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Abstract: The biologically inspired hierarchical model for object recognition, Hierarchical Model and X (HMAX), has
attracted considerable attention in recent years. HMAX is robust (i.e. shift- and scale-invariant), but its use of random-
patch-selection makes it sensitive to rotational deformation, which heavily limits its performance in object recognition.
The main reason is that numerous randomly chosen patches are often orientation selective, thereby leading to
mismatch. To address this issue, the authors propose a novel patch selection method for HMAX called saliency and
keypoint-based patch selection (SKPS), which is based on a saliency (attention) mechanism and multi-scale keypoints.
In contrast to the conventional random-patch-selection-based HMAX model that involves huge amounts of redundant
information in feature extraction, the SKPS-based HMAX model (S-HMAX) extracts a very few features while offering
promising distinctiveness. To show the effectiveness of S-HMAX, the authors apply it to object categorisation and
conduct experiments on the CalTech101, TU Darmstadt, ImageNet and GRAZ01 databases. The experimental results
demonstrate that S-HMAX outperforms conventional HMAX and is very comparable with existing architectures that
have a similar framework.
1 Introduction

Object recognition has been widely used in the visual navigation of
robots, video surveillance and pedestrian detection [1–3]. In practical
applications, the difficulties that arise in object recognition are
typically caused by variations in the appearance of the objects and
the background complexity of the input images. Object variability
in terms of scale, rotation and illumination, especially in the case
of cluttered backgrounds, seriously disrupts the recognition [4, 5].
For instance, various human postures (e.g. squatting, stooping,
running or standing) in a real environment make accurate
recognition a difficult task. Many algorithms have recently been
proposed to address this issue.

Traditional appearance-based methods mainly employ low-level
visual features such as colors, textures and edges [6, 7]. Although
these methods generally take these features into account, they do
not selectively address discriminative features. They are also
sensitive to occlusion, deformation, scale and variations in
illumination. Local feature-based methods combine local
descriptors and keypoint detectors with spatial information.
Representative local feature methods have been proposed, such as
scale-invariant feature transform (SIFT) [8], gradient location and
orientation histogram [9], histogram of gradients [10] and speeded
up robust features [11]. These methods are effective in terms of
describing locally discriminative features, but they lack oriented
local information. Bag-of-words (BoW) [12] and bag-of-features
[13] are effective for resolving this issue; however, the amount of
structural information still falls short.

In recent years, significant advances have been made in the
understanding of brain cognition in the biological vision field. The
findings related to the primary visual cortex (area V1) are
especially important. Althoughresearching V1, Hubel and Wiesel
discovered that the visual system analyses patterns into multiple
and independent channels that have various spatial frequencies and
orientations [14]. This discovery gives biological support to early
stage psychophysical theories. On the basis of these theories,
Riesenhuber and Poggio [15] presented an initial computational
model of object recognition, called Hierarchical Model and X
(HMAX) that attempts to model the rapid object recognition
mechanism of the cortex. Serre et al. [16] improved the original
HMAX model significantly and proposed standard HMAX,
demonstrating that the visual cognitive model efficiently enhances
the performance of object recognition.

HMAX is an appearance-based feature descriptor that focuses on
feature invariance and selectivity. It is robust to scale and shift
deformations, but it shows sensitivity to rotational deformation
[16, 17]. Improvement of the rotation invariance of local features
is challenging, although recently some valid approaches have been
proposed [18–20]. The robustness to rotation, which is improved
in HMAX only by introducing rotated versions of the training
images, is inadequate. Conventional HMAX uses patches that are
randomly selected in the second (C1) layers, which generates a
huge amount of redundant information and also prevents
robustness against rotational deformation.

The stored patches in the C1 layers are the key components of the
discriminative and robust abilities of HMAX. Superior features
extracted by the stored patches determine the feature invariance and
selectivity, preserving HMAX performance in the cases of object
appearance variation and cluttered backgrounds. The majority of
patches selected by the random method, however, are redundant and
not discriminative for the recognition task, which results in
performance degradation and high computational cost. These
drawbacks seriously limit the overall performance of HMAX. We
propose a solution to this issue, based on a novel patch selection
method called saliency and keypoint-based patch selection (SKPS).
SKPS is a patch selection method based on a saliency mechanism and
multi-scale keypoints that aims to reduce the number of patches
chosen but keep those with better discrimination than those chosen by
random selection. Unlike standard HMAX with randomly selected
patches, our method extracts patches in the C1 layers of HMAX by
SKPS. We further propose a SKPS-based HMAX model (S-HMAX).
We show its effectiveness, by applying it to object categorisation and
by conducting experimental studies on the CalTech101, TU
Darmstadt (TUD), ImageNet and GRAZ01 databases.
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Fig. 1 HMAX structure overview
The rest of the paper is organised as follows. In Section 2, we
briefly review the conventional HMAX model. In Section 3,
we describe the SKPS method and S-HMAX model. In Section 4,
we present experimental results based on four public databases.
Finally, in Section 5, we give our conclusions.
2 HMAX review

The conventional HMAX [16] is a computational framework with
four layers: S1, C1, S2 and C2, as shown in Fig. 1. The
framework follows the mechanisms of the primary visual cortex
(area V1) and builds feature representation by patch matching and
maximum pooling operations. We briefly describe the operations
of each layer as follows.
S1 layers: The units in the S1 layers correspond to simple cells in V1.
The S1 units take the form of Gabor functions [21], that model
cortical simple cell receptive fields. Gabor functions are defined as

G(x, y) = exp − x2o + g2y2o
2s2

( )
× cos

2pxo
l

( )

s.t xo = x cos u+ y sin u and yo = −x sin u+ y cos u (1)

where θ represents orientation, l is wavelength, σ is scale and γ
indicates spatial aspect ratio.

Given an input image, the S1 layer with orientation θ and scale σ
is calculated by

S1s,u = |Gs,u ∗ I | (2)

where * denotes convolution, I is the input image and Gσ,θ is a Gabor
function with specific parameters.
C1 layers: These layers describe the complex cells in V1. The layers
are the dimensionally reduced S1 layers obtained by selecting the
maximum over local spatial neighbourhoods. This maximum
pooling operation over local neighbourhoods increases invariance
(providing some robustness to shift and scale transformations).
S2 layers: In these layers, S2 units pool over afferent C1 units from a
local spatial neighbourhood across all four orientations. The S2
layers describe the similarity between the C1 layers and stored
patches in a Gaussian-like way using Euclidean distance. The
responses of the corresponding S2 layers are calculated by

S2 = exp (−b ‖ C1(j, k)− Pi‖2) (3)
2

where β is the sharpness of the exponential function, C1( j, k) denotes
the afferent C1 layer with scale j and orientation k and Pi is the ith
patch from the previous C1 layers.
C2 layers: The final set of shift- and scale-invariant C2 responses is
computed by taking a global maximum of afferent S2 units across all
scales and positions. The responses of the C2 layers are calculated by

C2 = max
(m,n,s)

(S2(m, n, s)) (4)

where (m, n) is the position of S2 units and σ denotes the
corresponding scale. The output is a vector of N C2 values, where
N corresponds to the number of patches. The vector is used as the
C2 feature in the recognition task.
3 SKPS-based HMAX model

The HMAX model is an appearance-based feature descriptor that
balances feature invariance and selectivity. HMAX is robust in
object recognition, but it is sensitive to rotational deformation
because many stored patches are not refined and discriminative
with respect to rotation. We addressed this drawback by
introducing a novel patch selection method, saliency and
keypoint-based patch selection (SKPS) and proposing a
SKPS-based HMAX model (S-HMAX). The following sections
present the details of SKPS and S-HMAX.

3.1 Saliency and keypoint based patch selection

The stored patches in the C1 layers are the key components of the
discriminative and robust abilities of HMAX; thus, the
construction of a proper patch set is very important for the visual
recognition task. A random selection of patches from the universal
training set is an option, but that option is prone to bringing in
huge amounts of redundant information and is sensitive to
rotation. We address this by proposing a novel patch selection
method, SKPS, which is based on a saliency mechanism and
multi-scale keypoints. The method extracts fewer patches with
better discrimination and invariance when compared with those
obtained by random selection.

SKPS consists of the following five steps: (1) processing layer
extraction, (2) finding salient regions, (3) keypoint candidate
localisation, (4) selection of optimal keypoint candidates and (5)
robustness enhancement. Fig. 2 shows the structure of SKPS in
S-HMAX. The green dots are the location of keypoint candidates.
Different scales of red circles indicate different strictness of the
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Fig. 2 Overview of SKPS in S-HMAX
location constraint. The red rectangle denotes the location of a
selected patch.
3.1.1 Processing layers: Input images are processed by Gabor
filters with different directions and scales. We obtain Gabor scale
pyramids as per the method in [16]. We make the directional
multi-scale information tractable, by considering four orientations
and sixteen scales for further processing in HMAX. The
processing layers can be calculated using (2).
3.1.2 Salient region: A huge amount of irrelevant information
exists in the processing layers, which complicates locating the
more discriminative regions in the whole image. Obtaining dense
distinctive features requires the construction of a salient region
with rich discriminative information. Based on a biological visual
perception mechanism, attention is an important visual processing
stage that guides the gaze towards objects of interest in a visual
scene [22]. This ability to orientate towards salient objects in a
cluttered visual environment is of great significance because it
allows rapid and accurate detection and tracking of prey or
predators by organisms in the visual world. Itti and Koch [23] first
introduced a biologically inspired model to generate a saliency
map. Recently, some valid saliency models were proposed
[24, 25]. In our paper, the saliency map is constructed in the
processing layers based on a simple saliency model in [26]. Some
other saliency methods also can be employed in our framework.
Given an input image I, the log spectrum L is calculated by

L(f ) = log ( F(I)
∣∣ ∣∣) (5)

where F is the Fourier transform, f is frequency and log is a logarithm
operation. The phase spectrum of the image can be computed by

P(f ) = angle(F(I)) (6)
Fig. 3 Construction of the salient region

a Original image
b Saliency map of the input image
c Salient region
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The spectral residual R( f ) can be obtained by

R(f ) = L(f )− hn ∗ F(I)
∣∣ ∣∣ (7)

where hn is a matrix of all ones (in this study, a 3 × 3 ones matrix is
used) and * denotes the convolution operation.

The saliency map of the input image can be calculated

Sal(I) = (F−1(eR(f )+i·P(f )))
2

∣∣∣ ∣∣∣ (8)

We inhibit non-dominant information by adopting a simple version
of the saliency map. We segment the constructed saliency map to
obtain the salient region, that is, where the distinctive features and
patch extraction areas are concentrated. Given the saliency map of
the input image, the salient region at location (x, y) can be obtained

SR(x, y) = 1 if Sal(I(x, y)) . threshold
0 otherwise

{
(9)

In general, we set threshold =M(Sal(I )) × 2, where M(Sal(I )) is the
mean value of every pixel in the saliency map. (SKPS
experimentally shows the best performance when threshold =
M(Sal(I )) × 2, therefore we chose this value). The construction of
the salient region is illustrated in Fig. 3.
3.1.3 Keypoint candidate localisation: In the constructed
salient regions, we locate the keypoint candidates in each layer
with their corresponding direction. In the conventional HMAX
model, patches are randomly extracted from the overall C1 layers
to form the vocabulary of visual features. However, these visual
features are neither refined nor discriminative; they include
irrelevant and redundant information and degrade performance.
Achieving a reasonable recognition performance with HMAX
requires matching many patches, which results in high
3



computational cost. SKPS locates the keypoint candidates within the
salient region, which are identified by a keypoint detection method
named FAST [27]. FAST is widely used because of its accuracy
and speed; however, it does not have an orientation component
nor does it produce multi-scale features. Hence, we employ
processing layers that are processed by Gabor scale pyramids at
certain angles and produce FAST keypoints at each layer. In this
way, we extract multi-scale keypoint candidates with specific
angles. The keypoint candidate position key can be localised by

key = FAST(Pu,s(x, y)), (x, y) [ SR (10)

Here, FAST is the keypoint detection method, Pθ,σ denotes the
processing layer with orientation θ and scale σ, (x, y) are pixel
coordinates in the layer and SR is the salient region. We
preferentially extract image patches around these detected keypoint
candidates.
Fig. 4 Circular region expansion of the keypoint candidate
3.1.4 Selection of keypoint candidates: The keypoint
candidates directly extracted by FAST require further
preprocessing before recognition. The best keypoints are selected
by weighting all the keypoint candidates. Each patch is composed
of four layers that correspond to four different orientations; the
keypoint candidates in the same location of each layer are
weighted sums. The keypoint with the maximum weighted sum
value determines the patch location.

A large number of keypoint candidates are extracted during
keypoint extraction. Each patch is composed of four orientation
layers; therefore determining a discriminative location depending
on only one layer of the patch is unreasonable, but this easily
generates repeatable candidates at near-duplicate locations.
Therefore we use a balanced value based on the weighted sum
over each layer of the patch. The keypoint candidates of each layer
with corresponding direction are weighted summed. The weight is
obtained based on non-maximal suppression, which is effective for
edge and corner detection. However, it cannot be applied directly
to the features. Thus, a score function W is computed for each
detected keypoint. As the value of W increases, the number of
detected keypoints decreases [28]. The strength of any keypoint p
is defined to be the maximum value of W

W (p) = max
∑
x[R+

I p�x − Ip

∣∣∣ ∣∣∣− t,
∑
x[R−

Ip − I p�x

∣∣∣ ∣∣∣− t

⎛
⎝

⎞
⎠ (11)

where

R+ = {x|I p�x ≥ Ip + t}

R− = {x|I p�x ≤ Ip − t}

The maximum of the sum of the absolute difference between the
keypoint location and surrounding pixels is assigned to W. Here, t
is a threshold, p is the label of keypoint, Ip is the value of the pth
keypoint pixel in input image, x is a pixel position around
keypoint p, the pixel at position x relative to p is denoted by p→ x
and R is the adjacent area around the central keypoint p.

Using (12), we sum the scores at the location of the keypoint
candidates for each layer. We then sort the aggregate scores of
every keypoint candidate, and the top N keypoints are selected as
the patch locations, where N is the number of patches used in the
recognition task

Loc = max
∑n
i=1

Wi · Qui
, s.t. Qu = 1 num . 0

0 num = 0

{

where Loc is the patch position, num is the keypoint number of the
location determined by FAST, θ represents orientation, i is the index
of the orientation and n is the number of orientations.
4

3.1.5 Robustness enhancement: The robustness is improved
by further processing of the location of the keypoints by
robustness enhancement.

FAST records the location of the keypoint pixels, and imposes a
strict restriction on keypoint locations. However, this strict
restriction results in high discriminative power but poor
robustness. Therefore we relax the restriction using keypoint
expansion to determine a suitable trade-off between selectivity and
invariance. One possible method for improving robustness is to
loosen the location constraint in localisation measurement, that is,
keypoints from adjacent locations could be also taken into
account. The size of the extracted image patch corresponding to
the kth keypoint is defined as

Rk = r · keyk (13)

where keyk denotes the kth keypoint location, Rk is the circular region
centred at keyk and r is the radius of Rk that controls the strictness of
the location constraint. We can therefore infer that r modulates the
location constraint. A smaller radius corresponds to a smaller
circular region and more accurate keypoint positioning, but causes
poor feature invariance. A larger r corresponds to a larger circular
region that contains more spatial clues, and thus improves
robustness. However, too loose a constraint will degrade the
accuracy of the keypoint positioning and incorrectly group nearby
keypoints together.

The proposed keypoint expansion Ri is illustrated in Fig. 4. As
shown in the figure, the keypoint candidate (red dot) is expanded
in thickness to the neighbouring pixels in a circular region of
radius r. Since other keypoint candidates are likely to exist in the
circular region, the location of the patch can be calculated by

LocR = max
∑m
j=1

∑n
i=1

Wi,j · Qui,j
(14)

where m is the number of keypoint candidates in the circular region,
n is the number of orientations, i is the index of the orientation, j is
the index of the keypoint in the region and θ represents orientation.
3.2 SKPS-based HMAX

In contrast to conventional HMAX that selects patches randomly,
our proposed method of S-HMAX uses SKPS to refine patches at
the C1 layers of HMAX.
IET Comput. Vis., pp. 1–10
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The random selection in HMAX results in extraction of a
significant amount of redundant or irrelevant information (e.g.
background or gaps in the input images) in the recognition task,
which clearly degrades the performance of the HMAX model. In
S-HMAX, the patches are mainly extracted from the salient region
obtained by the biological attention mechanism; this salient region
contains more discriminative features for recognition. We further
find the locations with the most discriminative features in the
salient region and extract the patches for S-HMAX from those
locations. We also reserve 10% of the patches as a random choice,
because of the complexity of the input image. The mechanism of
random patch selection makes the proposed method adaptive and
robust to practical applications. In this paper, we use 10% random
patches, as this setting, gives a reasonable performance.
4 Experiments

We evaluated the performance of S-HMAX in several recognition
tasks. In Section 4.1, we evaluate the S-HMAX model under
rotational deformation using Caltech101. In Section 4.2, we
evaluate the S-HMAX under normal circumstances using four
datasets (TUD [29], Caltech101 [30], ImageNet [31] and GRAZ01
[32]). Owing to the large variations in the appearance of the input
images, we utilised the scale and position-invariant C2 features
[16], and passed these features to a linear classifier trained to
perform the classification recognition task. (Both a linear kernel
and a polynomial-kernel SVM were tested, and gave very similar
results. We chose the linear Lib-SVM [33] as the classifier). Four
orientations were set in advance, as for standard HMAX (e.g. 0°,
45°, 90°, and 135°). Except for the SKPS in the C1 layers, the
other layers of S-HMAX are similar to those of conventional
HMAX. We chose the evaluation metrics classification rate, recall
Fig. 5 Examples of training and testing set images and sample categories
for the experiment

a Sampling images for training and testing (aeroplanes)
b Sampling images of other categories: cups, guitars and laptops
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and 1-precision, defined as follows

1− precision = number of false positives

total number of positives
(15)

recall = number of true positives

number of true positives and false negatives
(16)

classification rate = number of true positives and true negatives

total number of positives and negatives

(17)

where a true positive is a correct classification of a positive (object), a
true negative is a correct classification of a negative (background), a
false positive is an incorrect positive classification and a false
negative is an incorrect negative classification.
4.1 Comparison between HMAX and S-HMAX in local
rotation

We evaluated the influence of local rotation on the output of the
S-HMAX model by comparing the conventional HMAX model
with the S-HMAX model under rotational deformation. The
sampling categories of the CalTech101 database were used in this
experiment. Sampling images of the training sets and testing sets
are shown in Fig. 5. We trained the models with original images
from the database. In the experiment, 15 original images (0°) of
each sampling category were randomly selected as training sets,
and 15 of their rotated versions with increasing amplitudes (15°,
30°, 45°, 60° and 90°) were used as testing sets. Twenty-five
patches of HMAX were utilised in the experiment. In addition, 5,
10 and 25 patches of S-HMAX were utilised for the performance
evaluation. The results of the experiment were averaged over 10
independent trials. We reported the mean and standard deviation
of the classification rate across all cases.

As shown in Fig. 6, the S-HMAX models are more robust to
rotational deformations. When the rotation is less than 30°, the
recognition rate of HMAX and S-HMAX is comparable. However,
when the rotation is over 30°, conventional HMAX shows a sharp
decrease in performance in nearly all categories. In comparison,
the S-HMAX models with 5, 10 and 25 patches have a more
stable performance and higher classification rate. Note that HMAX
with 25 patches does not have an obvious performance advantage
even when compared with the S-HMAX model with five patches.
On the contrary, S-HMAX with five patches has better
classification results for large rotation deformations (over 30°).
The performance of S-HMAX is clearly a significant improvement
over that of conventional HMAX with the same number of
patches. The results confirm that SKPS is an effective patch
selection method for discriminative and invariant features.
Furthermore, S-HMAX significantly improves performance
compared with conventional HMAX in the case of rotation
deformations and is a valid way to reduce the redundant
information extracted by the HMAX model.

The S-HMAX model improved the performance by the use of
salient regions and keypoints. To show the contribution of the two
modifications, we evaluated the model by separating the two
modifications into individual patch selection strategy. The
conventional HMAX was used as our baseline model. 15 rotated
images with the amplitude of 45° (it is most challenging for
recognition in local rotation) were used as testing sets. We
separately added the saliency strategy and keypoint strategy to the
baseline model for the classification, and compared them with
S-HMAX that combined these two together.

Table 1 shows the contribution to performance of our
modifications in HMAX. The saliency strategy and keypoint
strategy independently improve the performance of HMAX in
local rotation. Combining the two strategies together presents a
significant improvement in the local rotation.
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Fig. 6 Comparisons of HMAX and S-HMAX with different number of patches in local rotation on categories from the Caltech101 database

a Aeroplanes
b Laptops
c Guitars
d Cups
4.2 Object classification experiment

S-HMAX was shown in Section 4.1 to have a superior performance
in the case of local rotation. We further evaluated S-HMAX by
comparing its performance with that of other related algorithms on
four public image datasets: TUD, CalTech101, ImageNet and
GRAZ01.

4.2.1 TU Darmstadt: The TUD database (formerly the ETHZ
database) contains side views of cars, motorcycles and cows, as
shown in Fig. 7. We evaluated the S-HMAX model, the
conventional HMAX that uses the random patch selection method
and a modified HMAX model (M-HMAX) based on a maximum
energy patch selection method [34]. In addition, we also compared
SIFT [8] and spatial pyramid matching using sparse coding
(Sc-SPM) [35] in the experiment.

To make the comparison at the feature level, we compared the
scale- and position-invariant C2 features of HMAX models with
the features produced by SIFT and Sc-SPM by passing them to a
linear SVM that was trained to perform the object present/absent
recognition task. We compared the classification rate for various
numbers of features (5, 10 and 25). In the experiment, we
randomly chose 15 images from each category of the TUD
database as positive training images and 15 background images as
Table 1 Contribution of our modifications to the classification in local
rotation

Model version Aeroplanes Laptops Guitars Cups

Base 46.43 48.83 47.25 72.07
+saliency 65.71 54.76 53.33 75.66
+keypoint 67.29 55.12 52.17 77.85
+saliency&keypoint 78.57 61.85 57.63 82.67

6

the negative training set. For the tests, 50 images from each
category of the TUD dataset and 50 images from backgrounds
were randomly chosen as a test set. The results were generated
from 10 independent trials. We report the mean and standard
deviation of the classification across all classes.

Fig. 8 shows the simulation results on the TUD dataset for
different numbers of features. In general, S-HMAX clearly
outperforms SIFT, Sc-SPM, HMAX and M-HMAX in terms of
accuracy for most of the categories in the dataset. In particular,
S-HMAX significantly outperforms the other methods for the cars
and cows.

4.2.2 Caltech101: The Caltech101 dataset contains 101 object
categories plus a background category comprising 9144 images.
Sampling images are shown in Fig. 9. The size of each image is
around 300 × 200 pixels. We conducted this experiment using
1000 patches for the multi-classification procedure. We randomly
selected either 15 or 30 images from each category for training
and used the 50 remaining images for testing. The classifier was a
multiclass linear SVM that used the all-pairs method and was
trained on the 101 object and background categories. In the
experiment, we compared with self-taught learning (STL) [36],
invariant feature hierarchies (IFH) [37], conventional HMAX and
an enhanced version of HMAX, FHLib [38]. In addition, we also
compared with deep convolutional neural network architectures,
for example, convolutional deep belief network (CDBN) [39],
convolutional networks (Convnet) [40], caffe and vgg models [41,
42]. The results reported here are the average and standard
deviation, taken over all 101 classes. The object recognition
performance was obtained from 10 independent trials.

As shown in Table 2, we achieved 54% test accuracy using 15
training images per class, and 59% test accuracy using 30 training
images per class. Our results were competitive with STL, IFH,
HMAX and FHLib. Compared with Convet, caffe, vgg and
IET Comput. Vis., pp. 1–10
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Fig. 7 Sampling images from the TUD dataset

Last image is a background image
CDBN, we observed that S-HMAX outperformed Convnet, caffe
and vgg in both cases, while showed slightly worse performance
than CDBN. Overall, S-HMAX is generally comparable with these
methods.
Fig. 8 Comparison of S-HMAX with standard HMAX, M-HMAX, SIFT and Sc-S

a Motorcycles
b Cars
c Cows
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It is worth mentioning that the Convnet, caffe and vgg
architectures have gotten quite promising results for object
recognition [40–42], but these results are based on the
ImageNet-pretrained models [43], which are trained by millions of
PM on the TUD database
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Fig. 9 Sampling images from the Caltech101 database

a Piano
b Panda
c Lamp
d Ketch
e Chair
f Lotus
g Cougar body
h Inline skate
i Butterfly
images. However, in the experiment, the models trained from scratch
performed relatively poorly.
4.2.3 ImageNet: ImageNet is a large-scale dataset of object
classes with millions of images. Using this dataset, we studied the
performance of our S-HMAX model and compared it with several
convolutional neural networks (CNN) models, for example, caffe
[41], vgg-f, vgg-m and vgg-s [42, 44], which have generated quite
promising results in object recognition. Caffe is a deep learning
framework developed with cleanliness and speed in mind, which
separates model representation from actual implementation. Vgg is
a convolutional neural network that increases depth using
convolution filters. Vgg-f, vgg-m and vgg-s, respectively, are fast,
medium, and slow versions of the vgg models by different
processing in conv1 layer. To perform this comparison at the
feature level, we used the scale and position-invariant C2 features
of S-HMAX, and the 20th-layer features of CNN models [43, 45].
We conducted this experiment utilising 2000 patches. We
randomly selected 100 categories from ImageNet database and
randomly chose 30, 50 and 1000 images from each category for
training [The trained models of CNNs are publicly available in
vlfeat [44], which were trained to perform object classification on
ILSVRC12 (about 1000 images for training per category, hence
we used the pretrained models in the case of 1000 training images.
Table 2 Multi-classification comparison of several approaches on
Caltech101

Model 15 training images/cat. 30 training images/cat.

S-HMAX, % 54 ± 1.7 59 ± 1.5
STL, % 46.6 52.5
IFH, % 48 54
HMAX,% 44 ± 1.1 51 ± 1.2
FHLib, % 51 56
caffe, % 21.7 ± 1.7 43.4 ± 1.5
vgg,% 22.1 ± 1.9 44.8 ± 1.7
convnet, % 22.8 ± 1.5 46.5 ± 1.7
CDBN,% 57.7 ± 1.5 65.4 ± 0.5

8

In the cases of 30 and 50 training images, all the models in the
experiment were trained from scratch.]. 150 randomly selected
images were used for testing. The classifier was a multiclass
linear SVM. In the experiment, we resized the whole image to
224 × 224. Table 3 provided the classification results on ImageNet.
The results reported here were the average and standard deviation.
The object recognition performance was obtained from 10
independent trials.

As shown in Table 3, S-HMAX achieved 46.3% recognition
accuracy using 30 training images per category, and 54.7%
recognition accuracy using 50 training images per category. It
outperformed the CNN models when the number of training
images was relatively small, that is 30 or 50. However, when the
number of training images was up to 1000 per category, CNNs
showed more promising results than S-HMAX.

We note that the CNNs use high-level features (20th layer), while
S-HMAX chooses C2 features that are low-level (4th layer). The
high-level features of CNNs get adequate training and exhibit
promising performance if the size of training sets is big (i.e. 1000
training images); if not, their performance is often indifferent. By
contrast, C2 features are low-level and are prone to overfitting
when using big training data [16], which limits the improvement
of performance. However, when the size of training data are
moderate (i.e. 30 or 50 training images), S-HMAX performs well
in classification. In the CNN models, millions of parameters need
to be trained for recognition tasks. In the case of sufficient training
Table 3 Multi-classification comparison of several approaches on
ImageNet

Training size (per class) 30 50 1000

caffe, % 22.6 ± 1.5 38.3 ± 1.2 75.9 ± 0.3
vgg-f, % 20.2 ± 1.7 36.7 ± 1.5 71.3 ± 0.7
vgg-m,% 23.8 ± 1.3 38.8 ± 1.3 76.4 ± 0.5
vgg-s, % 24.6 ± 1.2 39.3 ± 1.0 77.5 ± 0.5
S-HMAX, % 46.3 ± 0.5 54.7 ± 0.3 67.3 ± 0.2

Best results are shown in bold
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Fig. 10 Sampling images of GRAZ-01

From left- to right-hand side, the categories are bikes, people and backgrounds
images, these parameters are full-fledged and the CNN models can
achieve promising performance for complex recognition tasks. If
these parameters are inadequate training, the performance of the
CNN models will sharply decrease. Therefore in the case of small
sizes of training data, S-HMAX does outperform the CNN
methods. Overall, we observe that the S-HMAX model achieves
very competitive performance with the CNN models in the
relatively small data case.
Fig. 11 RP curves of several approaches on GRAZ-01

a Bikes
b Persons

Table 4 Performance comparison of several approaches on GRAZ-01

Method Bikes Persons

EER AUC EER AUC

SIFT 64.3 73.6 61.2 66.9
BoW 75.8 81.5 74.4 81.4
SPM 76.6 84.9 75.7 83.5
BoFLH 81.5 91.6 79.3 88.6
HMAX 87.8 95.9 71.4 79.7
M-HMAX 85.7 96.5 75.5 84.1
S-HMAX 90.8 99.0 76.7 86.4

Best results are shown in bold

IET Comput. Vis., pp. 1–10
& The Institution of Engineering and Technology 2015
4.2.4 GRAZ01: GRAZ-01 is a challenging database with high
interclass variability on highly cluttered backgrounds, containing
people, bikes and backgrounds. Sampling images are shown in
Fig. 10. For this database, we followed the method presented in
[32]: 100 images (bike or person) and 100 images (backgrounds)
were randomly chosen as the training set and 50 other images
(bike or person) and other images (backgrounds) were chosen as
the testing set. One hundred patches (features) were used for the
experiment. We repeated the experiment 10 times and reported the
mean values of the test results. For effective evaluation of the
S-HMAX model, we also tested the receiver operating
characteristic (ROC) and recall-precision (RP) curves and
compared the performance of the proposed model to that of related
approaches (i.e. SIFT [8], BoW [12], SPM [46], bag of frequent
local histograms (BoFLH) [47], HMAX and M-HMAX [34]). The
results are shown in Table 4 and Fig. 11.

Table 4 provides the ROC curves results. S-HMAX achieved
competitive performance for the detection equal-error-rate (EER)
of the ROC curve and area under the ROC curve (AUC) tests. We
observed that S-HMAX gave promising results for people, and
outperformed SIFT, BoW, SPM, HMAX and M-HMAX. Our
proposed model also clearly outperformed these approaches for
bikes. Even compared with BoFLH, S-HMAX exhibited slightly
better performance for bikes. Fig. 11 shows the RP curves on
GRAZ-01. S-HMAX was competitive with the related approaches:
9



S-HMAX obviously outperforms all the comparison methods in the
bike category. Comparing with BoFLH, S-HMAX showed a slightly
lower RP result for people when the precision is high (1−precision <
0.2). However, S-HMAX outperforms BoFLH when the precision is
low (1−precision > 0.2). In general, S-HMAX is competitive for the
recognition of both bikes and people.
5 Conclusion

In this article, we presented SKPS, a SKPS method aimed at solving
the issues of the huge amount of redundant information extracted by
and the poor rotation invariance of the conventional HMAX model.
We enhanced the HMAX model with the SKPS method to extract
discriminative and invariant features. The SKPS-based patches are
robust to image distortions, including rotation. The proposed
S-HMAX model increases the rotation invariance and reduces
redundant information, thereby providing a good balance between
selective representation and invariance. Experiments on four
different databases demonstrated that our proposed model performs
well in a variety of visual recognition tasks. Our work thus far has
focused mainly on the patch selection of HMAX. Obtaining
higher-level features based on HMAX will constitute our future
work.
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