
0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

1

Drawing and Recognizing Chinese Characters
with Recurrent Neural Network

Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang, Cheng-Lin Liu, Yoshua Bengio

Abstract—Recent deep learning based approaches have
achieved great success on handwriting recognition. Chinese
characters are among the most widely adopted writing systems in
the world. Previous research has mainly focused on recognizing
handwritten Chinese characters. However, recognition is only one
aspect for understanding a language, another challenging and
interesting task is to teach a machine to automatically write
(pictographic) Chinese characters. In this paper, we propose a
framework by using the recurrent neural network (RNN) as both
a discriminative model for recognizing Chinese characters and
a generative model for drawing (generating) Chinese characters.
To recognize Chinese characters, previous methods usually adopt
the convolutional neural network (CNN) models which require
transforming the online handwriting trajectory into image-like
representations. Instead, our RNN based approach is an end-
to-end system which directly deals with the sequential structure
and does not require any domain-specific knowledge. With the
RNN system (combining an LSTM and GRU), state-of-the-art
performance can be achieved on the ICDAR-2013 competition
database. Furthermore, under the RNN framework, a conditional
generative model with character embedding is proposed for
automatically drawing recognizable Chinese characters. The
generated characters (in vector format) are human-readable and
also can be recognized by the discriminative RNN model with
high accuracy. Experimental results verify the effectiveness of
using RNNs as both generative and discriminative models for
the tasks of drawing and recognizing Chinese characters.

Index Terms—Recurrent neural network, LSTM, GRU, dis-
criminative model, generative model, handwriting.

I. INTRODUCTION

Reading and writing are among the most important and
fundamental skills of human beings. Automatic recognition
(or reading) of handwritten characters has been studied for a
long time [1] and obtained great achievements during the past
decades [2], [3]. However, the automatic drawing (or writing)
of characters has not been studied as much, until the recent
advances based on recurrent neural network for generating
sequences [4]. In the development of human intelligence,
the skills of reading and writing are mutual complementary.
Therefore, for the purpose of machine intelligence, it would
be interesting to handle them in unified framework.

Chinese characters constitute the oldest continuously used
system of writing in the world. Moreover, Chinese characters
have been widely used (modified or extended) in many Asian
countries such as China, Japan, Korea, and so on. There are
more than tens of thousands of different Chinese characters.

Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang and Cheng-Lin Liu are with the
NLPR at Institute of Automation, Chinese Academy of Sciences, P.R. China.
Email: {xyz, fyin, ymzhang, liucl}@nlpr.ia.ac.cn.

Yoshua Bengio is with the MILA lab at University of Montreal, Canada.
Email: yoshua.bengio@umontreal.ca.

Most of them can be well recognized by most people, however,
nowadays, it is becoming more and more difficult for people to
write them correctly, due to the overuse of keyboard or touch-
screen based input methods. Compared with reading, writing
of Chinese characters is gradually becoming a forgotten or
missing skill.

For the task of automatic recognition of handwritten Chi-
nese characters, there are two main categories of approaches:
online and offline methods. With the success of deep learn-
ing [5], [6], the convolutional neural network (CNN) [7] has
been widely applied for handwriting recognition. The strong
priori knowledge of convolution makes the CNN a powerful
tool for image classification. Since the offline characters are
naturally represented as scanned images, it is natural and
works well to apply CNNs to the task of offline recognition [8],
[9], [10], [11]. However, in order to apply CNNs to online
characters, the online handwriting trajectory should firstly be
transformed to some image-like representations, such as the
AMAP [12], the path signature maps [13] or the directional
feature maps [14].

During the data acquisition of online handwriting, the pen-
tip movements (xy-coordinates) and pen states (down or up)
are automatically stored as (variable-length) sequential data.
Instead of transforming them into image-like representations,
we choose to deal with the raw sequential data in order to
exploit the richer information it carries. In this paper, different
from the traditional approaches based on CNNs, we propose to
use recurrent neural networks (RNN) combined with bidirec-
tional long short term memory (LSTM) [15], [16] and gated
recurrent unit (GRU) [17] for online handwritten Chinese
character recognition. RNN is shown to be very effective for
English handwriting recognition [18]. For Chinese character
recognition, compared with the CNN-based approaches, our
method is fully end-to-end and does not require any domain-
specific knowledge. State-of-the-art performance has been
achieved by our method on the ICDAR-2013 competition
database [19]. To the best of our knowledge, this is the
first work on using RNNs for end-to-end online handwritten
Chinese character recognition.

Besides the recognition (reading) task, this paper also con-
siders the automatic drawing of Chinese characters (writing
task). Under the recurrent neural network framework, a con-
ditional generative model is used to model the distribution
of Chinese handwriting, allowing the model to generate new
handwritten characters by sampling from the probability dis-
tribution associated with the RNN. The study of generative
models is an important and active research topic in the deep
learning field [6]. Many useful generative models have been

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

2

1 2

34

5

6
7

8 9 10

1112

13

14

15

161718

19
20

1
234

5

6

7

8

9 10

11 12
13

1415 16
17

18

1

2

3 4 5

67

8

9

10

11
1213

14

15

16

17

18

19 20

21 22

2324
25
26
27

Fig. 1. Illustration of three online handwritten Chinese characters. Each color represents a stroke and the numbers indicate the writing order. The purpose of
this paper is to automatically recognize and draw (generate) real and cursive Chinese characters under a single framework based on recurrent neural networks.

proposed such as NADE [20], variational auto-encoder [21],
DRAW [22], and so on. To better model the generating
process, the generative adversarial network (GAN) [23] si-
multaneously train a generator to capture the data distribution
and a discriminator to distinguish real and generated samples
in a min-max optimization framework. Under this framework,
high-quality images can be generated with the LAPGAN [24]
and DCGAN [25] models, which are extensions of the original
GAN.

Recently, it was shown by [26] that realistically-looking
Chinese characters can be generated with DCGAN. However,
the generated characters are offline images which ignore
the handwriting dynamics (temporal order and trajectory).
To automatically generate the online (dynamic) handwriting
trajectory, the recurrent neural network (RNN) with LSTM
was shown to be very effective for English online handwriting
generation [4]. The contribution of this paper is to study
how to extend and adapt this technique for Chinese character
generation, considering the difference between English and
Chinese handwriting habits and the large number of categories
for Chinese characters. As shown by [27], fake and regular-
written Chinese characters can be generated under the LSTM-
RNN framework. However, a more interesting and challenging
problem is the generating of real (readable) and cursive
handwritten Chinese characters.

To reach this goal, we propose a conditional RNN-based
generative model (equipped with GRUs) to automatically draw
human-readable cursive Chinese characters. The character
embedding is jointly trained with the generative model. There-
fore, given a character class, different samples (belonging
to the given class but with different writing styles) can be
automatically generated by the RNN model conditioned on the
embedding. In this paper, the tasks of automatically drawing
and recognizing Chinese characters are completed both with
RNNs, seen as either generative or discriminative models.
Therefore, to verify the quality of the generated characters,
we can feed them into the pre-trained discriminative RNN
model to see whether they can be correctly classified or not.
It is found that most of the generated characters can be
automatically recognized with high accuracy. This verifies the
effectiveness of the proposed method in generating real and
cursive Chinese characters.

The rest of this paper is organized as follows. Section II
introduces the representation of online handwritten Chinese
characters. Section III describes the discriminative RNN model
for end-to-end recognition of handwritten Chinese characters.

Section IV reports the experimental results on the ICDAR-
2013 competition database. Section V details the generative
RNN model for drawing recognizable Chinese characters.
Section VI shows the examples and analyses of the generated
characters. At last, Section VII draws the concluding remarks.

II. REPRESENTATION FOR ONLINE HANDWRITTEN
CHINESE CHARACTER

Different from the static image based representation for
offline handwritten characters, rich dynamic (spatial and tem-
poral) information can be collected in the writing process for
online handwritten characters, which can be represented as a
variable length sequence:

[[x1, y1, s1], [x2, y2, s2], . . . , [xn, yn, sn]], (1)

where xi and yi are the xy-coordinates of the pen movements
and si indicates which stroke the point i belongs to. As shown
in Fig. 1, Chinese characters usually contain multiple strokes
and each stroke is produced by numerous points. Besides the
character shape information, the writing order is also preserved
in the online sequential data, which is valuable and very hard
to recover from the static image. Therefore, to capture the
dynamic information for increasing recognition accuracy and
also to improve the naturalness of the generated characters,
we directly make use of the raw sequential data rather than
transforming them into an image-like representation.

A. Removing Redundant Points

Different people may have different handwriting habits (e.g.,
regular, fluent, cursive, and so on), resulting in significantly
different number of sampling points, even when they are
writing the same character. To remove the redundant points, we
propose a simple strategy to preprocess the sequence. Consider
a particular point (xi, yi, si). Let’s assume si = si−1 = si+1,
otherwise, it will be the starting or ending point of a stroke
which will always be preserved. Whether to remove point i
or not depends on two conditions. The first condition is based
on the distance of this point away from its former point:√

(xi − xi−1)2 + (yi − yi−1)2 < Tdist. (2)

As shown in Fig. 2(a), if point i is too close to point i− 1, it
should be removed. Moreover, point i should also be removed
if it is on a straight line connecting points i−1 and i+ 1. Let

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

3

3500 3520 3540 3560 3580 3600 3620 3640 3660 3680
-7450

-7400

-7350

-7300

-7250

-7200
pointNum=96 strokeNum=8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-3

-2

-1

0

1

2

3
pointNum=44 strokeNum=8

(a) (b) (c) (d)

Fig. 2. (a) Removing of redundant points. (b) Coordinate normalization. (c) Character before preprocessing. (d) Character after preprocessing.

4xi = xi+1 − xi and 4yi = yi+1 − yi, the second condition
is based on the cosine similarity:

4xi−14xi +4yi−14yi
(4x2

i−1 +4y2
i−1)0.5(4x2

i +4y2
i)0.5

> Tcos. (3)

If one of the conditions in Eq. (2) or Eq. (3) is satisfied, the
point i should be removed. With this preprocessing, the shape
information of the character is still well preserved, but each
item (point) in the new sequence becomes more informative,
since the redundant points have been removed.

B. Coordinate Normalization

Another influence is coming from the variations in size or
absolute values of the coordinates for the characters captured
with different devices or written by different people. There-
fore, we must normalize the xy-coordinates into a standard
interval. Specifically, as shown in Fig. 2(b), consider a straight
line L connecting two points (x1, y1) and (x2, y2), the pro-
jections of this line onto x-axis and y-axis are

px(L) =

∫
L

xdL =
1

2
len(L)(x1 + x2),

py(L) =

∫
L

ydL =
1

2
len(L)(y1 + y2),

(4)

where len(L) =
√

(x2 − x1)2 + (y2 − y1)2 denotes the length
of L. With these information, we can estimate the mean values
by projecting all lines onto x-axis and y-axis:

µx =

∑
L∈Ω px(L)∑
L∈Ω len(L)

, µy =

∑
L∈Ω py(L)∑
L∈Ω len(L)

, (5)

where Ω represents the set of all straight lines that connect
two successive points within the same stroke. After this, we
estimate the deviation (from mean) of the projections:

dx(L) =

∫
L

(x− µx)2dL =
1

3
len(L)

[
(x2 − µx)2+

(x1 − µx)2 + (x1 − µx)(x2 − µx)
]
.

(6)

The standard deviation on x-axis can then be estimated as:

δx =

√∑
L∈Ω dx(L)∑
L∈Ω len(L)

. (7)

With all the information of µx, µy and δx estimated from one
character, we can now normalize the coordinates by:

xnew = (x− µx)/δx, ynew = (y − µy)/δx. (8)

This normalization is applied globally for all the points in the
character. Note that we do not estimate the standard deviation
on the y-axis and the y-coordinate is also normalized by δx.
The reason for doing so is to keep the original ratio of height
and width for the character, and also keep the writing direction
for each stroke. After coordinate normalization, each character
is placed in a standard xy-coordinate system, while the shape
of the character is kept unchanged.

C. Illustration

The characters before and after preprocessing are illustrated
in Fig. 2 (c) and (d) respectively. It is shown that the character
shape is well preserved, and many redundant points have been
removed. The original character contains 96 points while the
processed character only has 44 points. This will make each
point more informative, which will benefit RNN modeling not
just because of speed but also because the issue of long-
term dependencies [28] is thus reduced because sequences
are shorter. Moreover, as shown in Fig. 2(d), the coordinates
of the new character is normalized. In the new coordinate
system, the position of (0, 0) is located in the central part
of the character, and the deviations on the xy-axis are also
normalized. Since in this paper we use a sequence-based rep-
resentation, the preprocessing used here is different from the
traditional methods designed for image-based representation,
such as the equidistance sampling [3] and character shape
normalization [29].

III. DISCRIMINATIVE MODEL: END-TO-END
RECOGNITION WITH RECURRENT NEURAL NETWORK

The best established approaches for recognizing Chinese
characters are based on transforming the sequence of Eq. (1)
into some image-like representation [12], [13], [14] and then
applying the convolutional neural network (CNN). For the
purpose of fully end-to-end recognition, we apply a recurrent
neural network (RNN) directly on the raw sequential data.

A. Representation for Recognition

From the sequence of Eq. (1) (after preprocessing), we
extract a six-dimensional representation for each straight line
Li connecting two points i and i+ 1:

Li = [xi, yi,4xi,4yi, I(si = si+1), I(si 6= si+1)], (9)

where 4xi = xi+1 − xi, 4yi = yi+1 − yi and I(·) = 1
when the condition is true and otherwise zero. In each Li,

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

4

the first two terms are the start position of the line, and
the 3-4th terms are the direction of the pen movements,
while the last two terms indicate the status of the pen, i.e.,
[1, 0] means pen-down while [0, 1] means pen-up. With this
representation, the character in Eq. (1) is transformed to a
new sequence of [L1, L2, . . . , Ln−1]. To simplify the notations
used in following subsections, we will use [x1, x2, . . . , xk] to
denote a general sequence, but note that each item xi here is
actually the six-dimensional vector shown in Eq. (9).

B. Recurrent Neural Network (RNN)

The RNN is a natural generalization of the feedforward
neural networks to sequences [30]. Given a general input
sequence [x1, x2, . . . , xk] where xi ∈ Rd (different samples
may have different sequence length k), at each time-step of
RNN modeling, a hidden state is produced, resulting in a
hidden sequence of [h1, h2, . . . , hk]. The activation of the
hidden state at time-step t is computed as a function f of
the current input xt and previous hidden state ht−1 as:

ht = f(xt, ht−1). (10)

At each time-step, an optional output can be produced by
yt = g(ht), resulting in an output sequence [y1, y2, . . . , yk],
which can be used for sequence-to-sequence tasks, for ex-
ample, based on the CTC framework [31]. In this section,
the input sequence is encoded into a fixed-length vector for
final classification, due to the recursively applied transition
function f . The RNN computes activations for each time-
step which makes them extremely deep and can lead to
vanishing or exploding gradients [28]. The choice of the
recurrent computation f can have a big impact on the success
of RNN because the spectrum of its Jacobian controls whether
gradients tend to propagate well (or vanish or explode). In this
paper, we use both long short term memory (LSTM) [15] [16]
and gated recurrent unit (GRU) [17] for RNN modeling.

C. Long Short Term Memory (LSTM)

LSTM [15] [16] is widely applied because it reduces the
vanishing and exploding gradient problems and can learn
longer term dependencies. With LSTMs, for time-step t, there
is an input gate it, forget gate ft, and output gate ot:

it = sigm (Wixt + Uiht−1 + bi) , (11)
ft = sigm (Wfxt + Ufht−1 + bf) , (12)
ot = sigm (Woxt + Uoht−1 + bo) , (13)
c̃t = tanh (Wcxt + Ucht−1 + bc) , (14)
ct = it � c̃t + ft � ct−1, (15)
ht = ot � tanh(ct), (16)

where W∗ is the input-to-hidden weight matrix, U∗ is the state-
to-state recurrent weight matrix, and b∗ is the bias vector.
The operation � denotes the element-wise vector product.
The hidden state of LSTM is the concatenation of (ct, ht).
The long-term memory is saved in ct, and the forget gate and
input gate are used to control the updating of ct as shown in
Eq. (15), while the output gate is used to control the updating
of ht as shown in Eq. (16).

LSTM/GRU

mean pooling and dropout

logistic regression

char 1 char 2 char 3755……

LSTM/GRU LSTM/GRU……

LSTM/GRU LSTM/GRU LSTM/GRU……

LSTM/GRU LSTM/GRU LSTM/GRU……

LSTM/GRU LSTM/GRU LSTM/GRU……

…
…

…
…

…
…

full layer and dropout

Fig. 3. The stacked bidirectional RNN for end-to-end recognition.

D. Gated Recurrent Unit (GRU)

RNNs with gated recurrent units (GRU) [17] can be viewed
as a light-weight version of LSTMs. Similar to the LSTM
unit, the GRU also has gating units (reset gate rt and update
gate zt) that modulate the flow of information inside the unit,
however, without having a separate memory cell.

rt = sigm (Wrxt + Urht−1 + br) , (17)
zt = sigm (Wzxt + Uzht−1 + bz) , (18)

h̃t = tanh (Wxt + U(rt � ht−1) + b) , (19)

ht = zt � ht−1 + (1− zt)� h̃t. (20)

The activation of GRU ht is a linear interpolation between
the previous activation ht−1 and the candidate activation h̃t,
controlled by the update gate zt. As shown in Eq. (19), when
reset gate rt is off (close to zero), the GRU acts like reading
the first symbol of an input sequence, allowing it to forget the
previously computed state. It has been shown that GRUs and
LSTMs have similar performance [32].

E. Stacked and Bidirectional RNN

In real applications, contexts from both past and future are
useful and complementary to each other [18]. Therefore, we
combine forward (left to right) and backward (right to left)
recurrent layers to build a bidirectional RNN model [33].
Moreover, the stacked recurrent layers are used to build a deep
RNN system. As shown in Fig. 3, by passing [x1, x2, . . . , xk]
through the forward recurrent layers, we can obtain a hidden
state sequence of [h1, h2, . . . , hk]. Meanwhile, by passing the
reversed sequence of [xk, xk−1, . . . , x1] through the backward
recurrent layers, we can get another hidden state sequence of
[h′1, h

′
2, . . . , h

′
k]. To make a final classification, all the hidden

states are combined to obtain a fixed-length representation for
the input sequence:

Fixed Length Feature =
1

2k

k∑
i=1

(hi + h′i), (21)

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

5

Fig. 4. Illustration of data augmentation by sequential dropout on the input
sequence. The first column shows the original character, and the remaining
columns are the characters after random dropout with probability 0.3.

which is then fed into a fully connected layer and a soft-
max layer for final classification. The whole model can be
efficiently and effectively trained by minimizing the multi-
class negative log-likelihood loss with stochastic gradient
descent, using the back-propagation algorithm [34] to compute
gradients.

F. Regularization and Data Augmentation

Regularization is important for improving the generalization
performance of deep neural network. As shown in Fig. 3,
we apply the dropout [35] strategy on both the mean-pooling
layer and the fully connected layer. Another key to the success
of deep neural network is the large number of training data.
Recently, it is shown that the dropout can also be viewed as
some kind of data augmentation [36]. For traditional image-
based recognition system, random distortion is widely used
as the data augmentation strategy [13], [14]. In this paper,
we use a simple strategy to regularize and augment data
for sequence classification, which we call sequential dropout.
As shown in Fig. 4, given a sequence, many sub-sequences
can be generated by randomly removing some items in the
original sequence with a given probability. This of course
could make more sense for some distributions and worked
well for our data. For this to work, the preserved sub-sequence
must still contain enough information for categorization, as
shown in Fig. 4. This strategy is similar to the previous
proposed dropStroke [37] and dropSegment [38] methods in
handwriting analysis. However, our approach is much simpler
and general, not requiring any domain-specific knowledge (e.g.
stroke/segment detection) in order to identify pieces to be
dropped out.

With sequential dropout on the input, we can build a large
enough (or infinite) training set, where each training sequence
is only shown once. In the testing process, two strategies
can be used. First, we can directly feed the full-sequence
into the RNN for classification. Second, we can also apply
sequential dropout to obtain multiple sub-sequences, and then
make an ensemble-based decision by fusing the classification
results from these sub-sequences. The comparison of these two
approaches will be discussed in the experimental section.

G. Initialization and Optimization

Initialization is very important for deep neural networks.
We initialize all the weight matrices in LSTM/GRU (W∗ and
U∗), full layer, and logistic regression layer by random values
drawn from the zero-mean Gaussian distribution with standard
deviation 0.01. All bias terms are initialized as zeros, except
the forget gate in LSTM. As suggested by [39], we initialize
the forget gate bias bf to be a large value of 5. The purpose
of doing so is to make sure that the forget gate in Eq. (12) is
initialized close to one (which means no forgetting), and then
long-range dependencies can be better learned in the beginning
of training. The cell and hidden states of LSTMs and GRUs are
initialized at zero. Optimization is another important issue for
deep learning. In this paper, we use a recently proposed first-
order gradient method called Adam [40] which is based on
adaptive estimation of lower-order moments. These strategies
helped to make the training of RNNs to be both efficient and
effective.

IV. EXPERIMENTS ON RECOGNIZING CHINESE
CHARACTERS

In this section, we present experiments on recognizing
cursive online handwritten Chinese characters, for the purpose
of evaluating and comparing the proposed discriminative RNN
model with other state-of-the-art approaches.

A. Database

The database used for evaluation is from the ICDAR-2013
competition [19] of online Chinese handwriting recognition,
which is a third version of the previous competitions held on
CCPR-2010 [41] and ICDAR-2011 [42]. The database used for
training is the CASIA database [43] including OLHWDB1.0
and OLHWDB1.1. There are totally 2,693,183 samples for
training and 224,590 samples for testing. The training and
test data were produced by different writers. The number of
character class is 3,755 (level-1 set of GB2312-80). Online
handwritten Chinese character recognition is a challenging
problem [3] due to the large number of character class-
es, confusion between many similar characters, and distinct
handwriting styles across individuals. Many teams from both
academia and industry were involved in the three competitions,
and the recognition accuracy had been promoted gradually and
significantly through the competitions [41], [42], [19].

B. Implementation Details

In this paper, each character is represented by a sequence
as shown in Eq. (1). The two hyper-parameters used in
Section II for preprocessing are Tdist = 0.01 × max{H,W}
and Tcos = 0.99, where H is the height and W is the width of
the character. After preprocessing, the average length of the
sequences for each character is about 50. As shown in Fig. 3,
to increase the generalization performance, the dropout is used
for the mean pooling layer and full layer with probability 0.1.
Moreover, dropout (with probability 0.3) is also used on input
sequence for data augmentation as described in Section III-F.
The initialization of the network is described in Section III-G.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

6

TABLE I
COMPARISON OF DIFFERENT NETWORK ARCHITECTURES FOR ONLINE HANDWRITTEN CHINESE CHARACTER RECOGNITION.

Name Architecture Recurrent Type Memory Train Time Test Speed Train Acc. Test Acc.

NET1 6 → [500] → 200 → 3755 LSTM 11.00MB 95.16h 0.3792ms 98.07% 97.67%

NET2 6 → [500] → 200 → 3755 GRU 9.06MB 75.92h 0.2949ms 97.81% 97.71%

NET3 6 → [100, 500] → 200 → 3755 LSTM 12.76MB 125.43h 0.5063ms 98.21% 97.70%

NET4 6 → [100, 500] → 200 → 3755 GRU 10.38MB 99.77h 0.3774ms 97.87% 97.76%

NET5 6 → [100, 300, 500] → 200 → 3755 LSTM 19.48MB 216.75h 0.7974ms 98.67% 97.80%

NET6 6 → [100, 300, 500] → 200 → 3755 GRU 15.43MB 168.80h 0.6137ms 97.97% 97.77%

The optimization algorithm is the Adam [40] with mini-batch
size 1000. The initial learning rate is set to be 0.001 and
then decreased by ×0.3 when the cost or accuracy on the
training data stop improving. After each epoch, we shuffle the
training data to make different mini-batches. All the models
were implemented under the Theano [44], [45] platform using
the NVIDIA Titan-X 12G GPU.

C. Experimental Results

Table I shows the comparison of different network architec-
tures which can be represented by a general form as:

A→ [B1, . . . , Bn]→ C → D. (22)

The symbol A is the dimension for each element in the input
sequence. Moreover, the [B1, . . . , Bn] represents n stacked
bidirectional recurrent layers as shown in Fig. 3, and Bi is
the dimension for the hidden states of LSTM or GRU at the
i-th recurrent layer. The symbol C is the number of hidden
units for the full layer, and D is the number of units for
the logistic regression layer (also the number of character
classes). The 3th column in Table I shows the recurrent unit
type (LSTM or GRU) for each model. Different networks are
compared from five aspects including: memory consumption
in 4th column, total training time (in hours) in 5th column,
evaluation/testing speed (in millisecond) for one character in
6th column, training accuracy in 7th column, and test accuracy
in the last column. Other configurations are totally the same
as described in Section IV-B to give a fair comparison of
different architectures. It is shown that the best performance
(test accuracy) is achieved by NET5, while NET4 and NET6
are very competitive with NET5.

D. Comparison of LSTM and GRU

In this section, multiple RNN models with either LSTM
or GRU recurrent units were trained and compared under the
same configurations. As shown in Table I, from the perspective
of test accuracy, NET2 outperforms NET1, NET4 beats NET3,
and NET5 is better than NET6. However, the differences are
not significant. Therefore, the only conclusion we can drawn
is that LSTM and GRU have comparable prediction accuracies
for our classification task. Another finding is that LSTM usual-
ly leads to higher training accuracy but not necessarily higher
test accuracy. This may suggest that GRU has some ability to

TABLE II
TEST ACCURACIES (%) OF ENSEMBLE-BASED DECISIONS FROM

SUB-SEQUENCES GENERATED BY RANDOM DROPOUT.

Ensemble of Sub-Sequences

Name Full 1 5 10 15 20 30

NET1 97.67 96.53 97.74 97.82 97.84 97.84 97.86

NET2 97.71 96.56 97.77 97.84 97.86 97.85 97.89

NET3 97.70 96.56 97.71 97.82 97.84 97.85 97.86

NET4 97.76 96.54 97.78 97.86 97.87 97.88 97.89

NET5 97.80 96.79 97.82 97.91 97.93 97.94 97.96

NET6 97.77 96.64 97.79 97.87 97.88 97.89 97.91

avoid over-fitting. Furthermore, as revealed in Table I, from
the perspectives of memory consumption, training time, and
especially testing speed, we can conclude that GRU is much
better than LSTM. The GRU can be viewed as a light-weight
version of LSTM, and still shares similar functionalities with
LSTM, which makes GRU favoured by practical applications
with particular requirements on memory or speed.

E. Comparison of Different Depths

As described in Section III-E, the stacked bidirectional
recurrent layers are used to build the deep RNN systems.
Different depths for the networks are also compared in Ta-
ble I. Compared with only one bidirectional recurrent layer
(NET1 and NET2), stacking two layers (NET3 and NET4)
and three layers (NET5 and NET6) can indeed improve both
the training and test accuracies. However, the improvements
are not significant and also vanishing when more layers
being stacked. This is because the recurrent units maintain
activations for each time-step which already make the RNN
model to be extremely deep, and therefore, stacking more
layers will not bring too much additional discriminative ability
to the model. Moreover, as shown in Table I, with more
stacked recurrent layers, both the training and testing time are
increased dramatically. Therefore, we did not consider more
than three stacked recurrent layers. From the perspectives of
both accuracy and efficiency, in real applications, NET4 is
preferred among the six different network architectures.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

7

TABLE III
RESULTS ON ICDAR-2013 COMPETITION DATABASE OF ONLINE

HANDWRITTEN CHINESE CHARACTER RECOGNITION.

Methods: Ref. Memory Accuracy

Human Performance [19] n/a 95.19%

Traditional Benchmark [46] 120.0MB 95.31%

ICDAR-2011 Winner: VO-3 [42] 41.62MB 95.77%

ICDAR-2013 Winner: UWarwick [19] 37.80MB 97.39%

ICDAR-2013 Runner-up: VO-3 [19] 87.60MB 96.87%

DropSample-DCNN [14] 15.00MB 97.23%

DropSample-DCNN-Ensemble-9 [14] 135.0MB 97.51%

RNN: NET4 ours 10.38MB 97.76%

RNN: NET4-subseq30 ours 10.38MB 97.89%

RNN: Ensemble-NET123456 ours 78.11MB 98.15%

F. Effectiveness of Preprocessing

As shown in Section II, two preprocessing techniques were
applied on the raw sequential data. To check the effectiveness
of them, we retrained NET4 without removing redundant
points, and the accuracy was decreased to 97.31%. This
suggests that removing redundant points is important for RNN
modeling to better capture long-term dependencies. Moreover,
we also retrained NET4 without coordinate normalization, and
the accuracy was decreased to 97.56%. These results verified
the effectiveness of the proposed preprocessing methods, and
removing redundant points was shown to be more important
than coordinate normalization.

G. Ensemble-based Decision from Sub-sequences

In our experiments, the dropout [35] strategy is applied not
only as a regularization (Fig. 3) but also as a data augmentation
method (Section III-F). As shown in Fig. 4, in the testing
process, we can still apply dropout on the input sequence
to generate multiple sub-sequences, and then make ensemble-
based decisions to further improve the accuracy.

Tabel II reports the results for ensemble-based decisions
from sub-sequences. It is shown that with only one sub-
sequence, the accuracy is inferior compared with the full-
sequence. This is easy to understand, since there exists in-
formation loss in each sub-sequence. However, with more
and more randomly sampled sub-sequences being involved
in the ensemble, the classification accuracies are gradually
improved. Finally, with the ensemble of 30 sub-sequences,
the accuracies for different networks become consistently
higher than the full-sequence based prediction. These results
verified the effectiveness of using dropout for ensemble-based
sequence classification.

H. Comparison with Other State-of-the-art Approaches

To compare our method with other approaches, Table III
lists the state-of-the-art performance achieved by previous

works on the ICDAR-2013 competition database [19]. It is
shown that the deep learning based approaches outperform the
traditional methods with large margins. In the ICDAR-2011
competition, the winner is the Vision Objects Ltd. from France
using a multilayer perceptron (MLP) classifier. Moreover, in
ICDAR-2013, the winner is from University of Warwick, UK,
using the path signature feature map and a deep convolutional
neural network [13]. Recently, the state-of-the-art performance
has been achieved by [14] with domain-specific knowledge
and the ensemble of nine convolutional neural networks.

As revealed in Table III and Table I, all of our models (from
NET1 to NET6) can easily outperform previous benchmarks.
Taking NET4 as an example, compared with other approaches,
it is better from the aspects of both memory consumption
and classification accuracy. The previous best performance
has usually been achieved with convolutional neural networks
(CNN), which has a particular requirement of transforming the
online sequential handwriting data into some image-like repre-
sentations [12], [13], [14]. On the contrary, our discriminative
RNN model directly deals with the raw sequential data, and
therefore has the potential to exploit additional information
which is discarded in the spatial representations. Moreover,
our method is also fully end-to-end, depending only on generic
priors about sequential data processing, and not requiring any
other domain-specific knowledge. These results suggest that:
compared with CNNs, RNNs should be the first choice for
online handwriting recognition, due to their powerful ability
in sequence processing and the natural sequential property of
online handwriting.

As shown in Table III, the ensemble of 30 sub-sequences
with NET4 (NET4-subseq30) running on different random
draws of sequential dropout (as discussed in Section III-F)
can further improve the performance of NET4. An advantage
for this ensemble is that only one trained model is required,
which will save the training time and memory resources,
in comparison with usual ensembles where multiple models
should be trained. However, a drawback is that the number
of randomly sampled sub-sequences should be large enough
to guarantee the ensemble performance, which will be time-
consuming for evaluation. Another commonly used type of
ensemble is obtained by model averaging from separately
trained models. The classification performance by combining
the six pre-trained networks (NET1 to NET6) is shown in the
last row of Table III. Due to the differences in network depths
and recurrent types, the six networks are complementary to
each other. Finally, with this kind of ensemble, this paper
reached the accuracy of 98.15%, which is a new state-of-the-
art and significantly outperforms all previously reported results
for online handwritten Chinese character recognition.

V. GENERATIVE MODEL: AUTOMATIC DRAWING
RECOGNIZABLE CHINESE CHARACTERS

Given an input sequence x and the corresponding character
class y, the purpose of a discriminative model (as described in
Section III) is to learn p(y|x). On the other hand, the purpose
of a generative model is to learn p(x) or p(x|y) (conditional
generative model). In other words, by modeling the distribu-

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

8

GRU……

GMM softmax

loss

……GRU

GMM softmax

loss

char

GRU……

GMM softmax

……GRU

GMM softmax

char

random sampling max

[0,0,1]?
End

max

(a) (b)

Fig. 5. For the time-step t in the generative RNN model: (a) illustration of the training process, and (b) illustration of the drawing/generating process.

tion of the sequences, the generative model can be used to
draw (generate) new handwritten characters automatically.

A. Representation for Generation

Compared with the representation used in Section III-A, the
representation for generating characters is slightly different.
Motivated by [4], each character can be represented as:

[[d1, s1], [d2, s2], . . . , [dk, sk]], (23)

where di = [4xi,4yi] ∈ R2 is the pen moving direction
which can be viewed as a straight line. We can draw this
character with multiple lines by concatenating [d1, d2, . . . , dk],
i.e., the ending position of previous line is the starting position
of current line. Since one character usually contains multiple
strokes, each line di may be either pen-down (should be
drawn on the paper) or pen-up (should be ignored). Therefore,
another variable si ∈ R3 is used to represent the status of pen.
As suggested by [27], three states should be considered:1

si =

 [1, 0, 0], pen-down,
[0, 1, 0], pen-up,
[0, 0, 1], end-of-char.

(24)

With the end-of-char value of si, the RNN can automatically
decide when to finish the generating process. Using the rep-
resentation in Eq. (23), the character can be drawn in vector
format, which is more plausible and natural than a bitmap
image.

B. Conditional Generative RNN Model

To model the distribution of the handwriting sequence, a
generative RNN model is utilized. Considering that there are
a large number of different Chinese characters, and in order
to generate real and readable characters, the character embed-
ding is trained jointly with the RNN model. The character
embedding is a matrix E ∈ Rd×N where N is the number of
character classes and d is the embedded dimensionality. Each
column in E is the embedded vector for a particular class.
In the following descriptions, we use c ∈ Rd to represent the
embedding vector for a general character class.

1Note that the symbol si used here has a different meaning with the si
used in Eq. (1), and the si used here can be easily deduced from Eq. (1).

Our previous experiments show that, GRUs and LSTMs
have comparable performance, but the computation of GRU is
more efficient. Therefore, we build our generative RNN model
based on GRUs [17] rather than LSTMs. As shown in Fig. 5,
at time-step t, the inputs for a GRU include:

• previous hidden state ht−1 ∈ RD,
• current pen-direction dt ∈ R2,
• current pen-state st ∈ R3,
• character embedding c ∈ Rd.

Following the GRU gating strategy, the updating of the hidden
state and the computation of output for time-step t are:

d′t = tanh (Wddt + bd) , (25)
s′t = tanh (Wsst + bs) , (26)
rt = sigm (Wrht−1 + Urd

′
t + Vrs

′
t +Mrc+ br) , (27)

zt = sigm (Wzht−1 + Uzd
′
t + Vzs

′
t +Mzc+ bz) , (28)

h̃t = tanh (W (rt � ht−1) + Ud′t + V s′t +Mc+ b) , (29)

ht = zt � ht−1 + (1− zt)� h̃t, (30)
ot = tanh (Woht + Uod

′
t + Vos

′
t +Moc+ bo) , (31)

where W∗, U∗, V∗,M∗ are weight matrices and b∗ is the weight
vector for GRU. Since both the pen-direction dt and pen-state
st are low-dimensional, we first transform them into higher-
dimensional spaces by Eqs. (25) and (26). After that, the reset
gate rt is computed in Eq. (27) and update gate zt is computed
in Eq. (28). The candidate hidden state in Eq. (29) is controlled
by the reset gate rt which can automatically decide whether
to forget previous state or not. The new hidden state ht in
Eq. (30) is then updated as a combination of previous and
candidate hidden states controlled by update gate zt. At last,
an output vector ot is calculated in Eq. (31). To improve the
generalization performance, the dropout strategy [35] is also
applied on ot.

In all these computations, the character embedding c is
provided to remind RNN that this is the drawing of a particular
character other than random scrawling. The dynamic writing
information for this character is encoded with the hidden state
of the RNN, which is automatically updated and controlled by
the GRU (remember or forget) due to the gating strategies. At
each time-step, an output ot is produced based on new hidden

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

9

state as shown in Eq. (31). From this output, the next pen-
direction and pen-state should be inferred to continue the task
of automatic drawing.

C. GMM Modeling of Pen-Direction: From ot To dt+1

As suggested by [4], the Gaussian mixture model (GMM) is
used for the pen-direction. Suppose there are M components
in the GMM, a 5 ×M -dimensional vector is then calculated
based on the output vector ot as:(
{π̂j , µ̂j

x, µ̂
j
y, δ̂

j
x, δ̂

j
y}Mj=1

)
∈ R5M = Wgmm×ot+bgmm, (32)

πj =
exp(π̂j)∑
j′ exp(π̂j′)

⇒ πj ∈ (0, 1),
∑
j

πj = 1, (33)

µj
x = µ̂j

x ⇒ µj
x ∈ R, (34)

µj
y = µ̂j

y ⇒ µj
y ∈ R, (35)

δjx = exp
(
δ̂jx

)
⇒ δjx > 0, (36)

δjy = exp
(
δ̂jy

)
⇒ δjy > 0. (37)

Note the above five variables are for the time-step t+ 1, and
here we omit the subscript of t+ 1 for simplification. For the
j-th component in GMM, πj denotes the component weight,
µj
x and µj

y denotes the means, while δjx and δjy are the standard
deviations. The probability density Pd(dt+1) for the next pen-
direction dt+1 = [4xt+1,4yt+1] is defined as:

Pd(dt+1) =

M∑
j=1

πjN
(
dt+1|µj

x, µ
j
y, δ

j
x, δ

j
y

)
=

M∑
j=1

πjN
(
4xt+1|µj

x, δ
j
x

)
N
(
4yt+1|µj

y, δ
j
y

)
,

(38)

where

N (x|µ, δ) =
1

δ
√

2π
exp

(
− (x− µ)2

2δ2

)
. (39)

Differently from [4], here for each mixture component, the
x-axis and y-axis are assumed to be independent, which
will simplify the model and still gives similar performance
compared with the full bivariate Gaussian model. Using a
GMM for modeling the pen-direction can capture the dynamic
information of different handwriting styles, and hence allow
RNNs to generate diverse handwritten characters.

D. SoftMax Modeling of Pen-State: From ot To st+1

To model the discrete pen-states (pen-down, pen-up, or end-
of-char), the softmax activation is applied on the transforma-
tion of ot to give a probability for each state:(

p̂1
t+1, p̂

2
t+1, p̂

3
t+1

)
∈ R3 = Wsoftmax × ot + bsoftmax, (40)

pit+1 =
exp(p̂it+1)∑3
j=1 exp(p̂jt+1)

∈ (0, 1)⇒
3∑

i=1

pit+1 = 1. (41)

The probability density Ps(st+1) for the next pen-state st+1 =
[s1

t+1, s
2
t+1, s

3
t+1] is then defined as:

Ps(st+1) =
3∑

i=1

sit+1p
i
t+1. (42)

With this softmax modeling, RNN can automatically decide
the status of pen and also the ending time of the generating
process, according to the dynamic changes in the hidden state
of GRU during drawing/writing process.

E. Training of the Generative RNN Model

To train the generative RNN model, a loss function should
be defined. Given a character represented by a sequence in
Eq. (23) and its corresponding character embedding c ∈ Rd, by
passing them through the RNN model, as shown in Fig. 5(a),
the final loss can be defined as the summation of the losses at
each time-step:

loss = −
∑
t

{log (Pd(dt+1)) + log (Ps(st+1))} . (43)

However, as shown by [27], directly minimizing this loss
function will lead to poor performance, because the three pen-
states in Eq. (24) are not equally happened in the training
process. The occurrence of pen-down is too frequent which
always dominate the loss, especially compared with “end-of-
char” state which only occur once for each character. To reduce
the influence from this unbalanced problem, a cost-sensitive
approach [27] should be used to define a new loss:

loss = −
∑
t

{
log (Pd(dt+1)) +

3∑
i=1

wisit+1 log(pit+1)

}
,

(44)
where [w1, w2, w3] = [1, 5, 100] are the weights for the losses
of pen-down, pen-up, and end-of-char respectively. In this way,
the RNN can be trained effectively to produce real characters.
Other strategies such as initialization and optimization are the
same as Section III-G.

F. Automatic Drawing of Recognizable Characters

After training, the model can be used for automatic drawing
of handwritten characters. Since this is a conditional generative
model, we can first select which character to draw by choosing
a column (denoted as c ∈ Rd) from the character embedding
matrix E ∈ Rd×N , and this vector will be used at each time-
step of generating (see Fig. 5(b)). The initial hidden state,
pen-direction, pen-state are all set as zeros. After that, as
shown in Fig. 5(b), at time-step t, a pen-direction dt+1 is
randomly sampled from Pd in Eq. (38). Since this is a GMM
model, the sampling can be efficiently implemented by first
randomly choosing a component and then sampling from the
corresponding Gaussian distribution. The pen-state st+1 is
then inferred from Eq. (41) with hard-max, i.e., setting the
largest element to one and remaining elements to zero.

As shown in Fig. 5(b), if the pen-state is changed to [0, 0, 1]
(end-of-char), the generating process should be finished. Oth-
erwise, we should continue the drawing process by feeding
[ht, dt+1, st+1, c] into the GRU to generate dt+2 and st+2. By

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

10

1

2

3

5

10

20

30

40

50

Epoch:
Drawing of Character:

Fig. 6. Illustration of the generating/drawing for one particular character in
different epochs of the training process.

repeating this process and drawing the generated lines on the
paper according to the pen-states (down or up), we can obtain
the automatically generated character, which should be cursive
and human-readable.

VI. EXPERIMENTS ON DRAWING CHINESE CHARACTERS

In this section, we will show the generated characters
visually, and analyze the quality of the generated characters
by feeding them into the discriminative RNN model to check
whether they are recognizable or not. Moreover, we will also
discuss properties of the character embedding matrix.

A. Implementation Details

To train the generative RNN model, we still use the database
of CASIA [43] including OLHWDB1.0 and OLHWDB1.1.
There are more than two million training samples and all the
characters are written cursively with frequently-used handwrit-
ing habits from different individuals. This is different from the
experiment in [27], where only 11,000 regular-written samples
are used for training.

Our generative RNN model is capable of drawing 3,755
different characters. The dimension for the character em-
bedding (as shown in Section V-B) is 500. In Eqs. (25)
and (26), both the low-dimensional pen-direction and pen-state
are transformed to a 300-dimensional space. The dimension for
the hidden state of GRU is 1000, therefore, the dimensions
of the vectors in Eqs. (27)(28)(29)(30) are all 1000. The
dimension for the output vector in Eq. (31) is 300, and the
dropout probability applied on this output vector is 0.3. The
number of mixture components in GMM of Section V-C is
30. With these configurations, the generative RNN model is
trained using Adam [40] with mini-batch size 500 and initial
learning rate 0.001. With Theano [44], [45] and an NVIDIA
Titan-X 12G GPU, the training of our generative RNN model
took about 50 hours to converge.

character embedding matrix: 500 3755

�
�
�
�
�
�
�
�
�
�

10-nearest neighbors

Fig. 7. The character embedding matrix and the nearest neighbors (of some
representative characters) calculated from the embedding matrix.

B. Illustration of the Training Process

To monitor the training process, Fig. 6 shows the generated
characters (for the first character among the 3,755 classes)
in each epoch. It is shown that in the very beginning, the
model seems to be confused by so many character classes.
In the first three epochs, the generated characters look like
some random mixtures (combinations) of different characters,
which are impossible to read. Until the 10th epoch, some
initial structures can be found for this particular character.
After that, with the training process continued, the generated
characters become more and more clear. In the 50th epoch, all
the generated characters can be easily recognized by a human
with high confidence. Moreover, all the generated characters
are cursive, and different handwriting styles can be found
among them. This verifies the effectiveness of the training
process for the generative RNN model. Another finding in
the experiments is that the Adam [40] optimization algorithm
works much better for our generative RNN model, compared
with the traditional stochastic gradient descent (SGD) with
momentum. With the Adam algorithm, our model converged
within about 60 epochs.

C. Property of Character Embedding Matrix

As shown in Section V-B, the generative RNN model is
jointly trained with the character embedding matrix E ∈
Rd×N , which allows the model to generate characters accord-
ing to the class indexes. We show the character embedding
matrix (500 × 3755) in Fig. 7. Each column in this matrix
is the embedded vector for a particular class. The goal of the
embedding is to indicate the RNN the identity of the character
to be generated. Therefore, the characters with similar writing
trajectory (or similar shape) are supposed to be close to each
other in the embedded space. To verify this, we calculate
the nearest neighbors of a character category according to
the Euclidean distance in the embedded space. As shown
in Fig. 7, the nearest neighbors of one character usually

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

11

Fig. 8. Illustration of the automatically generated characters for different
classes. Each row represents a particular character class. To give a better
illustration, each color (randomly selected) denotes one straight line (pen-
down) as shown in Eq. (23).

have similar shape or share similar sub-structures with this
character. Note that in the training process, we did not utilize
any between-class information, the objective of the model
is just to maximize the generating probability conditioned
on the embedding. The character-relationship is automatically
learned from the handwriting similarity of each character.
These results verify the effectiveness of the joint training of
character embedding and the generative RNN model, which
together form a model of the conditional distribution p(x|y),
where x is handwritten trajectory and y is character category.

D. Illustration of Automatically Generated Characters

With the character embedding, our RNN model can draw
3,755 different characters, by first choosing a column from the
embedding matrix and then feeding it into every step of the
generating process as shown in Fig. 5. To verify the ability
of drawing different characters, Fig. 8 shows the automati-
cally generated characters for nine different classes. All the
generated characters are new and different from the training
data. The generating/drawing is implemented randomly step-
by-step, i.e., by randomly sampling the pen-direction from
the GMM model as described in Section V-C, and updating
the hidden states of GRU according to previous sampled
handwriting trajectory as shown in Section V-B. Moreover,
all the characters are automatically ended with the “end-of-
char” pen-state as discussed in Section V-D, which means the
RNN can automatically decide when and how to finish the
writing/drawing process.

All the automatically generated characters are human-
readable, and we can not even distinguish them from the real
handwritten characters produced by human beings. The mem-
ory size of our generative RNN model is only 33.79MB, but it

can draw as more as 3,755 different characters. This means we
successfully transformed a large handwriting database (with
more than two million samples) into a small RNN generator,
from which we can sample infinite different characters. With
the GMM modeling of pen-direction, different handwriting
habits can be covered in the writing process. As shown in
Fig. 8, in each row (character), there are multiple handwriting
styles, e.g., regular, fluent, and cursive. These results verify not
only the ability of the model in drawing recognizable Chinese
characters but also the diversity of the generative model in
handling different handwriting styles.

Nevertheless, we still note that the generated characters are
not 100% perfect. As shown by the last few rows in Fig. 8,
there are some missing strokes in the generated characters
which make them hard to read. Therefore, we must find some
methods to estimate the quality of the generated characters in
a quantitative manner.

E. Quality Analysis: Recognizable or Not?

To further analyze the quality of the generated characters,
the discriminative RNN model in Section III is used to check
whether the generated characters are recognizable or not. The
architecture of NET4 in Table I is utilized due to its good
performance in the recognition task. For each of the 3,755-
class, we randomly generate 100 characters with the generative
RNN model, resulting in 375,500 test samples, which are then
feed into the discriminative RNN model for evaluation.

Fig. 9(a) shows the distribution of the differences between
the classification accuracies of real samples and generated
samples. It is shown that for most classes, the accuracy of
generated characters can match the accuracy of real samples.
This verifies the ability of our generative model in correctly
writing most Chinese characters. In previous work of [27],
the LSTM-RNN is used to generate fake and regular-written
Chinese characters. Instead, in this paper, our generative model
is conditioned on the character embedding, and a large real
handwriting database containing different handwriting styles
is used for training. Therefore, the automatically generated
characters in this paper are not only cursive but also readable
by both human and machine.

The average accuracy for all the generated characters is
93.98%, which means most of the characters are correctly
classified. However, compared with the average accuracy for
real samples 97.76%, there is still a big gap. As shown in
Fig. 9(a), there are some particular classes showing large dif-
ference between the accuracies of real and generated samples.
To check what is going on there, we show some generated
characters from these classes in Fig. 9(b). It is shown that
these characters usually come from the confusable classes, i.e.,
the character classes which only have some subtle difference
in shape with another character class. In such case, the
generative RNN model is not capable of capturing these small
but important details for accurate drawing of the particular
character, and therefore, the accuracy of generated characters
is decreased dramatically compared with real samples.

On the contrary, as shown in Fig. 9(c), for the character
classes which do not have any confusion with other classes,

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

12

�

�

�

�

�

�

(a)

(b) (c)

500 1000 1500 2000 2500 3000 3500
-1

-0.5

0

0.5

1

A
cc

ur
ac

y
D

iff
er

en
ce

Character Class Index

Distribution

=97.76% =93.98%

Fig. 9. (a): The comparison of the classification accuracies for real samples and generated samples on the 3,755 classes. (b): The generated characters which
have low recognition rates. (c): The generated characters which have high recognition rates. For “A → B”, A means the accuracy for real samples and B
means the accuracy for generated samples.

the generated characters can be easily classified with high
accuracy. Therefore, to further improve the quality of the
generated characters, we should pay more attention to the
similar/confusing character classes. One solution is to modify
the loss function in order to emphasize the training on the
confusing class pairs as suggested by [47]. Another strategy is
integrating the attention mechanism [48], [49] and the memory
mechanism [50], [51] with the generative RNN model to allow
the model to dynamically memorize and focus on the critical
region of a particular character during the writing process.
These are future directions for further improving the quality
of the generative RNN model.

F. Generative Model as Data Augmentation

Since the generative model is capable of producing real
handwritten characters (with labels), a straightforward attempt
is to make it as a data augmentation strategy for the super-
vised training of the discriminative model. For each of the
3,755-class, we randomly generate 1000 characters using the
generative model. After that, the real training samples and the
generated samples are combined to build a large set for the
retraining of the discriminative model, which is then evaluated
on the real test samples. By doing so, the performance of
Ensemble-NET123456 in Table III is further increased from
98.15% to 98.36%. Note that the base accuracy is already
high and thus even a small improvement is hard to obtain.
This result verifies the quality of the generative model which is
helpful for serving as the data augmentation to further improve
the performance of discriminative model.

VII. CONCLUSION AND FUTURE WORK

This paper investigates two closely-coupled tasks: automat-
ically reading and writing. Specifically, the recurrent neural
network (RNN) is used as both discriminative and genera-
tive models for recognizing and drawing cursive handwritten
Chinese characters. In the discriminative model, the deep

stacked bidirectional RNN model is integrated with both the
LSTM and the GRU for recognition. Compared with previous
convolutional neural network (CNN) based approaches which
require some image-like representations, our method is fully
end-to-end by directly dealing with the raw sequential data.
Due to the straightforward utilization of the spatial and tempo-
ral information, our discriminative RNN model achieved new
state-of-the-art performance on the ICDAR-2013 competition
database. High character recognition accuracy is essential for
text recognition [52], [53], hence, the discriminative RNN
model can be hopefully combined with the CTC [31], [18] for
segmentation-free handwritten Chinese text recognition [54].
Moreover, another potential direction is combining the pow-
erful image processing ability of CNNs and the sequence
processing ability of RNNs to look for further accuracy
improvement on character recognition.

Besides recognition, this paper also considers automatic
drawing of real and cursive Chinese characters. A conditional
generative RNN model is jointly trained with the character
embedding, which allow the model to correctly write more
than thousands of different characters. The Gaussian mixture
model (GMM) is used for modeling the pen-direction which
guarantee the diversity of the model in generating different
handwriting styles. The generative RNN model can automat-
ically decide when and how to finish the drawing process
with the modeling of three discrete pen-states. It is shown
that the generated characters are not only human-readable
but also recognizable by the discriminative RNN model with
high accuracies. Other than drawing characters, an interesting
future direction is to utilize the proposed method as building
blocks for the synthesis of cursive handwritten Chinese texts.
Moreover, in this paper, the generative model is conditioned on
the character embedding. Another important future extension
is to condition the generative RNN model on a static image
(combined with convolution) and then automatically recover
(or generate) the dynamic handwriting trajectory (order) from
the static image [55], [56], which is a hard problem and has

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

13

great values in practical applications.
The relationship between the discriminative and generative

models is also an important future research topic. For example,
the discriminative model can be used as some regulariza-
tion [57] to improve the quality of the generative model.
Moreover, the generative model can also cooperate with the
discriminative model in an adversarial manner [23], [58].
Taking all these together, an attractive and important future
work is the simultaneously training of the discriminative and
generative models in an unified multi-task framework.

REFERENCES

[1] C. Suen, M. Berthod, and S. Mori, “Automatic recognition of handprint-
ed characters: the state of the art,” Proceedings of IEEE, vol. 68, no. 4,
pp. 469–487, 1980.

[2] R. Plamondon and S. Srihari, “Online and offline handwriting recog-
nition: a comprehensive survey,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, no. 1, pp. 63–84, 2000.

[3] C.-L. Liu, S. Jaeger, and M. Nakagawa, “Online recognition of Chinese
characters: The state-of-the-art,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 26, no. 2, pp. 198–213, 2004.

[4] A. Graves, “Generating sequences with recurrent neural networks,”
arXiv:1308.0850, 2013.

[5] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[8] D. Ciresan and J. Schmidhuber, “Multi-column deep neural networks for
offline handwritten Chinese character classification,” arXiv:1309.0261,
2013.

[9] C. Wu, W. Fan, Y. He, J. Sun, and S. Naoi, “Handwritten character
recognition by alternately trained relaxation convolutional neural net-
work,” Proc. Int’l Conf. Frontiers in Handwriting Recognition (ICFHR),
pp. 291–296, 2014.

[10] Z. Zhong, L. Jin, and Z. Xie, “High performance offline handwritten
Chinese character recognition using GoogLeNet and directional feature
maps,” Proc. Int’l Conf. Document Analysis and Recognition (ICDAR),
2015.

[11] L. Chen, S. Wang, W. Fan, J. Sun, and S. Naoi, “Beyond human recog-
nition: A CNN-based framework for handwritten character recognition,”
Proc. Asian Conf. Pattern Recognition (ACPR), 2015.

[12] Y. Bengio, Y. LeCun, and D. Henderson, “Globally trained handwritten
word recognizer using spatial representation, space displacement neu-
ral networks and hidden Markov models,” Proc. Advances in Neural
Information Processing Systems (NIPS), pp. 937–944, 1994.

[13] B. Graham, “Sparse arrays of signatures for online character recogni-
tion,” arXiv:1308.0371, 2013.

[14] W. Yang, L. Jin, D. Tao, Z. Xie, and Z. Feng, “DropSample: A new
training method to enhance deep convolutional neural networks for
large-scale unconstrained handwritten Chinese character recognition,”
arXiv:1505.05354, 2015.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] F. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with LSTM,” Neural Computation, vol. 12, no. 10, pp. 2451–
2471, 2000.

[17] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” Proc. Conf. Empirical Meth-
ods in Natural Language Processing (EMNLP), 2014.

[18] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition,” IEEE Trans. Pattern Analysis and Machine Intel-
ligence, vol. 31, no. 5, pp. 855–868, 2009.

[19] F. Yin, Q.-F. Wang, X.-Y. Zhang, and C.-L. Liu, “ICDAR 2013 Chi-
nese handwriting recognition competition,” Proc. Int’l Conf. Document
Analysis and Recognition (ICDAR), 2013.

[20] H. Larochelle and I. Murray, “The neural autoregressive distribution esti-
mator,” Proc. Int’l Conf. Artificial Intelligence and Statistics (AISTATS),
2011.

[21] D. Kingma and M. Welling, “Auto-encoding variational bayes,” arX-
iv:1312.6114, 2013.

[22] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra,
“DRAW: A recurrent neural network for image generation,” Proc. Int’l
Conf. Machine Learning, 2015.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Proc. Advances in Neural Information Processing Systems (NIPS), 2014.

[24] E. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep generative
image models using a laplacian pyramid of adversarial networks,”
arXiv:1506.05751, 2015.

[25] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arX-
iv:1511.06434, 2015.

[26] “Generating offline Chinese characters with DCGAN,” 2015. [Online].
Available: http://www.genekogan.com/works/a-book-from-the-sky.html

[27] “Generating online fake Chinese characters with LSTM-RNN,”
2015. [Online]. Available: http://blog.otoro.net/2015/12/28/recurrent-
net-dreams-up-fake-chinese-characters-in-vector-format-with-tensorflow

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Networks, vol. 5,
no. 2, pp. 157–166, 1994.

[29] C.-L. Liu and K. Marukawa, “Pseudo two-dimensional shape normal-
ization methods for handwritten Chinese character recognition,” Pattern
Recognition, vol. 38, no. 12, pp. 2242–2255, 2005.

[30] I. Goodfellow, A. Courville, and Y. Bengio, “Deep learning,” Book in
press, MIT Press, 2016.

[31] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with re-
current neural networks,” Proc. Int’l Conf. Machine Learning (ICML),
2006.

[32] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” Proc. Advances
in Neural Information Processing Systems (NIPS), 2014.

[33] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[34] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[36] X. Bouthillier, K. Konda, P. Vincent, and R. Memisevic, “Dropout as
data augmentation,” arXiv:1506.08700, 2015.

[37] W. Yang, L. Jin, and M. Liu, “Character-level Chinese writer identifi-
cation using path signature feature, dropstroke and deep CNN,” Proc.
Int’l Conf. Document Analysis and Recognition (ICDAR), 2015.

[38] ——, “DeepWriterID: An end-to-end online text-independent writer
identification system,” arXiv:1508.04945, 2015.

[39] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” Proc. Int’l Conf. Machine Learning
(ICML), 2015.

[40] D. Kingma and J. Ba, “Adam: a method for stochastic optimization,”
Proc. Int’l Conf. Learning Representations (ICLR), 2015.

[41] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “Chinese handwriting
recognition contest 2010,” Proc. Chinese Conf. Pattern Recognition
(CCPR), 2010.

[42] C.-L. Liu, F. Yin, Q.-F. Wang, and D.-H. Wang, “ICDAR 2011 Chi-
nese handwriting recognition competition,” Proc. Int’l Conf. Document
Analysis and Recognition (ICDAR), 2011.

[43] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “CASIA online and
offline Chinese handwriting databases,” Proc. Int’l Conf. Document
Analysis and Recognition (ICDAR), 2011.

[44] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Berg-
eron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new
features and speed improvements,” NIPS Deep Learning Workshop,
2012.

[45] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A CPU and
GPU math expression compiler,” Proc. Python for Scientific Computing
Conf. (SciPy), 2010.

[46] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “Online and of-
fline handwritten Chinese character recognition: Benchmarking on new
databases,” Pattern Recognition, vol. 46, no. 1, pp. 155–162, 2013.

[47] I.-J. Kim, C. Choi, and S.-H. Lee, “Improving discrimination ability
of convolutional neural networks by hybrid learning,” Int’l Journal on
Document Analysis and Recognition, pp. 1–9, 2015.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2695539, IEEE
Transactions on Pattern Analysis and Machine Intelligence

14

[48] K. Cho, A. Courville, and Y. Bengio, “Describing multimedia content
using attention-based encoder-decoder networks,” IEEE Trans. Multime-
dia, vol. 17, no. 11, pp. 1875–1886, 2015.

[49] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” Proc. Int’l Conf. Machine Learning
(ICML), 2015.

[50] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
arXiv:1410.5401, 2014.

[51] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” Proc. Int’l
Conf. Learning Representations (ICLR), 2015.

[52] X.-D. Zhou, D.-H. Wang, F. Tian, C.-L. Liu, and M. Nakagawa,
“Handwritten Chinese/Japanese text recognition using semi-Markov
conditional random fields,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 35, no. 10, pp. 2484–2497, 2013.

[53] Q.-F. Wang, F. Yin, and C.-L. Liu, “Handwritten Chinese text recognition
by integrating multiple contexts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 34, no. 8, pp. 1469–1481, 2012.

[54] R. Messina and J. Louradour, “Segmentation-free handwritten Chinese
text recognition with LSTM-RNN,” Proc. Int’l Conf. Document Analysis
and Recognition (ICDAR), 2015.

[55] Y. Kato and M. Yasuhara, “Recovery of drawing order from single-
stroke handwriting images,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 9, pp. 938–949, 2000.

[56] Y. Qiao, M. Nishiara, and M. Yasuhara, “A framework toward restoration
of writing order from single-stroked handwriting image,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1724–
1737, 2006.

[57] A. Lamb, V. Dumoulin, and A. Courville, “Discriminative regularization
for generative models,” arXiv:1602.03220, 2016.

[58] D. Im, C. Kim, H. Jiang, and R. Memisevic, “Generating images with
recurrent adversarial networks,” arXiv:1602.05110, 2016.

Xu-Yao Zhang is an Associate Professor at National
Laboratory of Pattern Recognition (NLPR), Institute
of Automation, Chinese Academy of Sciences, Bei-
jing, China. He received the BS degree in computa-
tional mathematics from Wuhan University, Wuhan,
China, in 2008, and the PhD degree in pattern
recognition and intelligent systems from Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, in 2013. He was a visiting researcher at
CENPARMI of Concordia University in 2012. From
March 2015 to March 2016, he was a visiting scholar

in Montreal Institute for Learning Algorithms (MILA) at University of
Montreal. His research interests include machine learning, pattern recognition,
handwriting recognition, and deep learning.

Fei Yin is an Associate Professor at National Lab-
oratory of Pattern Recognition, Institute of Automa-
tion, Chinese Academy of Sciences. He received BS
degree in Computer Science from Xidian University
of Posts and Telecommunications, Xi’an, China,
ME degree in Pattern Recognition and Intelligent
Systems from Huazhong University of Science and
Technology, Wuhan, China, PhD degree in Pattern
Recognition and Intelligent Systems from Institute
of Automation, Chinese Academy of Sciences, Bei-
jing, China, in 1999, 2002 and 2010, respectively.

His research interests include document image analysis, handwritten character
recognition and image processing. He has published over 50 papers at
international journals and conferences.

Yan-Ming Zhang is an Assistant Professor at Na-
tional Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of Sci-
ences. He received the PhD degree in pattern recog-
nition and intelligent systems from the Institute
of Automation, Chinese Academy of Sciences in
2011. He got his bachelor degree from the Beijing
University of Posts and Telecommunications. His re-
search interests include machine learning and pattern
recognition.

Cheng-Lin Liu is a Professor at the National Lab-
oratory of Pattern Recognition, Institute of Automa-
tion of Chinese Academy of Sciences, Beijing, Chi-
na, and is now the director of the laboratory. He re-
ceived the BS degree in electronic engineering from
Wuhan University, Wuhan, China, the ME degree
in electronic engineering from Beijing Polytechnic
University, Beijing, China, the PhD degree in pattern
recognition and intelligent control from the Chinese
Academy of Sciences, Beijing, China, in 1989, 1992
and 1995, respectively. He was a postdoctoral fellow

at Korea Advanced Institute of Science and Technology (KAIST) and later
at Tokyo University of Agriculture and Technology from March 1996 to
March 1999. From 1999 to 2004, he was a research staff member and later
a senior researcher at the Central Research Laboratory, Hitachi, Ltd., Tokyo,
Japan. His research interests include pattern recognition, image processing,
neural networks, machine learning, and especially the applications to character
recognition and document analysis. He has published over 220 technical
papers at prestigious international journals and conferences. He is on the
editorial board of journals Pattern Recognition, Image and Vision Computing,
International Journal on Document Analysis and Recognition and Cognitive
Computation. He is a fellow of the IAPR and the IEEE.

Yoshua Bengio received a PhD in Computer Science
from McGill University, Canada in 1991. After two
post-doctoral years, one at M.I.T. with Michael Jor-
dan and one at AT&T Bell Laboratories with Yann
LeCun and Vladimir Vapnik, he became professor at
the Department of Computer Science and Operations
Research at University of Montreal. He is the author
of three books and more than 200 publications,
the most cited being in the areas of deep learning,
recurrent neural networks, probabilistic learning al-
gorithms, natural language processing and manifold

learning. He is among the most cited Canadian computer scientists and is or
has been associate editor of the top journals in machine learning and neural
networks. Since 2000 he holds a Canada Research Chair in Statistical Learning
Algorithms, is a Senior Fellow of the Canadian Institute for Advanced
Research and since 2014 he co-directs its program focused on deep learning.
He heads the Montreal Institute for Learning Algorithms (MILA), currently
the largest academic research group on deep learning. He is on the board of
the NIPS foundation and has been program chair and general chair for NIPS.
He has co-organized the Learning Workshop for 14 years and co-created
the new International Conference on Learning Representations. His current
interests are centered around a quest for AI through machine learning, and
include fundamental questions on deep learning and representation learning,
the geometry of generalization in high-dimensional spaces, generative models,
biologically inspired learning algorithms, natural language understanding and
other challenging applications of machine learning.

