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Abstract—This paper presents an effective method based on
vector regression and object oriented pooling for blind image
quality assessment. Unlike previous models that map the extracted
features directly to a quality score, the proposed vector regression
framework yields a vector of belief scores for the input image.
We explore the uncertainty factors in quality assessment and
design the belief scores to measure the confidences of an image
to be assigned to the corresponding quality grades. Moreover, we
propose an object oriented pooling strategy to further improve
the performance by incorporating semantic information of image
contents. According to this strategy, regions occupied by objects
will be assigned more weights in the pooling phase, leading to
a more accurate quality assessment. Extensive experiments on
benchmark datasets demonstrate that our approach achieves state-
of-the-art performance and shows a great generalization ability.

Index Terms—Convolutional neural network, image quality
assessment, perceptual image quality, object oriented pooling,
vector regression.

I. INTRODUCTION

QUANTITATIVE evaluation on image and video quality
is an important issue for many applications, such as im-

age acquisition, restoration, compression, transmission, and en-
hancement. In most situations, subjective assessment is a natural
way to evaluate the visual quality of images. However, subjec-
tive assessment is time-consuming, expensive, and cannot be
used in the scenarios where a real-time and automated assess-
ment is needed. Therefore, objective image quality assessment
(IQA) [1] has gained growing attention in recent years.
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According to the availability of reference images for qual-
ity assessment, existing objective IQA methods can be classi-
fied into three categories: full-reference (FR), reduced-reference
(RR) and no-reference/blind (NR/B) methods. FR-IQA and RR-
IQA methods evaluate the image quality by accessing either the
entire (FR, [2]–[8]) or partial (RR, [9]–[11]) information about
the reference image. In contrast, blind IQA (BIQA) methods
are developed for the situations where the reference image is
unavailable [12]–[16]. Particularly, general-purpose (i.e., non-
distortion-specific) BIQA methods do not limit themselves to
specific types of distortions, and thereby are more widely used
in real-world applications.

The current general-purpose BIQA methods can be roughly
divided into two categories. One is the opinion-free models that
do not require subjective scores for training. For example, learn-
ing a model without human opinion scores has been explored in
[17] and [18]. Saha et al. [19] proposed a totally training-free
model based on the scale invariance of natural images. The other
category is the opinion-aware BIQA methods that are usually
developed within a single regression framework. The main idea
is to learn a regression model that maps the extracted features
directly to a quality score [20].

Natural scene statistics (NSS) features are the most popu-
lar features adopted by BIQA methods [12]–[14], [21]–[24].
Blind image quality index (BIQI) [21] is one of the pioneer-
ing models, which uses distorted image statistics to build a
two-step framework for BIQA. In [22], a group of low-level
features, derived from natural image statistics, texture features
and blur/noise estimation, are used to build the LBIQ metric.
Wavelet and DCT transform coefficients are explored in DI-
IVINE [12] and BLIINDS-II [13], respectively. Mittal et al. pre-
sented BRISQUE [14] in the spatial domain with the mean sub-
tracted contrast normalized (MSCN) coefficients. In [23], NSS
features are combined with free energy principle based fea-
tures to build the NFERM metric. Zhang et al. [25] learned a
multivariate Gaussian model based on the NSS features derived
from multiple cues. Ghadiyaram and Bovik [24] extracted a rich
set of statistical features to achieve good quality prediction on
authentically distorted images.

Instead of designing hand-crafted features, feature learning
methods aim to acquire quality-aware representations from raw
images. Unsupervised feature learning has been explored in
[15], [26]–[29]. Ye et al. [15] proposed to encode patches
via soft-assignment and max pooling to obtain general fea-
tures. Semantic obviousness metric [28] combines two types of
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Fig. 1. Pipeline of the proposed method. It consists of two modules: vector
regression and object oriented pooling.

features. One focuses on the local characteristics and the other
measures the semantic obviousness of an image. Supervised
feature learning has also been used in many BIQA methods,
where the feature extractor and regression model are learned
jointly. Recently, deep learning has made a great progress in a
variety of vision tasks [30]–[33]. Researchers have shown an
increasing interest in applying deep neural networks to BIQA
[16], [34]–[39].

During the training of existing BIQA models, the mean opin-
ion scores (MOSs) are given as the ground-truth quality scores,
which are obtained through subjective experiments. We notice
that, in subjective tests, different subjects may assign different
quality scores to the same image due to many factors, such as
physiological differences, personal preferences, and individual
differences. This observation indicates that the uncertainty due
to the individual differences could be well explored to improve
the performance of BIQA.

In this paper, we propose an effective approach based on
vector regression and object oriented pooling (VROP) for BIQA.
Fig. 1 shows the pipeline of our method. At the stage of vector
regression, we introduce multiple quality grades and use a belief
score vector to measure the confidences of an input image to
be assigned to these grades. In practice, the vector regression
is implemented by a convolutional neural network (CNN). The
belief score maps generated by the CNN are further transformed
into local score maps for global score pooling. At the stage of
score pooling, we propose an object oriented pooling strategy
to convert the local score maps into image level quality score.
Since objects are more likely to be noticed as shown in some
previous studies [40], regions occupied by objects will be more
weighted in the proposed pooling strategy.

The contributions of our work are three-folds.
1) A vector regression framework is proposed for BIQA. In

this framework, we explore the uncertainty in quality as-
sessment and introduce a vector of belief scores to mea-
sure the probabilities of an image to be assigned to the
corresponding quality grades. Experimental results show
that this framework can achieve better performance over
the state-of-the-art methods.

2) The proposed vector regression framework is an open
framework. Experimental results on authentically dis-
torted images indicate that it can be integrated with dif-
ferent CNNs and benefits the performance regardless of
the network architecture.

3) An object oriented pooling strategy is proposed to further
improve the performance at the stage of the global score
estimation. This strategy assigns more weights to object-

like regions within which patches are more likely to be
object proposals.

The remainder of this paper is organized as follows. Section II
briefly reviews the related works. Section III introduces the basic
principle of our approach. Section IV describes the proposed
BIQA method in detail. We report the experimental results and
present the discussions in Section V and VI respectively. Finally,
Section VII concludes the work.

II. RELATED WORK

In this section, we introduce previous related works, includ-
ing a brief review of neural network based BIQA methods,
representation for multi-level image quality and generic object
detection.

A. Neural Networks for BIQA

Deep learning has promoted the developments of many visual
tasks, including image classification [30], [41], object recogni-
tion [31], [42], semantic segmentation [32], [43], visual track-
ing [33], [44], etc. Tremendous progress has been made due to
the representative power of deep neural network. Recently, re-
searchers show increasing interests in applying neural networks
to BIQA.

Deep belief network (DBN) has been explored to extract
general quality features in some previous works. An early ver-
sion of FRIQUEE [34] combines a DBN with an SVM, where
the network is used to generate more complex representations
from pre-extracted features. Tang et al. [35] presented a BIQA
method using a rectifier neural network. In their work, a DBN is
designed to provide complex feature representations and finally
a Gaussian process is used to obtain the image quality score. Hou
et al. [36], [37] treated BIQA as a classification problem. They
first classify the features into five quality grades with a DBN,
and then the qualitative labels are converted into a numerical
score via quality pooling.

CNN was first applied to BIQA in [16]. Kang et al. used a
shallow network to estimate the quality scores of small non-
overlapping patches, and then the predicted scores are averaged
to obtain the image level quality score. Lu et al. [38] proposed
a CNN-based multi-patch aggregation architecture, which con-
ducts the feature extraction and aggregation function learning
jointly.

In this paper, the key idea is to use CNN to estimate the MOS
of an input image by first estimating a belief score vector. The
predicted belief scores indicate the probabilities of an input
image being assigned to the corresponding quality grades. This
approach is radically different from the previous ones, as the
MOS is expressed as a membership function to multiple grades
in our algorithm.

B. Representation for Multi-Level Image Quality

Multi-level quality representation has been explored in some
previous BIQA works [17], [26], [27], [29]. They are typi-
cally based on unsupervised feature learning, and the main idea
is to use some pre-extracted features to encode images. The
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specific encoding strategy varies, but eventually a vector repre-
sentation is learned by measuring the similarities between the
pre-extracted features and the features of the input image. In
general, the pre-extracted features cover multiple quality lev-
els, thus the generated representation can be considered as a
multi-level quality representation.

Specifically, Ye and Doermann [26] proposed to encode im-
ages with a codebook consisting of Gabor-filter-based local fea-
tures. An image is presented as a histogram of occurrence counts
for different codewords. He et al. proposed SRNSS [27] based
on sparse representation. In their method, the dictionary is con-
structed by combining the NSS features and MOSs of training
images. QAC [17] divides the quality scale into multiple lev-
els. In this work, the clustering centroids at different quality
levels, served as a codebook, are used to encode images. Wu
et al. [29] extracted both the frequency and spatial-frequency
features from all three YCbCr channels. A label transfer model
is then developed to estimate the quality.

Our belief score vector is somewhat similar to a multi-level
representation of image quality score. The difference lies in that
the proposed method is implemented in a supervised manner
and does not require a large set of features (e.g., codewords)
to explicitly generate a quality-aware representation. It benefits
from supervised feature learning and is free from pre-designed
encoders.

C. Generic Object Detection

Generally, humans can spontaneously perceive objects even
before recognizing them. Inspired by that, a variety of recent
works concentrate on designing object detection methods, aim-
ing at producing a set of class-independent object proposals
[45]–[49]. Typically, it can be applied to reduce the search space
of local regions, which may be helpful to some visual tasks like
object detection [31], [42]. Existing generic object detection
methods can be broadly grouped into two classes, namely the
ones generating image windows and the ones producing seg-
mented object hypotheses.

Among the former, by combining several complementary
cues in a Bayesian framework, Alexe et al. [45] designed an
objectness measure to distinguish the object windows from the
background windows. In [46], Uijlings et al. proposed a data-
driven selective search strategy, which is subject to the consider-
ations about scale and diversification. Cheng et al. [47] proposed
a simple yet powerful feature for estimating the objectness of
image window, called ‘BING’, which is extremely efficient (300
fps on a single CPU) as the computation requires only several
atomic CPU operations.

On the contrary, other works focus on pixel-accurate propos-
als that encode informative boundary shape cues. Arbeláez et al.
[48] proposed a unified approach for both hierarchical segmen-
tation and proposal extraction, called multiscale combinatorial
grouping (MCG). The cores of MCG are a fast algorithm for
normalized-cut segmentation and an efficient grouping strategy
for combining multiscale regions. Krähenbü and Koltun [49]
presented the geodesic object proposal (GOP) method, which is
substantially fast and outperforms the state of the art especially

in object shape accuracy. These two advantages of GOP exactly
correspond with our demands for the object oriented pooling
strategy.

III. BASIC PRINCIPLE OF VECTOR REGRESSION

During the assessment of perceptual quality of an image, dif-
ferent subjects may assign different quality scores to the given
image because of personal preferences and physiological dif-
ferences. To model this kind of uncertainty, we introduce a
probability distribution P (Q|x) to describe quality as perceived
by different people in a population, where x represents an im-
age and Q is a continuous variable that indicates the estimated
quality score of this image.

Discretization of the quality continuum is quite common in
literature related to subjective quality assessment. Likert or cat-
egorical scales (such as the widely used absolute category rating
scale) are most often used to collect quantitative judgments of
image quality. Similarly, we divide the numerical scoring scale
into several ordered intervals. Denote the center of the k-th
interval as μk , we have:

μ1 < μ2 < . . . < μK , (1)

where K is the number of the ordered intervals. Basically, these
intervals correspond to K quality grades, and the probability of
the input image x belonging to the k-th quality interval, denoted
by Pk , can be easily computed from P (Q|x).

In practice, however, to directly estimate the probability Pk

is difficult as the number of subjective evaluations in bench-
mark dataset is insufficient to accurately estimate the distribu-
tion. In this study, we assume the distribution P (Q|x) is sym-
metric and unimodal, and divide the scoring scale into equally
sized intervals. A similar assumption, e.g., Gaussian distribu-
tions for image quality ratings, was also adopted in [50]. Under
this assumption, the probability Pk (k = 1, 2, . . . ,K) is posi-
tively related to the distance from the mean value of the distri-
bution (can be estimated from the MOS) to the center of the k-th
interval. That is to say, the smaller the distance is, the larger the
probability will be. Therefore, we can use an implicit way to
measure the probability.

We introduce a belief score vector to describe the probabili-
ties of an image being assigned to different quality grades. The
belief score of the k-th quality grade is defined as the distance
from the MOS of an image to the center of the corresponding
interval, i.e.,

sk = y − μk (k = 1, 2, . . . ,K) , (2)

where sk (k = 1, 2, . . . ,K) is the defined belief score and y is
the MOS of an image. Generally, the smaller the value of |sk |
is, the larger Pk will be. That means the image is more likely to
be assigned to the k-th quality grade by the population.

Following the ideas above, we propose a vector regression
framework for BIQA. Previous BIQA methods generally learn a
single regression model that maps the extracted features directly
to a quality score. In contrast, the proposed vector regression
framework uses a belief score vector to represent the quality
score. Our model estimates the interrelated belief scores instead
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Fig. 2. Flowchart of the vector regression module. (a) Original image. (b) Locally normalized image. (c) Fully convolutional neural network. (d) Defined belief
score maps and their corresponding quality grades. (e) Local score maps. In this case, the 3-th and 4-th grades are selected for global score pooling (the third and
fourth belief score maps have the smallest absolute means, as shown in a red box). The operator ⊕μk represents element-wise addition with μk as in (7).

of a single MOS as in previous ones. In practice, the vector
regression is implemented by a convolutional network. More
details will be given in next section.

IV. BIQA VIA VECTOR REGRESSION AND

OBJECT ORIENTED POOLING

The proposed method VROP consists of two modules, i.e.,
vector regression and object oriented pooling. The vector re-
gression is implemented by a deep fully convolutional network.
An object oriented pooling strategy is further used to convert
the local score maps into a single objective score.

A. CNN-Based Vector Regression

The flowchart of the vector regression module is shown in
Fig. 2. This module consists of three main steps, i.e., image
preprocessing, belief score mapping and score map selection.
In this section, we will describe these steps and provide the
details on module training.

1) Network and Preprocessing: The deep network is built
by stacking 3 × 3 convolutional layers as shown in Fig. 2(c).
There are 7 convolutional layers with 64,64,96,96,128,128, 128
channels respectively. The convolutional stride is set as 1 and the
padding is also set as 1 to preserve the spatial resolution. Max
pooling is applied after the second, fourth and seventh layers
over a 3 × 3 window with stride 2. During training, the last
pooling layer is followed by three fully connected layers: The
first two have 512 channels each, the third one performs K-way
regression and thus contains K channels (K = 5 in Fig. 2). In
addition, the non-linearity mapping is implemented by rectified
linear units (ReLUs) [51], and Dropout [52] is applied after the
second fully connected layer as a regularizer to avoid overfitting.

We employ a local contrast normalization method as in [14],
[16] to preprocess the input image. Unlike common contrast
normalization, the local normalization computes the mean and
variance for each pixel. Assuming the gray image is I , we

compute the normalized image as

∧
I (i, j) =

I (i, j) − u (i, j)
√

σ (i, j) + C
, (3)

u = ω ⊗ I, (4)

σ = ω ⊗ (I � I) − u � u , (5)

where i, j are spatial indices, u and σ represent the local mean
and variance, C is a positive constant to avoid instability when
σ is close to zero, and ω is a Gaussian function. The operators ⊗
and � represent convolution and element-wise product respec-
tively. The size and sigma value of the Gaussian function are set
as default values, i.e., 3 × 3 and 1.5 respectively. C is set to be
1. Note that the normalized image exhibits homogeneous and
uniform appearance [14], which benefits the subsequent training
processes.

2) Generation of Training Data: To train the deep network
with limited labeled data, we divide image into patches and
feed them to the network during training. Specifically, the same
data augmentation method as in [16] is adopted. We collect
samples by cropping non-overlapping 32 × 32 patches from
locally normalized images. For each patch, by assigning its
MOS as the ground-truth score of the source image, the belief
score vector can be computed by (2). The CNN is trained on
these cropped image patches and the associated belief score
vectors.

However, the above data augmentation strategy is inappro-
priate when the training images contain inhomogeneous im-
pairments [16]. Therefore, in our study, we modify the data
augmentation strategy by excluding those patches with quality
scores different from their source images. To this end, in the
training phase, we use a FR measure VSI [8] to generate a ref-
erence quality score for each cropped patch. A patch will be
discarded if the difference between y and ŷ is larger than a cer-
tain threshold δ, i.e., |y − ŷ| > δ, where y is the ground-truth
score of its source image and ŷ is the estimated reference score
of the patch.
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3) Loss Function: We use the squared error with weight
decay as the loss function

L (W,b) =
1
N

N∑

i=1

‖fW ,b (pi) − si‖2
2 + λ‖W‖2

F , (6)

where pi and si represent the sampled patch and label vector of
belief scores, fW ,b (pi) is the output vector of the network, W
and b are the weights and biases of the network respectively,
and λ is the hyper-parameter. Different from the classification-
based models with the softmax loss as the learning objective,
our approach is constructed under the regression framework in
terms of the least square loss.

The loss function is optimized by stochastic gradient descent
(SGD) with a momentum of 0.9 and a mini-batch size of 256.
We initially set the learning rate as 0.01 and then decrease it by
a factor of 0.1 at regular intervals. The iteration is performed
for about 100 epochs and the learning rate is decreased about 3
times in total. Moreover, the weight decay is set as 0.0005, and
the dropout ratio is set to be 0.5 in the training stage and divided
by 2 in the testing stage.

4) Local Score Maps Generation: At testing stage, a fully
convolutional network is built by transforming the fully con-
nected layers into convolutional layers [43]. Naturally, we can
feed a locally normalized image instead of an image patch to the
adapted fully convolutional network and obtain multiple belief
score maps, denoted by Sk , k = 1, 2, . . . ,K. These maps can
be considered as a set of belief score vectors estimated by the
original network on some particular patches.

Basically, the smaller the absolute mean of Sk is, the more
likely the quality of the input image can be described as the k-th
quality grade. In our model, an object-based pooling strategy
is designed to obtain the image quality score. Before that, two
belief score maps with the smallest absolute means are picked
out to compute two local score maps, i.e.,

Lk = Sk ⊕ μk (k = p; p + 1) , (7)

where Lk denotes the local score map, p and p + 1 are the
indices of the selected belief score maps, and the operator ⊕
represents element-wise addition. Note that the selected two
maps are always adjacent to each other and that either Sp or
Sp+1 has the minimum absolute mean among the generated
belief score maps.

The main purpose of retaining only two belief score maps is
to reduce the redundancy of the scores. The basic principle of
the map selection is illustrated in Fig. 2(d). It can be seen that
the selected two quality grades are the most relevant ones to the
ground-truth score of test image. That is to say, the given image
has a higher probability of being assigned to these two grades
by the population.

B. Object Oriented Pooling

Once the local score maps are predicted, directly averaging
these two quality maps is an intuitive and efficient approach
to obtain the image level quality score. Let p and p + 1 be the
indices of the selected belief score maps. Denote W and H the
width and height of the generated local score maps. The global

image quality score can be simply defined as the average over
Lp and Lp+1 , i.e.,

Simg =
1

2WH

∑

i,j

(Lp + Lp + 1) , (8)

where Simg is the global quality score, i and j indicate the
location of Lp and Lp+1 .

In practice, we notice that the performance of our approach
can be further improved by incorporating semantic informa-
tion of image contents. The reason for the improvement may
be due to the visual attention mechanism that humans always
fixate some particular regions of an image [53], [54]. Some pre-
vious studies have shown that most of the time humans focus
on object-like regions when looking at an image [40].

Following the ideas above, we propose a statistics-based ob-
ject oriented pooling strategy. Our pooling strategy is similar to
SOM [28] for using generic object detection methods to select
object-like regions. The difference is that the local regions are
selected to compute the global quality score directly rather than
to extract local features as in SOM (which can be seen as an
implicit way to assign weights). Specifically, a set of object pro-
posals are first extracted by the geodesic object proposal (GOP)
method [49]. The generated object candidates can be seen as an
over-complete coverage of the object-like regions, retaining the
detailed shape and boundary. To reduce the redundancy of these
proposals, only a subset is preserved for pooling. The subset is
selected randomly, and its size, denoted as M , is a parameter
of our approach. After that, we map these selected proposals to
the local score maps to compute their respective quality scores.

Denote r1
m and r2

m the quality scores of the m-th selected
proposal obtained from Lp and Lp+1 , respectively. Let om be
the mask of the m-th selected proposal. om (i, j) = 1 indicates
that the pixel at the location (i, j) belongs to this proposal, and
om (i, j) = 0 otherwise. Then r1

m can be computed as (r2
m can

be obtained similarly)

r1
m =

∑

i,j

Lp � F

F =
om∑

i,j

om (i, j)
, (9)

where i and j indicate the location, and the operator � repre-
sents element-wise product. Note that om in (9) has been resized
to the same size as the local score maps. An illustration of the
pooling process is shown in Fig. 3. Finally, the image level
quality score can be computed as

Simg =
1

2M

∑

m

(
r1
m + r2

m

)
. (10)

V. EXPERIMENTS

To evaluate the performance of our approach, we imple-
mented three experiments on six widely used datasets. The ex-
periments on two benchmark datasets [55], [56] aim to validate
how the objective assessment corresponds to subjective evalua-
tion. The cross-dataset evaluation tests the generalization ability
of the proposed method.
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Fig. 3. Illustration of the object oriented pooling strategy. (a) Original image.
(b) m-th selected proposal. (c) Local score map Lp . (d) Mask om of the m-th
selected proposal. om (i, j) = 1 indicates that the pixel at the location (i, j)
belongs to this proposal, and om (i, j) = 0 otherwise. Note that om needs to
be resized to the same size as Lp as shown in (d). r1

m is the predicted quality
score of the m-th selected proposal obtained from Lp .

TABLE I
BENCHMARK DATASETS FOR EVALUATING BIQA METHODS

Dataset Source Images Distorted Images Distortion Types

LIVE 29 779 5
TID2008 25 1700 17
TID2013 25 3000 24
CSIQ 30 886 6
IVC 10 185 4
MICT/LCD 14 168 2

A. Experimental Protocol

Datasets: We conduct the experiments on six public IQA
datasets, including LIVE [55], TID2008 [56], TID2013 [57],
CSIQ [58], IVC [59] and MICT/LCD [60]. The characteristics
of these six datasets, namely the number of source images, the
number of degraded images and the number of distortion types,
are summarized in Table I.

Evaluation: Two commonly used performance metrics are
employed to evaluate the IQA methods, i.e., Spearman rank or-
der correlation coefficient (SROCC) and linear correlation coef-
ficient (LCC). These two metrics are used to measure the mono-
tonicity and the linear dependence between the predicted objec-
tive scores and the subjective scores, respectively. As the range
of the objective scores may be different from that of the subjec-
tive scores, a nonlinear mapping needs to be performed before
computing the LCC metric. Generally, the mapping function is
a logistic function as suggested by [55]

f (x) = β1

(
1
2
− 1

1 + exp (β2 (x − β3))

)
+ β4x + β5 ,

(11)
where βi , i = 1, 2, . . . , 5, are the parameters to be fitted.

In our experiments, we also compare the object oriented pool-
ing strategy with the average pooling strategy. The two methods
are abbreviated to VRAP and VROP (vector regression and av-

TABLE II
PERFORMANCE COMPARISON ON THE SPECIFIC DISTORTION TYPES OF LIVE

AND THE WHOLE LIVE DATASET

SROCC JP2K JPEG WN BLUR FF ALL

PSNR 0.870 0.885 0.942 0.763 0.874 0.866
SSIM [2] 0.939 0.946 0.964 0.907 0.941 0.913
FSIM [5] 0.970 0.981 0.967 0.972 0.949 0.964
DIIVINE [12] 0.913 0.910 0.984 0.921 0.863 0.916
BLIINDS-II [13] 0.929 0.942 0.969 0.923 0.889 0.931
BRISQUE [14] 0.914 0.965 0.979 0.951 0.877 0.940
CORNIA [15] 0.943 0.955 0.976 0.969 0.906 0.942
CNN [16] 0.952 0.977 0.978 0.962 0.908 0.956
NFERM [23] 0.942 0.965 0.984 0.922 0.863 0.941
DLIQA-R [36] 0.933 0.914 0.968 0.947 0.857 0.929
SOM [28] 0.947 0.952 0.984 0.976 0.937 0.964
VRAP 0.953 0.979 0.988 0.924 0.934 0.951
VROP 0.963 0.976 0.984 0.956 0.939 0.967

LCC JP2K JPEG WN BLUR FF ALL

PSNR 0.873 0.876 0.926 0.779 0.870 0.856
SSIM [2] 0.921 0.955 0.982 0.893 0.939 0.906
FSIM [5] 0.910 0.985 0.976 0.978 0.912 0.960
DIIVINE [12] 0.922 0.921 0.988 0.923 0.888 0.917
BLIINDS-II [13] 0.935 0.968 0.980 0.938 0.896 0.930
BRISQUE [14] 0.923 0.973 0.985 0.951 0.903 0.942
CORNIA [15] 0.951 0.965 0.987 0.968 0.917 0.935
CNN [16] 0.953 0.981 0.984 0.953 0.933 0.953
NFERM [23] 0.955 0.982 0.992 0.937 0.888 0.946
DLIQA-R [36] 0.953 0.948 0.961 0.950 0.892 0.934
SOM [28] 0.952 0.961 0.991 0.974 0.954 0.962
VRAP 0.963 0.984 0.983 0.940 0.938 0.953
VROP 0.975 0.984 0.983 0.959 0.951 0.968

erage/object pooling), respectively. Note that we only report
results on distorted images in the experiments.

Parameter setting: The threshold δ, for excluding training
patches, is set as 15 percent of the data range in the training
dataset (e.g., differential mean opinion score (DMOS) in LIVE
is in the range [0, 100], thus δ is set as 15). During testing,
a number of object proposals are randomly selected for pool-
ing. This number, i.e., M , is set to be one-third of the total
number of the generated object proposals. Moreover, the num-
ber of the intervals K is set as 5, and the centers of the in-
tervals, i.e., (μ1 , μ2 , . . . , μ5), are set to be equidistant, e.g.,
(0, 25, 50, 75, 100) for the LIVE dataset and (0, 2, 4, 6, 8) for
the TID dataset.

B. Evaluation on LIVE

To ensure a fair comparison, the same experimental strategy
as in [14]–[16], [23], [28] is adopted. We group the distorted
images in LIVE according to their reference images, and ran-
domly select 23 groups for training, while retaining the other 6
groups for testing. To remove the influence of random selection,
the results are all reported as the medians of 20 train-test iter-
ations. Table II shows the experimental results, where the best
two BIQA methods are highlighted in boldface. Eight represen-
tative BIQA methods and three FR-IQA methods are tested for
comparison. The results of the BIQA methods, including DI-
IVINE [12], BLIINDS-II [13], BRISQUE [14], CORNIA [15],
CNN [16], NFERM [23], DLIQA-R [36] and SOM [28], are
taken from the original papers.



1146 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 5, MAY 2018

TABLE III
PERFORMANCE COMPARISON ON THE TID2008 DATASET

SSIM [2] FSIM [5] BRISQUE [14] CORNIA [15] CNN [16] NFERM [23] SOM [28] VRAP VROP

LCC 0.857 0.913 0.795 0.837 0.873 0.849 0.846 0.893 0.913
SROCC 0.878 0.926 0.768 0.813 0.862 0.842 0.808 0.900 0.911

(The results of CORNIA and CNN are reported by original authors, and SOM is implemented by ourselves.)

We conduct both distortion-specific and non-distortion-
specific experiments to evaluate the proposed approach. The
purpose of the distortion-specific experiments is to evaluate the
performance when there are only images with one particular
type of distortion. To this end, we split the training and testing
parts only on specific distortion types. As for the non-distortion-
specific experiments, the whole dataset is randomly split into
the training and testing parts in each iteration. The results of the
non-distortion-specific experiments are listed in the last column
in Table II.

It can be seen that the proposed method works consistently
well in both distortion-specific and non-distortion-specific ex-
periments. Specifically, our approach obtains convincing results
on each of the five distortions, especially on JPEG2000 compres-
sion (JP2K), JPEG compression (JPEG), Gaussian noise (WN)
and fast fading (FF). As for the overall evaluation, both VRAP
and VROP achieve state-of-the-art results compared with other
BIQA and FR-IQA methods. Our method achieves a comparable
performance with SOM, which is a no-reference method and has
the best performance on the LIVE dataset. SOM combines local
features with semantic obviousness features for a better perfor-
mance. In contrast, the good performance of our approach is
owing to the proposed vector regression framework and object
oriented pooling strategy. The former explores the uncertainty in
quality assessment and the latter focuses on object-like regions
for a more accurate prediction.

C. Evaluation on TID2008

To further examine the performance of our approach, more
challenging evaluations are performed in this section. As pre-
viously done in [15], we conduct non-distortion-specific exper-
iments on the first thirteen distortions in the TID2008 dataset.
The other four distortions, namely non eccentricity pattern
noise (NEPN), local block-wise distortions of different inten-
sity (LBD), intensity shift (IS) and contrast change (CC), are
not included as they are either very inhomogeneous or highly
subjective for BIQA [15].

Similarly, the degraded images in TID2008 are divided into
25 groups according to their reference images. The results are
reported as the median values across 20 train-test iterations,
where 20 groups are randomly selected for training and the
remaining 5 groups for testing.

In Table III, two FR-IQA methods, SSIM [2] and FSIM [5],
are used as the baseline. Five representative BIQA methods,
i.e., BRISQUE [14], CORNIA [15], CNN [16], NFERM [23]
and SOM [28], are tested for comparison. One can see from
Table III that the proposed method outperforms the other five
BIQA methods and approaches the FR-IQA measure FSIM,

Fig. 4. SROCC metrics of different methods on group 1, where the types of
distortions have examples in LIVE. The vertical and horizontal axes represent
the SROCC metric and the distortion types in each dataset respectively.

given only distorted images. Furthermore, as we can see in
Table II and Table III, the performance decreases to some extent
if the object oriented pooling is not incorporated, e.g., in non-
distortion-specific experiments, LCC decreases 1.5% on LIVE
and 2.0% on TID2008. More experiments will be performed
to demonstrate the effectiveness of the object oriented pooling
strategy in the next section.

D. Cross Dataset Evaluation

In this section, we demonstrate that the performance of our
approach is independent of testing datasets. We train our model
on the entire LIVE dataset and then test the performance on
the other four datasets: TID2013, CSIQ, IVC and MICT/LCD.
Since many distortion types in the testing datasets do not appear
in LIVE, we separate the test images into two groups. Group 1
contains those types of distortions appearing in LIVE and group
2 contains the rest. We perform the nonlinear mapping on the
predicted objective scores and compute the evaluation criteria as
the way of evaluating FR measures. Five representative BIQA
models are included for comparison. The source codes of these
compared models are obtained from the original authors except
CNN and SOM, which are implemented by ourselves.

Figs. 4 and 5 show the SROCC metrics of BRISQUE, COR-
NIA, CNN, NFERM, SOM and our VROP on the two groups,
respectively. It can be seen from Fig. 4 that VROP outperforms
the other five models on most types of distortions in group 1.
Specifically, it reaches over 0.9 for 10 of 13 distortion types,
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Fig. 5. SROCC metrics of different methods on group 2, where the types of distortions do not appear in LIVE. The vertical and horizontal axes represent the
SROCC metric and the distortion types in each dataset respectively.

TABLE IV
THE RESULTS OF NON-DISTORTION-SPECIFIC EXPERIMENTS ON FOUR TESTING

DATASETS

SROCC CSIQ TID2013 IVC MICT/LCD

BRISQUE [14] 0.882 0.842 0.768 0.863
CORNIA [15] 0.889 0.879 0.889 0.832
CNN [16] 0.927 0.892 0.844 0.846
NFERM [23] 0.897 0.869 0.813 0.880
SOM [28] 0.880 0.873 0.887 0.802
VRAP 0.925 0.905 0.893 0.858
VROP 0.933 0.923 0.903 0.896

LCC CSIQ TID2013 IVC MICT/LCD

BRISQUE [14] 0.898 0.863 0.768 0.861
CORNIA [15] 0.903 0.888 0.883 0.821
CNN [16] 0.934 0.890 0.839 0.842
NFERM [23] 0.914 0.875 0.816 0.881
SOM [28] 0.902 0.894 0.879 0.791
VRAP 0.936 0.911 0.889 0.861
VROP 0.945 0.927 0.901 0.898

The models are trained on the LIVE dataset and then tested on the images
with all types of distortions in group 1.

and for only one distortion type, the SROCC metric is less than
0.85. In group 2, all the six algorithms fail in many cases as these
kinds of distortions are not included in the training set. How-
ever, VROP still achieves convincing results on some distortion
types, e.g., the high frequency noise, multiplicative noise, lossy
compression in TID2013, and the LAR in IVC.

In addition, we also conduct non-distortion-specific experi-
ments for each testing dataset as in many previous works [15],
[23]. The experiments are performed on the images with all
types of distortions in group 1. Table IV shows the experimen-
tal results. One can observe that the proposed method achieves
promising results on these four datasets, better than the other
competitors. Moreover, note that VROP works consistently bet-

ter than VRAP, which once again verifies the effectiveness of
the object oriented pooling strategy experimentally.

Fig. 6 shows the scatter plots of the subjective scores ver-
sus the objective scores predicted by BRISQUE, CORNIA and
VROP in non-distortion-specific experiments. The plus signs
and the black curve represent the test images and the nonlinear
mapping function ((11)) respectively. Generally, the objective
scores generated by a better approach should correlate more
consistently with the nonlinear mapping curve. From Fig. 6, we
can see that the objective scores estimated by VROP are more
correlated with the subjective ratings than the other two com-
petitors. All the above results support the conclusion that our
approach is robust against different datasets.

VI. DISCUSSIONS

In this section, we will conduct two extended experiments,
compare the single and vector regression framework, and dis-
cuss several performance issues.

A. Evaluation on Images with Authentic Distortions

Recently, researchers started focusing on IQA with realistic
distortions. In this experiment, we evaluate the proposed vec-
tor regression framework on two datasets. One is the LIVE In
the Wild Image Quality Challenge Database (LIVEW) [61],
which contains a total of 1162 images impaired by randomly
occurring distortions and genuine capture artifacts. These im-
ages, with resolution fixed to 500 × 500 pixels, are captured us-
ing a wide variety of modern mobile devices. The other dataset is
CID2013 [62]. It contains six image sets, and each set includes
six scenes. There are totally 475 images with a relatively large
resolution (1600 × 1200).

The main problem in this case is that these authentically
distorted images usually contain inhomogeneous impairments,
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Fig. 6. Scatter plots of subjective scores versus predicted objective scores on four testing datasets. The models are trained on the LIVE dataset. (a), (d), (g), (j):
BRISQUE evaluated on CSIQ, TID2013, IVC, MICT/LCD. (b), (e), (h), (k): CORNIA evaluated on CSIQ, TID2013, IVC, MICT/LCD. (c), (f), (i), (l) VROP
evaluated on CSIQ, TID2013, IVC, MICT/LCD.

thus, cropping 32 × 32 image patches for training is no longer
appropriate. We address this problem by using networks with
larger input size. Specifically, we adapt classification networks
(i.e., AlexNet [41], VggNet [30] and ResNet [63]) into the vector
regression framework and transfer their learned representations
by fine-tuning. Transfer learning is commonly used in many
visual tasks to transfer knowledge across different domains
[64], [65].

We fine-tune the AlexNet and VggNet (16 layers) by sub-
stituting the softmax layer with a 5-D regression layer and then
fine-tuning the last two layers to fit the belief scores. ResNet
(50 layers) contains less parameters, thus we fine-tune the whole
pipeline. The input patch size is fixed to 224 × 224. The iterative
optimization is performed about 10 epochs. The learning rate is
initially set as 0.001, and then decreased by 0.1 at regular inter-
vals (twice for ResNet, three times for AlexNet and VggNet).
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TABLE V
PERFORMANCE COMPARISON ON AUTHENTIC DISTORTIONS

Dataset LIVEW CID2013

Metric SROCC LCC SROCC LCC

BRISQUE [14] 0.581 0.603 0.668 0.669
CORNIA [15] 0.622 0.653 0.681 0.623
CNN [16] 0.576 0.566 0.526 0.523
NFERM [23] 0.586 0.609 0.600 0.656
SOM [28] 0.624 0.647 0.675 0.622
FRIQUEE [24] 0.694 0.712 0.546 0.552
VR-Alex 0.800 0.818 0.722 0.733
VR-Vgg 0.804 0.835 0.772 0.776
VR-Res 0.849 0.865 0.808 0.804

(CNN and SOM are implemented by ourselves.) The networks
(namely AlexNet, VggNet and ResNet) integrated with the vector
regression framework are abbreviated to VR-Alex, VR-Vgg and
VR-Res respectively.

During testing, we average the predicted scores of 50 randomly
selected patches to obtain the image level quality score.

For the LIVEW dataset, we randomly divide the dataset into
two parts: 80% for training and 20% for testing. The results
are reported as the medians across 20 train-test iterations. For
the CID2013 dataset, only the image sets IV-VI are used for
performance comparison as the other three sets (I-III) are rated
with different subjective evaluation protocols. The image sets
IV-VI contain a total of eight scenes. Generally, images from the
same scene are similar to each other, while different from those
from other scenes. Thus we train our model on seven scenes and
then test it on the remaining one. This procedure is repeated until
all the images have been assigned with the objective scores.

Table V shows the experimental results, where the three net-
works integrated with the vector regression framework are ab-
breviated to VR-(Alex, Vgg and Res) respectively. We can see
that all these networks can be used as vector regression, and
they outperform the current state-of-the-art methods.

B. Single Regression vs Vector Regression

In this section, we aim to demonstrate that the performance
of our approach benefits from the vector regression framework.
To this end, we use the model without vector regression as the
baseline. Specifically, the baseline has the same network archi-
tecture as the proposed model, but adopts the single regression
framework that maps the extracted features directly to a quality
score.

The experiments in Section V-C (Evaluations on TID2008),
V-D (Cross Dataset Evaluation) and VI-A (Evaluations on
LIVEW) are used to examine the performance. The configu-
rations of the baseline are the same as those of the proposed
model, including the experimental procedures and the training
configurations in the optimization process. The object oriented
pooling is not incorporated as we want to verify the effectiveness
of the vector regression.

Table VI, VII and VIII report the experimental results. It can
be seen that the networks with vector regression work consis-
tently better than those with single regression. The performance

TABLE VI
PERFORMANCE COMPARISON ON THE TID2008 DATASET

Model baseline VRAP

Metric SROCC LCC SROCC LCC

TID2008 0.840 0.825 0.900 0.893

VRAP is the proposed method that adopts the vector regres-
sion framework. The baseline has the same network archi-
tecture and training configurations as VRAP, while adopts
the single regression framework.

TABLE VII
CROSS DATASET EVALUATION

Model baseline VRAP

Metric SROCC LCC SROCC LCC

CSIQ 0.911 0.928 0.925 0.936
TID2013 0.888 0.892 0.905 0.911
IVC 0.808 0.811 0.893 0.889
MICT/LCD 0.785 0.777 0.858 0.861

The models are trained on LIVE and then tested on the fol-
lowing four datasets. Only those types of distortions that also
appear in LIVE are included. Refer to Table VI for the notations
of baseline and VRAP.

TABLE VIII
PERFORMANCE COMPARISON ON THE LIVE IN THE

WILD IMAGE QUALITY CHALLENGE DATABASE

Metric SROCC LCC

base-Alex 0.784 0.795
VR-Alex 0.800 0.818
base-Vgg 0.789 0.810
VR-Vgg 0.804 0.835
base-Res 0.818 0.837
VR-Res 0.849 0.865

VR-(Alex, Vgg, Res) adopt the pro-
posed vector regression framework,
and base-(Alex, Vgg, Res) are the
baselines that adopt the single re-
gression framework. The network
architectures and training configu-
rations of base-Alex, base-Vgg and
base-Res are the same as those
of VR-Alex, VR-Vgg and VR-Res,
respectively.

decreases if the vector regression is not used (even the network
architecture is the same). The results demonstrate the effec-
tiveness of the vector regression framework. Moreover, we can
observe from Table V and VIII that the vector regression can be
integrated with different networks and that it can help to improve
the performance regardless of the network architecture.

C. Discussion on Performance Issues

In this section, we discuss several performance issues about
our method, including its sensitivity to the model parameters, the
FR measure for selecting training patches, and the sampling
scheme in the pooling strategy.
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Fig. 7. SROCC with respect to the threshold δ. The models are trained on
LIVE and then tested on CSIQ and TID2013.

Fig. 8. SROCC with respect to the number of the selected proposals. The
models are trained on LIVE and then tested on CSIQ and TID2013.

1) Sensitivity to Model Parameters: There are two main pa-
rameters in our method, namely the threshold δ for excluding
training patches and the number of the selected proposals, i.e.,
M , for object oriented pooling. In order to evaluate the general-
ization ability as well, all the results are obtained by training on
LIVE and testing on CSIQ and TID2013 (only on those types
of distortions appearing in the LIVE dataset).

Threshold for excluding training patches: Fig. 7 shows the
SROCC metrics on CSIQ and TID2013 with δ set as 5%,
10%, 15%, 20% and 100% of the data range in LIVE. It is
worth noting that none of the cropped patches are excluded in
the last case. We can see from Fig. 7 that the performance is rel-
atively poor on both CSIQ and TID2013 when δ is small. This is
because too many patches are excluded, and the remaining ones
are insufficient to train the deep network. On the other hand, if
δ is too large, only few patches are excluded, which will cause
a decrease in performance too.

Number of proposals for global pooling: In the global pool-
ing stage, we randomly select a subset of the generated object
proposals for object oriented pooling. Fig. 8 shows the SROCC
metrics on the CSIQ and TID2013 datasets with different subset
sizes. The size of the random subset, namely the number of the
selected proposals, is set to be 20%, 25%, 30%, 35%, 40% and
45% of the total number of the generated proposals. We can
see from Fig. 8 that the subset size has a minor impact on the
estimation results, and the use of more proposals cannot lead to
a better performance.

2) Fusion of Multiple FR Metrics: In this part, a more robust
way is explored to select image patches in the phase of training
data generation. Specifically, we combine multiple FR metrics

TABLE IX
VROP-S AND VROP-M REPRESENT THE SINGLE AND

MULTIPLE FR BASED MODELS

Model VROP-s VROP-m

Metric SROCC LCC SROCC LCC

CSIQ 0.933 0.945 0.941 0.946
TID2013 0.923 0.927 0.917 0.918
IVC 0.903 0.901 0.889 0.883
MICT/LCD 0.896 0.898 0.895 0.897

The models are trained on LIVE and then tested on the follow-
ing four datasets. Only those types of distortions appearing in
LIVE are included.

Fig. 9. Comparisons between the random-based (red line) and rank-based
(blue line) pooling strategies. (a) (b): evaluated on CSIQ. (c) (d): evaluated on
TID2013. The horizontal axis represents the number of selected proposals. The
rank-based pooling strategy selects top k proposals to guide the pooling, and
the other one selects random proposals.

for a more accurate estimation on the local quality. The method
in [18] is employed for the combination. Four FR measures,
including GMSD [7], FSIM [5], FSIMC [5] and VSI [8], are
used to generate the synthetic scores. The parameters of the
combination are set as the default values in [18]. We train the
models on LIVE and then compare the performance on other
four datasets, namely CSIQ, TID2013, IVC and MICT/LCD.

Table IX lists the results, where the single and multiple FR
based models are abbreviated to VROP-s and VROP-m, respec-
tively. One can see that VROP-s and VROP-m have similar per-
formance. Generally, the fusion of multiple FR measures may
slightly benefit the local quality estimation. However, it has a
minor impact on the training data selection as we only exclude
noisy training patches. A patch is excluded from the training set
only when the objective score estimated by the FR measure is
very different from the ground-truth score of its source image.

3) Rank-Based Pooling Strategy: In object oriented pooling,
we randomly select a part of the object proposals to estimate the
global quality because the GOP method [49] does not provide
scored (or sorted) object candidates. In this part, we investigate
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Fig. 10. Illustration of the local quality map, where brighter pixel represents lower quality. The first row exhibits the composite images generated by replacing
three vertical areas with distorted versions at different degradation levels. The corresponding distortion types are (a) JP2K, (b) JPEG, (c) BLUR, and (d) WN. The
second row shows the local quality maps in [16]. The third row shows the local quality maps generated by the proposed method.

a rank-based object oriented pooling strategy that only selects
the top-ranked candidates to guide the pooling. The rank-based
pooling may select less object irrelevant candidates compared
with the random pooling strategy.

To this end, a generic proposal evaluator (e.g., [66]) is required
to assign a rank score to each object proposal. However, scor-
ing each candidate individually is time-consuming in our case.
Thus we implement the rank-based pooling by using a window
scoring proposal method MCG [48]. Fig. 9 shows the compar-
isons, where the red and blue lines represent the random-based
and rank-based pooling strategies, respectively. We trained the
model on LIVE and then tested it on CSIQ and TID2013. It
can be seen that the two pooling methods have a comparable
performance. The rank-based pooling works slightly better than
the other one, especially when the number of selected proposals
is small.

D. Local Quality Estimation

The proposed method can naturally give a local quality map
(LQM) of the input image by performing pixel-wise averaging
on Lp and Lp+1 in (7).

As previously done in [16], an intuitive example is shown
in Fig. 10. Our model is trained on LIVE and tested on four
synthetic images. We select a reference image from TID2008
and divide it into four vertical parts. Then, for each specific
distortion type, including JP2K, JPEG, WN and BLUR, we
replace the second to the fourth vertical parts with the distorted
versions from high quality to low quality. In this way, a total
of four testing synthetic images are generated. We then scan
16 × 16 patches with a stride of 8 on these synthetic images to
obtain their respective LQMs.

Fig. 10 shows the generated LQMs, which have been nor-
malized to [0, 255] for visualization. We can see that the four
vertical parts of each composite image are distinguished prop-
erly. Compared to the LQMs in [16], our approach generates
less noise points and makes a clearer distinction between the
adjacent vertical parts, especially on JPEG and BLUR.

E. Issue of Overfitting

We adopted several techniques to prevent overfitting, e.g.,
dropout, regularization and data augmentation. With these tech-
niques, our model shows a good generalization ability on exist-
ing public IQA datasets. In our experiments, we did not observe
significant overfitting.

However, the risk of overfitting may still exist in applications
because of the limited image contents in current IQA datasets.
The training images are generally not sufficient to represent
the population of natural images. Some recent studies have
discussed the potential overfitting risk when applying current
learning based IQA models to real-world suitations [67]. In the
future work, unsupervised or semi-supervised network training
or feature learning methods could be explored to help reducing
the overfitting risk.

VII. CONCLUSION

In this paper, we have proposed a vector regression frame-
work for BIQA by combining two processes: belief score esti-
mation and object oriented pooling. Specifically, we predict the
objective score of an image by first estimating a vector of belief
scores. The belief score estimation is implemented by a convolu-
tional network in practice. The object oriented pooling strategy
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further boosts the performance by incorporating semantic in-
formation of image contents. Our approach has shown a great
performance and generalization ability in comparison with cur-
rent state-of-the-art BIQA methods. We also have demonstrated
that this framework can be integrated with a pre-trained network
and outperforms other competitors on authentically distorted
images.
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