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Abstract Image recommendation has become an increasingly relevant problem recently, since
strong demand to quickly find interested images from vast amounts of image library. We
describe a biologically inspired hierarchical model for image recommendation. The biologi-
cally inspired model (BIM) for invariant feature representation has attracted widespread
attention, which approximately follows the organization of cortex visuel. BIM is a computa-
tion architecture with four layers. With the image data size increases, the four-layer framework
is prone to be overfitting, which limits its application. To address this issue, we propose a
biologically inspired hierarchical model (BIHM) for feature representation, which adds two
more discriminative layers upon the conventional four-layer framework. In contrast to the
conventional BIM that mimics the inferior temporal cortex, which corresponds to the low level
feature, the proposed BIHM adds two more layers upon the conventional framework to
simulate inferotemporal cortex, exploring higher level feature invariance and selectivity.
Furthermore, we firstly utilize the BIHM in the image recommendation. To demonstrate the
effectiveness of proposed model, we use it to image classification and retrieval tasks and
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perform experiments on CalTech5, Imagenet and CalTech256 datasets. The experiment results
show that BIHM exhibits better performance than the conventional model in the tasks and is
very comparable to existing architectures.

Keywords Image recommendation . Classification . Biologically inspired model . Image
retrieval . Feature representation

1 Introduction

In recent years, there are a large number of digital images made every day in the internet.
Effective image recommendation, and retrieval tools are strongly demanded by consumers,
including fashion, shopping online, sensing, medicine, and so on [17, 44, 47, 50].

Efficient image retrieval techniques play important roles in the image recommendation
system. Among them, content based image retrieval (CBIR) has drawn widespread research
attentiveness in the last decade. Users express information requirements by importing a search
query in the form of images. And then the retrieval system retrieves from the collected image
library that is close to the user’s query. In the CBIR, images are indexed by the image content,
such as texture, spatial layout, color, and shapes [23, 34].

The retrieval performance of a CBIR system essentially depends on the feature represen-
tation, which has been carried out extensive research by researchers for decades [2, 8, 45]. In
the visual system, humans trend to adopt high-level features (concepts) to represent images and
measure their similarity. By contrast, While the most computer vision techniques extracted
features with low-level features (color, shape, structure, texture and so on.) [11, 43].

To address this issue, several methods have been proposed. The spreading activation theory
is used to give annotation for the untagged images [7, 52]. Low level feature extraction plays
an important role in the CBIR system. Features are extracted from an entire image or a region
[23, 31]. The Bayes point machines method used to give the soft annotation to the unlabeled
image [16]. A tree structured self-organizing map is employed to deal with the large unlabeled
database, working as hierarchical levels [3].

Although varieties of methods have been proposed, it remains a very challenging problems
in the current system, which is mainly from the Bsemantic gap^ from the difference between
low level pixel values extracted by computers and human’s high level concepts [2, 23, 34, 45].
From a high view, this issue is the essential challenge of Intelligence, which is how to teach
machines to execute real-world like human.

Recently, important developments have been made in the research of brain science [14, 15,
35, 37]. The findings in the primary visual cortex V1 area are of significance. While
researching the V1 area, Hubel & Wiesel discovered that the visual cortex analyzes features
into various ways with different spatial orientations and frequencies [46]. The discovery gives
an important support to early neuroscience theories. Based on these theories, Riesenhuber &
Poggio described an original calculation framework for object recognition, called biologically
inspired model (BIM) that tends to model the cognitive mechanism of the visual cortex [48].
Serre et al. upgraded the original BIM model and presented the standard BIM [41], which
shows that the visual framework significantly improve the performance of object recognition.

The Standard BIMModel made a big step forward for extending neurobiological models to
deal with real-world vision tasks, and many enhanced models have been proposed about on the
basic framework of it. Mutch & Lowe [32]modified the model by constraining the number of
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feature input, inhibiting S1/C1 outputs, and increasing feature selection. Huang et al. improved
the random processes in patch selection with a novel selecting strategy based on energy
function which is combined with visual attention theory [13]. Qiao et al. developed a modified
model by introducing association to the BIM architecture and showed competitive results on
object recognition tasks [36]. Lu et al. proposed a novel receptive field in the S1 layers and
upgraded the framework by novel patch selection and matching processes [27–29, 51]. These
approaches all obtain better performances by incorporating some biologically motivated
properties in addition. Besides, there are other types of models which are inspired by different
properties of certain areas of visual cortex. The trainable COSFIRE filters [1], which model the
selectivity for parts of contours or line segments based on the properties of shape-selective
neurons in area V4, also achieve success in real applications. In conclusion, all these systems
have shown that the relevant biological findings are helpful for constructing more robust
computer vision algorithms.

BIM is a calculation model with S1, C1, S2, and C2 four layers, which concentrates on the
invariance and selectivity of features [41]. With the image data size increases, the four-layer
framework is prone to be overfitting in the big data cases, which limits its application. To
address this weakness, motivated by biology, we describe a biologically inspired hierarchical
model (BIHM) for image recommendation, which adds two more discriminative layers upon
the conventional four-layer framework [30]. In contrast to the conventional BIM that success-
fully mimics the inferior temporal cortex (from V1 to V4) of the human visual system, which
corresponds to the low level feature invariance and selectivity, the proposed BIHM adds two
more layers based on the conventional BIM framework to simulate up to inferotemporal cortex
(i.e., PIT and AIT), exploring higher level feature invariance and selectivity.

The remaining part of the article is organized as follows: in Section 2, we give an
introduction about the conventional BIM; in Section 3, we propose the BIHM method and
utilize the BIHM in image recommendation; in Section 4, we show experimental results based
on three databases; finally, in Section 5, we concludes this paper.

2 Biologically inspired model review

The biologically inspired model (BIM) [41] presented by Serre et al. has attracted widespread
attention recently. As an extension of the original model [37], it has been successfully applied
in various recognition tasks: From single object recognition in the clutter condition to multi-
categorization as well as the understanding of complex scene. BIM attempts to quantitatively
simulate the information transfer process in the visual ventral pathway, which conducts the
visual information from the lateral geniculate nucleus (LGN) through V1, extra striate visual
areas II (V2), to IV (V4). It composed by four layers of calculating units in a hierarchical feed
forward structure: S1, C1, S2 and C2 layers as the Fig. 1 shown.

The units in S1 layer are corresponding to the simple cells of the visual cortex, which
compute the response for input image by Gabor filter bank. The C1 layer is corresponding to
cortical complex cell layer and shows robustness to scale and shift transformations by pooling
the afferent S1 units with the MAX operation in the same scale and orientation band. It tends to
have larger receptive fields and increases the robustness to deformations from layer S1 to C1.

In the S2 stage, units pool C1 units from a local neighborhood across all orientations. A mass
of patches are chose from the C1 layers of training images at random before that. Then the
S2 units behave as radial basis function and pool over the C1 units in a Gaussian-like tuning way
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on the Euclidean distance between an input patch and a stored prototype. The C2 layer pools the
S2 units over all scales and positions with a global maximum operation, which devotes to obtain a
shift- and scale-invariant responses. Therefore, for the sampled k prototype patches, a k-
dimensional feature vector is finally obtained after the four-stage features extraction, which has
larger receptive fields and shows shift- invariant and scale-invariant properties (Figs. 1 and 2).

3 Biologically inspired hierarchical model

BIM has been demonstrated the strength on in various recognition tasks: From single object
recognition in the clutter condition to multiclass categorization as well as the understanding of
complex scene that depends on the recognition of both texture-based and shape-based objects.
However, with the image data size increases, the conventional BIM four-layer framework is
prone to be overfitting in the big data cases, which limits its application. To address this issue,
motivated by biology, we propose a biologically inspired hierarchical model (BIHM) for
image representation, which adds two more discriminative layers upon the conventional
four-layer framework. In contrast to the conventional BIM that tends to involve over fitting
in big data cases, BIHM is pond to describe more robust and representative features. Based on
the proposed BIHM model, we build an image recommendation system. The flow chart of the
BIHM is shown in Fig. 2.

Build upon the theories of Hubel et al. on visual cortex [14, 15, 35, 37, 46], the simple cells
are not sensitive to illumination and need edge-like response at a particular phase, and position.
The complex cells respond well to bars with a particular phase, while they are not sensitive to
both phase and position of the bar in the receptive fields (RFs). At the upper layers the
hypercomplex cells not only respond to bars in the phase and position invariant way, but also
are selective to the bars with a specific length. Hubel and Wiesel suggested that this increas-
ingly invariant and complex feature representations should be built by integrating the inputs
from lower levels.
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Fig. 1 BIM structure overview
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Two sort of functional layers exists in the visual cortex framework: the S layers consisted of
simple cells are interleaved with the C layers consisted of complex cells. In brief, along the
hierarchy, each S layer increase the feature selectivity by tuning to features of increasing
complexity, and each C layers increase the invariance to 2D transformations such as slight
changes in position and scale by a max pooling operation [41].

Therefore, simple units in the Sk layer pool the units from a related local spatial neighbor-
hood in the precedent Ck − 1 layer with various selectivity [40]. As a consequence, the
complexity of the prior response of units increases from layer Ck − 1 to Sk. The pooling
operation at the S stage is a Gaussian-like tuning function. The response of a simple unit
can be defined as:

y ¼ exp −
1

2σ2
∑
ns

j¼1
w j−x j
� �2 !

ð1Þ

where σ denotes the sharpness of the tuning around the prior responses of the unit which
corresponds to the weight vector (w1,…,wns). The maximal response of the unit is equal to
one when the current input x execute an exact match.

Complex units in the Ck layer pool the prior Sk layer units with the same selectivity but at
small different locations and scales to increase the robust to plane deformations from layer Sk
to Ck. The pooling operation at the complex C stage is adopted a MAX operation [39]. The
response of a complex unit is corresponding to the response of the strongest (x1,…, xns) from
prior Sk layer. The mathematical expression of the complex unit operation is defined as:

y ¼ max
j¼1…nc

x j ð2Þ

In the next stages of the model, by interleaving these two operations, i.e., MAX over
retinotopically organized inputs with the same prior response but small different scales and
locations and TUNING over inputs with different preferred stimuli, an increasingly complex
and invariant representation is built [18, 39]. From V1, the visual information is routed to V2,
V4 and IT, which has been shown to be critical in the ability of primates to perform invariant
recognition. This is done via two routes: a main route that follows the hierarchy of cortical
stages strictly (i.e., step-by-step) as well as several by pass routes which skip some of the
stages. It may help create a richer repertoire of features with various degrees of selectivity and
invariances by pass routes.

Fig. 2 Flow chart of the BIHM

Multimed Tools Appl



S3 stage In the S3 stage, the same step is iterated one more time to increase the complexity of
the prior response at the S3 level, where the response of S3 units with various selectivity are
combined with a Gaussian-tuning operation to generate more complex selectivity [39].

The S3 units present the similarity between an stored prototype and the previous C2 layers
and in a Gaussian-like tuning way by Euclidean distance. The mathematical expression of the
corresponding S3 layers are given by:

S3 ¼ exp −β* ∑
N

i¼1
C2 m; nð Þ−Fið Þ2

� �
; ð3Þ

where C2(m, n) is the afferent C2 layer with a specific scalem and orientation n, and Fi denotes
a sampled patch from the prior C2 layers, βdefines the sharpness of the exponential function,
N is the number of the sampled patches.

C3 stage In the C3 stage, the C3 units acquired by pooling the S3 units with the same
selectivity at adjacent scales and positions. The C3 units show the similar selectivity to
complex features with the S3 units, but with a broader size of invariance [39, 40]. The S3
and C3 layers give a description of largely tuned shape.

The set of invariant C3 responses can be calculated by doing a global maximum value of
inputting S3 units across all positions and scales. The responses of the C3 layers are given by:

C3 ¼ max x;y;σð Þ S3 x; y;σð Þð Þ: ð4Þ
where (x, y) denotes the position of S3 units and σ is the corresponding scale. The export is a
feature vector with C3 values. The vector is used as the C3 features in the experiment tasks.

The S3 and C3 steps follow the processing modes in S2 and C2, their further inter-leaving
and max-like pooling operations with the inferior layers bring in better feature selectivity and
invariance. The deeper features with more discriminative information benefit the BIHMmodel
in the cluttered recommendation tasks.

The content based recommendation system extracts the images from image library by
analyzing their contents. The system mainly performs two steps, i.e. Feature representation and
similarity measurement [25]. The performance of the system essentially relies on the method
of feature representation. The described BIHM exhibits a balanced between invariance and
selectivity, which fits well the recommendation task. In the recommendation system, the
images in the dataset are described by BIHM as multi-dimensional feature vectors, which
are stored in a feature dataset. To accurately get the required images, users should provide the
system with example images, and the BIHM represents them as internal feature vectors. Then
the similarities between the feature vectors of example images and the stored feature dataset
are calculated and recommendation is performed with the help of an image indexing. We then
could get the recommended images.

4 Experiments

In this part, we design some experiments to do the evaluation of BIHM in the image
recommendation tasks. In Section 4.1, we compare the BIHM with BIM and SIFT on
Caltech05 database [41]. In Section 4.2, we design a image classification experiment to
evaluate the BIHM using Imagenet database [6]. In Section 4.3, we execute an image retrieval
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task to evaluate BIHM on Caltech256 [10] and compare it with some related methods. Given
the various appearance transformation of the images, we applied the position-scale-invariant
C3 features of BIHM, and passed the features to a classifier to execute classification. (In the
experiments of this article, we select the linear Lib-SVM [4] as the classifier). We use two
standard evaluation measures widely used in image recommendation tasks as performance
evaluation metrics, including the classification precision and mean average precision (mAP).

4.1 Comparison between BIM and BIHM

The CalTech5 dataset contains the cars, frontal faces, aeroplanes, leaves, and motorcycles, as
shown in Fig. 3. We applied this database to evaluate BIHM and make comparisons with the
conventional BIM and the SIFT algorithm [26].

To make the experiment at a feature level and ensure a fair comparison between the
methods, we neglected the position information from SIFT, because it was shown in [20,
41] that structural information does not appear to improve classification performance. We use
the same experimental seting in [41]: We randomly choose 5000 reference patches from the
training set. Given an input image, we calculated the minimum Euclidean distance between all
its patches and the reference prototypes, thus we could obtain a feature vector with size 5000.
We compared the position-scale-invariant C2 features from the conversional BIM and the
updated C3 features from BIHMwith the SIFT features. We pass these features to an SVM and
perform a present/absent classification task. We chose the classification precision for different
numbers of features as the performance evaluation metric.

In this experiment, we chose 25 images at random from each category from the CaltTech5
database as positive training images and 25 different images from backgrounds as the negative
training set. In the test stage, 100 different images (every category of the CaltTech5 database)
and 100 other background images were chosen at random as a testing set. A various number of
features (i.e., 10, 50, 100, 200, 500, 1000, 2000 and 4000) were obtained by selecting them
from the 5000 available at random to train the models. The results in this part were tested with
10 times.

Fig. 3 Sample images of the CalTech5 datasets. The last one denotes a background image
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Figure 4 shows the experimental results of the CalTech5 database with different numbers of
features. Generally, it was demonstrated that BIHM exceeded BIM and SIFT in precision in
most classes in this database. The SIFT features are adept at the detection of a transformed
seen image, but they may lack discriminability in a more general classification task [28].
BIHM and BIM significantly exceeded SIFT for the faces, cars, leaves, and airplanes; in most
cases, BIHM was clearly superior to BIM, especially, when the feature number is bigger and
bigger, the improvement of BIM performance is limited due to the overfitting. In contrast,
BIHM performance maintains growth trend with the increasing feature number. Therefore, in
most image categories, BIHM shows superior performance.

4.2 BIHM based image classification

Imagenet is a huge and challenging database of object categories with millions of
images [6]. On this database, We further evaluated BIHM in image classification task.
To do a comparison experiment at the feature level, we employed the position-scale-
invariant C3 features from BIHM. We conducted this experiment utilizing 2000 features.
We selected 100 classes from Imagenet dataset randomly, and then we randomly
selected 50 images from every class for training and 150 other images for testing. A
multiclass linear SVM was choose as classifier. Table 1 gave the classification results on
the Imagenet database.

As shown in Table 1, BIHM achieved 74.5% classification precision. It outperformed the
related models, i.e., SIFT-variant +BoW, MKL, SIFT +GMM [9, 22, 38]. Even compared with
the famed deep learning network CNN [19], BIHM still shows a competitive result. We should
note that the CNN model use high-level features (20th layer), while BIHM employs C3
features that are relative low level (6th layer). In general, BIHM is effective and competitive
computational model in the image classification task.

4.3 BIHM based image retrieval

The Caltech256 is a challenging dataset that contains 257 object categories and a background
class including 30,607 images. Sample images are presented in Fig. 5. In this experiment, we
evaluate the performance of BIHM in the retrieval task on the Caltech256 dataset. We did this
experiment by 2000 features for the image retrieval procedure. We follow the same experi-
mental setup in [45]. The employed subsets are set as 10, 20, 50 classes. The images from each
category were randomly divided into a training set with 40 images and a test set with 25 image.
We compared with GIST [33], BoW [5], conventional BIM, and SPM [21].To do this
experiment at the feature level and perform a fair competition between the methods, we
choose the Euclidean distance as the distance metric learning algorithm. The measuring results
are mean average precision (mAP).

As shown in Table 2, we achieved 32.5% mAP using 10 classes retrieval, 22.3% using
20 classes and 18.75% using 50 classes. In the retrieval task, our proposed method exceeds
the relevant methods, i.e., GIST, BoW, and SPM, in all three cases. When compared with
the conventional BIM method, we note that the proposed model with newly added two
layers works well, and has an improvement in the task. Our results were competitive with
GIST, BoW, BIM, and SPM. As a whole, BIHM describes an effective computational
model for feature representation, and show competitive results in the image recommen-
dation task.
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Fig. 4 Comparison of BIHM with standard BIM and SIFT on the CalTech5 dataset: a airplanes, b cars, c leaves,
d faces, and e motorcycles

Table 1 Image Classification Per-
formance on the Imagenet Dasebase Method Precision

SIFT-variant + BoW 0.560
MKL 0.658
SIFT + GMM 0.689
CNN 0.787
BIHM 0.745
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5 Discussion

The information processing mode is hierarchical in the primate visual cortex. The standard
BIM is derived from the hierarchical theory of visual processing, i.e., the well-known Multi-
Stage Hubel Wiesel Architecture [14, 15]. As described in the architecture, the hierarchical
architecture of the visual cortex consists of three various levels cells, i.e., simple cells, complex
cells, and hypercomplex cells. BIMmimics the ventral visual pathway from the stage of simple
cells to that of complex cells. The simple cells are selective to the edge-like bars with particular
orientations and locations in the receptive fields. The complex cells obtain the stimulations
from various simple cells, so they can easily respond to the bars with different orientations and
locations in the receptive fields. The higher level features represented by the hypercomplex
cells could be regarded as the combination of that by the two types of lower level cells. The
combination of these two kinds of cells extends the scale and position invariance properties.
The feature representation is becoming increasingly abstraction from low level to high level.
The higher abstraction level means better understandable and classifiable, which involves less
guesswork and random component. Based on this consideration, we add more discriminative
layers upon the conventional four-layer framework and enhance the understandable and
classifiable of the biologically hierarchical inspired model. In contrast to the conventional
BIM that mimics the inferior temporal cortex, which corresponds to the lower level feature, the
proposed BIHM adds two more layers upon the conventional framework to simulate
inferotemporal cortex, exploring higher level feature invariance and selectivity.

Fig. 5 Sampling images from the Caltech256 database: a cougar body, b inline skate, and c butterfly, d ketch, e
chair, f lotus, g piano, h panda, i lamp

Table 2 Image retrieval performance on Caltech256

Method 10 classes 20 classes 50 classes

GIST 0.1850 0.1184 0.1184
BoW 0.2300 0.1400 0.0900
SPM 0.2700 0.1920 0.1355
BIM 0.2855 0.1732 0.1420
BIHM 0.3250 0.2230 0.1875
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Recently, the Convolutional Neural Network (CNN), another form of hierarchical structure,
has been obtained tremendous development, which has significantly improved the perfor-
mance in visual recognition and detection, speech recognition, and many other domains. The
CNN allows the hierarchical computational models to learn feature representations with
various levels of abstraction. Since Hinton et al. firstly used 8-layer convolutional nets to
claim top spot for object recognition in LSVRC2012 [19], the number of layers of
convolutional nets is with continuous growth. In LSVRC2014, the GoogleNet got the cham-
pion with 22-layer network [42]. The ResNet from Microsoft is a convolutional network with
152 layers [12]. The SenseTime refreshed this record with an up to 1207-layer network and
achieved state-of-the art performance (http://image-net.org/challenges/LSVRC/2016/results).
It should be noted that we are not alleging the hierarchical structure is the deeper, the better, but
based on the existing results, the deeper structure is with better representation using more data,
which seems like one of ways to improve the performance for the hierarchical models. Hence
we tend to improve the BIHM model with deeper network structure in the future based on the
biological theories and some deep learning techniques.

In this article, the biologically hierarchical inspired model was proposed and successfully used
in the recommendation task.We intend to extend our work into some other domains. For instance,
it is a heavyworkload for themedical workers to dispose a large number of clinical data every day,
a powerful recommendation or retrieval tool is essential. This has been attracted keen interest,
some effective retrieval approaches to the clinical data have been proposed [24, 49]. Therefore, it
would be a meaningful work to extend the proposed BIHM in biomedical or clinical domain.

6 Conclusion

In the article, we describe a novel biologically inspired hierarchical model by adding S3 and C3
layers upon the conventional BIM framework to represent a high level invariance and selec-
tivity of features, and successfully applied the proposed model in the image recommendation.
The BIHM provides a balanced trade-off between the features’ selectivity and invariance. The
experiments on three various datasets showed our proposed model qualifies in image recom-
mendation tasks. Our research by far has mainly concentrated on the performance upgrading of
BIM. The improvement of calculating speed and practical applications will be our future work.
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