

Animation of Refitted 3D Garment Models for Reshaped Bodies

Yifan Yan1 Juntao Ye1 Xiaoyang Zhu1 Jituo Li2
1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2Institute of Engineering and Computer Graphics, Mechanical Engineering Department, Zhejiang
University

E-mail: juntao.ye@ia.ac.cn

Abstract

We present a framework for a virtual try-on system.
Starting with a template human body mesh, we reshape it
to acquire meshes of various body dimensions according
to the user specified parameters. These reshaped bodies
are further processed in two directions: refitting a
garment model to the outside of the body and embedding
a skeleton to the inside. The refitted garment mesh is then
bound to the body mesh via our coat-to-mesh algorithm,
which is the major contribution of this paper. The body
mesh is skinned to the embedded skeleton with an implicit
rigging process. This way, any deformation in the body
mesh will lead to corresponding deformation in the
garment mesh. During the deformation, both the mesh
topology and spatial relationship between the body and
the garment are maintained. At the end, we apply some
third-party motion data to drive the skeleton, the body
mesh, as well as the garment mesh, and create real-time
animations of dressed human character.

Keywords: garment animation, virtual try-on, character
modeling, reshaping, binding

1. Introduction

There’s a pressing need to provide a more personalized
experience for online shopping than just browsing
through catalogs. This is even more critical for clothes
shopping because different people have different physical
characteristics and preferences. Researchers have created
technologies such as virtual mirrors and video fitting
using VR for “trying on” outfits online. However, these
technologies haven’t provided comfortable user
interaction or achieved an emotional response in which
users can visualize themselves wearing or using the
products in a natural environment.

On the other hand, in fashion industry, garments that
are tailored out of exquisite materials and artful designed
patterns can be very sophisticated. They are not only
envelopes for the human body, but also artworks that

visualize cultural aspects, tendencies and trends. However,
the current status of mass-production of garments is less
artistic. Manufactures take limited advantages of
consumer’s body shapes and produce garments based on
pre-defined pattern sizes (e.g. S, M, L, XL, XXL).
Advanced garment customization that serves the masses
is still uncommon. In recent years, the Internet has
emerged as a compelling channel for garments sale, and
initiated the concept of virtual try-on. Yet such Web
applications nowadays have supported only basic
functions and are far from a practically useful level.

Clothing animation is not only useful for designing and
prototyping garments before the manufacturing process,
but also in great demand in special effects industry. The
most appealing technique is physically based simulation,
which will give highly realistic result. However,
simulation usually computationally costly such that it is
seldom used in real-time applications.

In this paper we describe a framework for a virtual try-
on system. Several key technical issues, including human
body reshaping, garment refitting and garment animation,
will be investigated.

2. Related work

Some earlier work mainly used image processing
techniques to construct virtual try-on system. Hilsmann
and Eisert [1] described a dynamic texture overlay
method from monocular images for visualizing garments
in a virtual mirror environment. In their follow-up work, a
method to segment the user’s clothes and retexture them
using extracted shading and shape deformation
information [2] was proposed. Zhang et. al. used fiducial
markers to change the texture of a user’s shirt [3]. In
Spanlang et al’s work [4], a pre-generated 3D human
model in target clothes was superimposed on a user’s 2D
picture. Their follow-up work [5] presented a virtual
clothing system, in which a user is scanned and registered
to the system once, and then clothes can be simulated on
the reconstructed model. Shilkrot et al. [6] created a
system that offers a virtual experience akin to trying on
clothing. It clones the user’s photographic image into a

2014 International Conference on Virtual Reality and Visualization

978-1-4799-6854-1/14 $31.00 © 2014 IEEE

DOI 10.1109/ICVRV.2014.23

58

catalog of images of models wearing the desired garments.
The process takes into account the user’s skin color and
body dimensions.

Different from image based systems, 3-dimensional
systems are geometrically more accurate. Thanh and
Gagalowicz [7] enables a user to load his/her own 3D
model, select 3D clothes from a catalogue and
superimpose them on the model by interactive
positioning. Frederic et al. [8] presented a framework for
a web-based solution using a generic database for
dressing a user look-alike clothed avatar and simulating
the clothes on the avatar. Meng et al. [9] and Wacker et
al. [10] proposed solutions for sewing of clothing patterns
on a virtual 3D human character and viewing the
simulation results of the clothes. Zou et al. [11]
implemented a web-based platform that allows interactive
viewing of clothes simulation and selection of different
hairstyles and other accessories on an avatar.

In recent years, some interactive virtual try-on
solutions using augmented reality technique have been
reported. A major challenging issue in AR based systems
is the requirement of accurate pose recovery for fitting
virtual clothes (or other accessories) on a user’s image
[3,13]. Today with the release of a new generation of
sensing technologies capable of providing high quality
videos of both color and depth (e.g., Microsoft Kinect
[14]), it provides an opportunity to dramatically increase
the capabilities of virtual try-on solutions. Hauswiesner
[15] described an impressive virtual try-on system where
a user’s human model and cloth were reconstructed by
deforming a SCAPE [12] model using a multiple-camera
setup. Next, the skeleton obtained from a Kinect sensor is
mapped to the SCAPE model so the model can follow the
user’s movements captured by the Kinect sensor. The
advantage of this method is that the system enables users
to enjoy a private virtual try-on experience at their own
homes.

3. Pipeline of our virtual try-on system

 The pipeline of our virtual try-on system is illustrated in
Fig. 1. Starting with a template human body mesh, we
derive meshes of various body dimensions by reshaping.
We then do two things for these reshaped bodies: refitting
a garment model to the outside of the body and
embedding a skeleton to the inside. The refitted garment
mesh is then bound to the body mesh via our coat-to-mesh
algorithm. The body mesh is skinned to the embedded
skeleton. At the end, we apply some third-party motion
data to derive the skeleton, the body mesh, as well as the
garment mesh.

Figure 1. Pipeline of our virtual try-on system

3.1. Body reshaping

A natural way to acquire a person’s body model is by
using expensive acquisition device - 3D human scanner.
This is, however, not only financially costly, but also
requires tedious post-processing. Therefore, there is a
great request from the market to have a parametric design
tool for human bodies so that the shape of a 3D human
body can be generated from a set of semantic input (e.g.,
height, chest-girth, waist-girth, hip-girth, inseam-length,
etc.). We follow the work by Chu et. al [14] for reshaping
human bodies.

Their method provides an intuitive way for the user to
generate body shape by appointing a set of semantic
values. Human models and the semantic parameters are
correlated as a single linear system of equations. This
approach involves simpler computation compared to non-
linear methods while maintaining quality outputs. By this,
a semantic parametric design in interactive speed can be
implemented easily. A new method is developed to
quickly predict whether parameter values are reasonable
or not, with a set of training models as given in the public
domain human model database [15] with 550 full body
scans.

The body models are created by varying seven
semantic parameters, namely height, shoulder width,
chest girth, waist girth, hip girth, arm length and leg
length.

3.2. Skeleton embedding and rigging

Nowadays a popular method for animating an
articulated 3D character is a technique called skinning –
vertices of the garment mesh are attached to bones and
transformed along with the bone’s coordinate system. Due
to its low computational cost, this technique is still widely
used in low-end movies and most 3D video games.
However, setting up the skin weights needs to be done
manually, which is non-trivial. Researchers have been

59

working hard to find solutions for automatic rigging.
Baran and Popovic [18] put forward a method that works
well under certain circumstances. We took advantage of
their prototype implementation (called Pinocchio) and
integrated their code into our system.

Pinocchio consists of two main steps: skeleton
embedding and skin attachment. Skeleton embedding
computes the joint positions of the skeleton inside the
character by minimizing a penalty function. The skin
attachment is computed by assigning bone weights based
on the proximity of the embedded bones smoothed by a
diffusion equilibrium equation over the character’s
surface. Once the skeleton is embedded into the character
and attached to the surface, skeletal motion data can be
used to animate the character.

We adopt Pinocchio’s built-in skeleton for embedding,
which consists of fixed number of bones. However, when
driving this skeleton using BVH motion data, which may
be motion-captured based on a different skeleton topology,
a mapping between two skeletons needs to be built. This
work will be detailed in Section 5. Pinocchio also
demands the static character mesh to be a closed two-
manifold, and any meshes with holes do not work.
Fortunately, the body meshes we use are perfectly closed
meshes.

3.3. Garment refitting

It is possible to reuse the models directly created in 3D
space for different sized bodies. While retaining the style
and the topology of the model, its shape will be shrunk or
stretched, non-uniformly, to fit the target body. For
refitting, we need to deal with either one of the two
different cases. In the first case, the template human is
dressed with a garment model, and this garment is to be
transferred to another body which is actually reshaped
from the template body. In the second case, a garment
model is to be transferred to a human model that initially
has no correspondence with the garment. Typically for the
second case, the garment posture is largely different from
the body posture.

We deal with the first case in our system, i.e. all
garment models were created to fit the template body
model at the beginning. As did in [17], the refitting has
two stages: firstly the garment undergoes a global
adjustment so that it roughly matches the reshaped body;
secondly a fine-tune process to tackle the penetration
issues at some regions and to adjust the garment-human
ease allowance at the other regions. Once penetration is
detected, it has to be resolved. There are two types of
penetrations. In the first case, garment vertices are located
inside the body mesh; in the second case, body vertices
are inside the garment mesh. (Here we determine the
inside and outside of a mesh according to the face normal.)
These two cases are handled separately. The first case is
relatively easy to tackle, and the second case is resolved

with help of octree structure. More details can be found in
[17].

3.4. Coating garment mesh to body mesh

Once a garment is fitted to the reshaped body, it is
desirable that both the body mesh and the garment mesh
can be animated. As a garment mesh is usually not closed,
Pinocchio is unable to bind them to a skeleton. Instead of
binding a mesh to a skeleton, is it possible to bind the
garment to the body mesh? If yes, the garment mode will
acquire its motion from the underling body motion. This
motivates us to put forward a new technique called coat-
to-mesh algorithm. Actually, this idea has potentials in
other application context. With the emergence of new
devices such as Kinect sensor, the motion and
deformation of a human body can be captured directly,
adding another option in addition to the skeleton driven
animation. If a garment model is to move along with a
“boneless” mesh, there has to be a technique to attach the
garment mesh to the body mesh. This new technique is
analogous to the idea of skin-to-bone. We have made it an
automatic process, with little intervention from the user.
This method is the main contribution of this paper, and
will be detailed in Section 4.

3.5. Motion retargeting from BVH data

Following the previous steps, we should have bound
the new body mesh to a skeleton, and bound a new
garment mesh to the body mesh. Now the body mesh can
be driven by the skeleton if proper motion data is applied,
and the body mesh will in turn drive the garment mesh
automatically.

To show the flexibility of our system, we intend to use
popular motion data files, particularly those formats
supported by motion capture devices. The BVH file
format was originally developed by Biovision, a motion
capture services company, as a way to provide motion
capture data to their customers. A BVH file specifies a
bone hierarchy, which may vary from file to file. It is also
very likely that a BVH bone hierarchy is different from
the Pinocchio’s built-in structure. Therefore the motion
needs to be retargeted from one skeleton to another. This
will be detailed in Section 5.

In summary, through several stages of complex

processing, we could refit a template garment model to a
reshaped body and create animation for it.

4. The Coat-to-mesh algorithm

We want to bind the garment mesh to the body mesh,
so that whenever the body deforms the garment will
deform accordingly. This deformation must be in a

60

reasonable manner. It should not change the topology of
the original mesh. It should maintain the spatial
relationship of the two meshes. Particularly, if at the
initial state the two meshes have no penetrations, so
should be their deformed counterparts. We designed a
binding approach, called the coat-to-mesh algorithm,
which meets the above requirements.

4.1. Background: barycentric coordinates on
triangles

Let us consider a triangle T defined as the convex hull
constructed from the three vertices x1, x2 and x3. Any
point x located on the plane defined by these three
vertices may be written as a weighted sum of them, i.e. x
=�1*x1+�2*x2+�3*x3, where �1, �2, and �3 are barycentric
coordinates. They satisfy the constraint �1+�2+�3=1, thus
there are only two independent components. If x is inside
the convex hull, there is �i>0, i=1, 2, 3. Since barycentric
coordinates are a linear transformation of Cartesian
coordinates, it follows that they vary linearly along the
edges and over the area of the triangle.

4.2. Binding out-of-plane point to triangle

Now we exploit the above in-plane barycentric
coordinates to bind an out-of-plane point to a triangle. For
a point p that is not coplanar with three vertices x1, x2 and
x3, we use a quadruple (�1, �2, �3, d) for binding. First p is
projected onto the plane along the plane normal n=(x2-x1)

(x3-x2)/||(x2-x1) (x3-x2)||. The projection point p’ has
in-plane barycentric coordinates (�1, �2, �3). Using the
normal n to denote the positive side of the plane, we
calculate the signed distance from p to the plane: d=<p-p’,
n>, where operator <,> stands for the inner product.

On the other hand for a new configuration of x1, x2
and x3, if the quadruple is known we can recover the
Cartesian coordinate of point p:

p=�1*x1+�2*x2+�3*x3+d*n.
To be aware of the triangle area change caused by the
new positions of x1, x2 and x3, we modify the above
equation into

p=�1*x1+�2*x2+�3*x3+sqrt (A/A0)*d*n, (1)
where A0 is the initial triangle area and A is the area of the
new triangle. According to the above discussion, we
compute �1, �2, �3, d and A0 at the initialization step, and
substitute them into Equ.1 to compute the new point
position whenever x1, x2 and x3 are re-located.

 (a) bind p to one triangle (b) bind p to multi-triangles

Figure 2 . Bind an out-of-plane point to triangles. point p’ can be written
as a weighted sum of triangles three vertexes.

4.3. Binding out-of-plane point to multiple
triangles

So far we have introduced how to bind a point to one
triangle. Usually a mesh consists of thousands of triangle,
binding one point to only one triangle is prone to cause
artifact. A better solution is binding one point to multiple
triangles.

Suppose point p is to be bound to m triangles, we
represent the final coordinate as a linear combination of m
points: , in which wi is the weight of the
ith triangle.

 We determine weight for each triangle only by to the
point-to-triangle distance. The weight is the reciprocal of
the distance. They are normalized to be within the range
[0,1]. The formula for calculating weights is

. They satisfy the constraint

.

4.4. The Coat-to-mesh algorithm

How do we decide the number of triangles from the

body mesh that affect each garment vertex? The number
should not either be too large or too small. If too large, the
garment mesh will appear too rigid. If two small, the
deformation will appear unsmooth. We let the user to
determine this number and place a parameter in the
configuration file to specify the maximum m triangles
allowed to affect a point. In general, there are mountains
of triangles in a character mesh. For each point, we find
the nearest m triangles as the contributing triangles. This
is done by the following steps:

Step 1: Create an array of m elements to store the m
smallest point-to-triangle distances and a variable to save
the index of maximum distances.

Step 2: Calculate distances one by one. Add the
distance into the array until it’s full.

Step 3: If the array is full, do comparison between the
current distance and the largest value in array. Replace the
largest value with the new one if the new one is bigger.

Step 4: Keep calculating until the last triangles.
Step 5: In order to guarantee the quality of binding, we

filter the calculated m nearest triangles one more time. Set
a distance range according to models’ size and shape.
Only triangles whose distances fall in the range can be
preserved as affecting triangles. If no one satisfies this
condition, just select the one whose distance is shortest as
affecting triangle.

The pseudo-code for this process can be written as:

61

for (i 0 to n) // n is total number of triangles
 do calculate the distance between p and the ith
triangle.
 if i < m // m is the max effecting triangles number
 put the distance in an m length array distance[]
 update maxIndex
 else
 if distance > distance[maxIndex]
 delete the maxIndexth distance
 add the current distance in distance[]
 update max index

end if
 end if
end for
for (i 0 to m)
 //reserve the shortest distance whatever
 if distance[i] is the shortest
 continue
 end if
 //the legal range of distance is [min, max]
 if distance[i]<min or distance[i]>max
 delete distance[i]
 end if
end for

The maximum number of affecting triangles m and the
distance range is specified by user according to the size
and the shape of the input model.

There are usually too many triangles in a mesh,
therefore calculating all the point-to-triangle distances has
quadratic complexity thus is time-consuming. We want to
accelerate this process with some spatial data structure.

We determine an appropriate stride size, and divide the
three dimensional space into small cubes of the same size.
The point p is sure to fall in one and only one of them.
Register a triangle to a cube if the cube either contains or
overlaps with the triangle. To calculate point-to-triangle
distance, first process triangles located within the same
cube as p, then the neighboring cubes. With this method,
the efficiency of the algorithm can be improved a lot.

5. Motion retargeting from BVH file

Once the binding is done, we could apply motion
capture data to the character. However, we want to use
BVH format file, which is one of the standard formats for
the human skeleton animation, instead of the old specific
animation data format Pinocchio use. So, we have to
make a format conversion follow on the character rigging.

BVH file contains two pieces of information: the
skeleton structure and the key frame data block. A human
body skeleton structure described by a BVH file is shown
in the figure below:

Figure 3. Virtual human skeleton structure described by BVH file

The rotation of the key points in BVH is Euler angles.
So we need convert Euler angle to quaternion. How to
transform Euler angle to the quaternion can be found in
[19].

We then establish a mapping relationship between
BVH skeleton and embedded skeleton. The animation
data drive the BVH skeleton, and then indirectly drive the
embedded skeleton, to produce the animation. An
example of mapping diagram between BVH skeleton and
embedded skeleton is shown below:

Figure 4. Mapping ralationship between embedded skeleton and BVH
skeleton. Arrows indicate the mapping relationship. The animation data
drive BVH skeleton, mapping to the embedded skeleton.

6. Experimental results

To test our dressed human animation system, we run
various examples. Given a standard human body and
several garments, we reshape the body model (as figure 5)
and do garment fitting (as figure 6).

62

Figure 5. There are 6,449 vertices, 12,894 faces in this human model.
We reshape it to different sizes without changing its topological.

Figure 6. We dressed the human models with this suit. There are 3,101
vertices, 5,973 faces in it.

Figure 7. Dress the human models with another suit. This suit is much
more precise. Its vertices number is 9,701 and faces number is 18,890.

After body reshaping, garment fitting, skeleton

embedding and skin attachment, we input the human body,
the matched skeleton, the matched garment and the BVH
animation file, vivid dressed human animation can be
produced now. Figure 8 shows some screen-shots of two
pieces of animation. One is a climbing male model; the
other is the walking model. We dressed the model with
two different suits. All these animations are generated in
real-time.

(a) Human climbing with suit #1

(b) Human walking with suit #1.

(c) Human climbing with suit #2.

(d) Human walking with suit #2.

Figure 8. Animation screen-shots

63

7. Discussions and future work

In summary, the virtual clothing framework provides a
new tool, including body reshaping, garment refitting and
garment animation, to create beautiful artworks. The
implementation of the system relies on a series of
sophistic techniques. We can envision the changes to
happen to garment design and manufacturing, as well as
animation production. Cloth animation effects for movies
and games will be more realistic, and will be created in
various ways. The garment industry will gradually change
its traditional business mode, from design-craft-fit-
purchase to design-fit-order-craft. With the new garment
designing and modeling tool, the audience will go beyond
the role of passive viewers and get more involved in the
artistic process, either with their aesthetic appreciation, or
with their body shapes and motions.

Acknowledgment

This work is partially supported by NSF China under
the grant #61379096.

References

[1] A. Hilsmann and P. Eisert, “Tracking and retexturing
cloth for realtime virtual clothing applications”, in Proc.
Mirage 2009—Comput.Vis./Comput. Graph. Collab.
Technol. and App., Rocquencourt, France, May 2009,
pp.94-105.
[2] P. Eisert and A. Hilsmann, “Realistic virtual try-on of
clothes using real-time augmented reality methods”,
IEEE COMSOCMMTCE-Lett., 2011, pp. 37–40.
[3] W. Zhang, T. Matsumoto, and J. Liu, “An intelligent
fitting room using multi-camera perception”, in Proc. Int.
Conf. Intell. User Interfaces, 2008, pp. 60–69.
[4] B. Spanlang, T. Vassilev, and B. F. Buxton,
“Compositing photographs with virtual clothes for
design”, in Proc. Int. Conf. Comput. Syst. And Technol.,
2004, pp. 1–6.
[5] B. Spanlang, T. Vassilev, J. Walters, and B. F.
Buxton, “A virtual clothing system for retail and design”,
Res. J. Textile and Apparel, 2005, pp. 74–87.
[6] R. Shilkrot, D. Cohen-Or, A. Shamir, L. Liu,
“Garment Personalization via Identity Transfer”, IEEE
Computer Graphics and Applications, 2012, pp. 62-72.
[7] T. L. Thanh and A. Gagalowicz, “From interactive
positioning to automatic try-on of garments”, in Proc. Int.
Conf. Comput. Vis./Comput. Graph. Collab. Technol.,
2009, pp. 182–194.
[8] F. Cordier, W. Lee, H. Seo, and N. Magnenat-
Thalmann, “Virtual try-on on the web”, in Proc. Virtual
Reality Int. Conf., Laval Virtual, 2001.
[9] Y. Meng, P. Y. Mok, and X. Jin, “Interactive virtual
try-on clothing design systems”, Comput. Aid. Des., 2010,
pp. 310–321.

[10] M. Wacker, M. Keckeisen, and S. Kimmerle,
“Simulation and visualization of virtual textiles for virtual
try-on”, Res. J. Textile and Apparel, 2005, pp. 37–41.
[11] K. Zou, X. Xu, Y. Li, and Z. Li, “Research of
interactive 3D virtual fitting room on web environment”,
in Proc. Int. Symp. Comput. Intell. and Des., 2011, pp.
32–35.
[12] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J.
Rodgers, and J. Davis, “SCAPE: Shape completion and
animation of people”, ACM Trans. Graph., 2005, pp.
408–416.
[13] M. Fiala, “Magic mirror system with hand-held and
wearable augmentations”, in Proc. IEEE Int. Conf. Virtual
Reality, 2007, pp. 251–254.
[14]C. Chu, Y. Tsai, C. Wang, “Exemplar-based
statistical model for semantic parametric design of human
body”, TH Kwok - Computers in Industry, Elsevier,
August, 2010, pp.541-549.
[15] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn and H.-
P. SeidelA, “Statistical Model of Human Pose and Body
Shape”, Computer Graphics Forum, 2009, pp. 337–346, .
[16] S. Zhou, H. Fu, L. Liu, D. Cohen-Or, X. Han,
“Parametric Reshaping of Human Bodies in Images”,
ACM Transactions on Graphics (Proceedings of
SIGGRAPH) , 2010, vol. 29, no. 126.
[17] J. Li, J. Ye, Y. Wang, L. Bai, G. Lu. ‘‘Fitting 3D
Garment Models onto Individual Human Models’’,
Computers and Graphics, 2010, pp. 742-755.
[18] I. Baran,J. Popovic. ‘‘Automatic Rigging and
Animation of 3D Characters’’, In Proc.SIGGRAPH,
2007, vol. 26(3), no.72.
[19] John Vince, Mathematics for Computer Graphics,
Second Edition,Springer,2006.
[20] T. Akenine-Moller, E. Haines,Real-Time
Rendering, Third Edition, India AK Peters,2008.

64

