets with
larger class variances. Besides, since the visual representations
of the Scene-15 data set are more consistent with each other
and hence relatively easier to classify than the other three data
sets, the optimal β can be set to smaller values.

V. CONCLUSION

In this paper, we proposed a novel structured weak semantic
space construction method and applied it for categorization
tasks. Each exemplar classifier was trained to separate one
image from the other images of different classes. We jointly
learn the exemplar classifiers with structured constraint by
restricting the outputs of exemplar classifiers to be low rank.
We also imposed sparsity constraint on the exemplar classifiers
to improve the discriminative power. We alternatively opti-
mized for the optimal parameters and evaluated the effective-
ness of the image representations with categorization tasks.
Since the exemplar classifier could be trained with various
image representation strategies, the proposed method could
make use of more discriminatively image representations for
efficient classification. Experimental results on several public
data sets proved the usefulness of the proposed method.
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