
 

  
Animation of Refitted 3D Garment Models for Reshaped Bodies 

 
 

Yifan Yan1   Juntao Ye1   Xiaoyang Zhu1   Jituo Li2 
1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences  
2Institute of Engineering and Computer Graphics, Mechanical Engineering Department, Zhejiang 
University  

E-mail: juntao.ye@ia.ac.cn 
 
 

Abstract 
 

We present a framework for a virtual try-on system. 
Starting with a template human body mesh, we reshape it 
to acquire meshes of various body dimensions according 
to the user specified parameters. These reshaped bodies 
are further processed in two directions: refitting a 
garment model to the outside of the body and embedding 
a skeleton to the inside. The refitted garment mesh is then 
bound to the body mesh via our coat-to-mesh algorithm, 
which is the major contribution of this paper. The body 
mesh is skinned to the embedded skeleton with an implicit 
rigging process. This way, any deformation in the body 
mesh will lead to corresponding deformation in the 
garment mesh. During the deformation, both the mesh 
topology and spatial relationship between the body and 
the garment are maintained. At the end, we apply some 
third-party motion data to drive the skeleton, the body 
mesh, as well as the garment mesh, and create real-time 
animations of dressed human character. 
 
Keywords: garment animation, virtual try-on, character 
modeling,   reshaping,   binding  
 
1. Introduction 
 

There’s a pressing need to provide a more personalized 
experience for online shopping than just browsing 
through catalogs. This is even more critical for clothes 
shopping because different people have different physical 
characteristics and preferences. Researchers have created 
technologies such as virtual mirrors and video fitting 
using VR for “trying on” outfits online. However, these 
technologies haven’t provided comfortable user 
interaction or achieved an emotional response in which 
users can visualize themselves wearing or using the 
products in a natural environment. 

On the other hand, in fashion industry, garments that 
are tailored out of exquisite materials and artful designed 
patterns can be very sophisticated. They are not only 
envelopes for the human body, but also artworks that 

visualize cultural aspects, tendencies and trends. However, 
the current status of mass-production of garments is less 
artistic. Manufactures take limited advantages of 
consumer’s body shapes and produce garments based on 
pre-defined pattern sizes (e.g. S, M, L, XL, XXL). 
Advanced garment customization that serves the masses 
is still uncommon. In recent years, the Internet has 
emerged as a compelling channel for garments sale, and 
initiated the concept of virtual try-on. Yet such Web 
applications nowadays have supported only basic 
functions and are far from a practically useful level.  

Clothing animation is not only useful for designing and 
prototyping garments before the manufacturing process, 
but also in great demand in special effects industry. The 
most appealing technique is physically based simulation, 
which will give highly realistic result. However, 
simulation usually computationally costly such that it is 
seldom used in real-time applications.  

In this paper we describe a framework for a virtual try-
on system. Several key technical issues, including human 
body reshaping, garment refitting and garment animation, 
will be investigated. 
 
2. Related work 
 

Some earlier work mainly used image processing 
techniques to construct virtual try-on system. Hilsmann 
and Eisert [1] described a dynamic texture overlay 
method from monocular images for visualizing garments 
in a virtual mirror environment. In their follow-up work, a 
method to segment the user’s clothes and retexture them 
using extracted shading and shape deformation 
information [2] was proposed. Zhang et. al. used fiducial 
markers to change the texture of a user’s shirt [3]. In 
Spanlang et al’s work [4], a pre-generated 3D human 
model in target clothes was superimposed on a user’s 2D 
picture. Their follow-up work [5] presented a virtual 
clothing system, in which a user is scanned and registered 
to the system once, and then clothes can be simulated on 
the reconstructed model. Shilkrot et al. [6] created a 
system that offers a virtual experience akin to trying on 
clothing. It clones the user’s photographic image into a 
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catalog of images of models wearing the desired garments. 
The process takes into account the user’s skin color and 
body dimensions. 

Different from image based systems, 3-dimensional 
systems are geometrically more accurate. Thanh and 
Gagalowicz [7] enables a user to load his/her own 3D 
model, select 3D clothes from a catalogue and 
superimpose them on the model by interactive 
positioning. Frederic et al. [8] presented a framework for 
a web-based solution using a generic database for 
dressing a user look-alike clothed avatar and simulating 
the clothes on the avatar. Meng et al. [9] and Wacker et 
al. [10] proposed solutions for sewing of clothing patterns 
on a virtual 3D human character and viewing the 
simulation results of the clothes. Zou et al. [11] 
implemented a web-based platform that allows interactive 
viewing of clothes simulation and selection of different 
hairstyles and other accessories on an avatar. 

In recent years, some interactive virtual try-on 
solutions using augmented reality technique have been 
reported. A major challenging issue in AR based systems 
is the requirement of accurate pose recovery for fitting 
virtual clothes (or other accessories) on a user’s image 
[3,13]. Today with the release of a new generation of 
sensing technologies capable of providing high quality 
videos of both color and depth (e.g., Microsoft Kinect 
[14]), it provides an opportunity to dramatically increase 
the capabilities of virtual try-on solutions. Hauswiesner 
[15] described an impressive virtual try-on system where 
a user’s human model and cloth were reconstructed by 
deforming a SCAPE [12] model using a multiple-camera 
setup. Next, the skeleton obtained from a Kinect sensor is 
mapped to the SCAPE model so the model can follow the 
user’s movements captured by the Kinect sensor. The 
advantage of this method is that the system enables users 
to enjoy a private virtual try-on experience at their own 
homes.  

 
3. Pipeline of our virtual try-on system 
 
   The pipeline of our virtual try-on system is illustrated in 
Fig. 1. Starting with a template human body mesh, we 
derive meshes of various body dimensions by reshaping. 
We then do two things for these reshaped bodies: refitting 
a garment model to the outside of the body and 
embedding a skeleton to the inside. The refitted garment 
mesh is then bound to the body mesh via our coat-to-mesh 
algorithm. The body mesh is skinned to the embedded 
skeleton. At the end, we apply some third-party motion 
data to derive the skeleton, the body mesh, as well as the 
garment mesh. 

 
Figure 1. Pipeline of our virtual try-on system 

 
3.1. Body reshaping 
 

A natural way to acquire a person’s body model is by 
using expensive acquisition device - 3D human scanner. 
This is, however, not only financially costly, but also 
requires tedious post-processing. Therefore, there is a 
great request from the market to have a parametric design 
tool for human bodies so that the shape of a 3D human 
body can be generated from a set of semantic input (e.g., 
height, chest-girth, waist-girth, hip-girth, inseam-length, 
etc.). We follow the work by Chu et. al [14] for reshaping 
human bodies. 

Their method provides an intuitive way for the user to 
generate body shape by appointing a set of semantic 
values. Human models and the semantic parameters are 
correlated as a single linear system of equations. This 
approach involves simpler computation compared to non-
linear methods while maintaining quality outputs. By this, 
a semantic parametric design in interactive speed can be 
implemented easily. A new method is developed to 
quickly predict whether parameter values are reasonable 
or not, with a set of training models as given in the public 
domain human model database [15] with 550 full body 
scans. 

The body models are created by varying seven 
semantic parameters, namely height, shoulder width, 
chest girth, waist girth, hip girth, arm length and leg 
length.  

 
3.2. Skeleton embedding and rigging 
 

Nowadays a popular method for animating an 
articulated 3D character is a technique called skinning – 
vertices of the garment mesh are attached to bones and 
transformed along with the bone’s coordinate system. Due 
to its low computational cost, this technique is still widely 
used in low-end movies and most 3D video games. 
However, setting up the skin weights needs to be done 
manually, which is non-trivial. Researchers have been 
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working hard to find solutions for automatic rigging. 
Baran and Popovic [18] put forward a method that works 
well under certain circumstances. We took advantage of 
their prototype implementation (called Pinocchio) and 
integrated their code into our system.  

Pinocchio consists of two main steps: skeleton 
embedding and skin attachment. Skeleton embedding 
computes the joint positions of the skeleton inside the 
character by minimizing a penalty function. The skin 
attachment is computed by assigning bone weights based 
on the proximity of the embedded bones smoothed by a 
diffusion equilibrium equation over the character’s 
surface. Once the skeleton is embedded into the character 
and attached to the surface, skeletal motion data can be 
used to animate the character. 

We adopt Pinocchio’s built-in skeleton for embedding, 
which consists of fixed number of bones. However, when 
driving this skeleton using BVH motion data, which may 
be motion-captured based on a different skeleton topology, 
a mapping between two skeletons needs to be built. This 
work will be detailed in Section 5. Pinocchio also 
demands the static character mesh to be a closed two-
manifold, and any meshes with holes do not work. 
Fortunately, the body meshes we use are perfectly closed 
meshes.  
 
3.3. Garment refitting 
 

It is possible to reuse the models directly created in 3D 
space for different sized bodies. While retaining the style 
and the topology of the model, its shape will be shrunk or 
stretched, non-uniformly, to fit the target body. For 
refitting, we need to deal with either one of the two 
different cases. In the first case, the template human is 
dressed with a garment model, and this garment is to be 
transferred to another body which is actually reshaped 
from the template body. In the second case, a garment 
model is to be transferred to a human model that initially 
has no correspondence with the garment. Typically for the 
second case, the garment posture is largely different from 
the body posture.  

We deal with the first case in our system, i.e. all 
garment models were created to fit the template body 
model at the beginning. As did in [17], the refitting has 
two stages: firstly the garment undergoes a global 
adjustment so that it roughly matches the reshaped body; 
secondly a fine-tune process to tackle the penetration 
issues at some regions and to adjust the garment-human 
ease allowance at the other regions. Once penetration is 
detected, it has to be resolved. There are two types of 
penetrations. In the first case, garment vertices are located 
inside the body mesh; in the second case, body vertices 
are inside the garment mesh. (Here we determine the 
inside and outside of a mesh according to the face normal.) 
These two cases are handled separately. The first case is 
relatively easy to tackle, and the second case is resolved 

with help of octree structure. More details can be found in 
[17].  
 
3.4. Coating garment mesh to body mesh 
 

Once a garment is fitted to the reshaped body, it is 
desirable that both the body mesh and the garment mesh 
can be animated. As a garment mesh is usually not closed, 
Pinocchio is unable to bind them to a skeleton. Instead of 
binding a mesh to a skeleton, is it possible to bind the 
garment to the body mesh? If yes, the garment mode will 
acquire its motion from the underling body motion. This 
motivates us to put forward a new technique called coat-
to-mesh algorithm. Actually, this idea has potentials in 
other application context. With the emergence of new 
devices such as Kinect sensor, the motion and 
deformation of a human body can be captured directly, 
adding another option in addition to the skeleton driven 
animation. If a garment model is to move along with a 
“boneless” mesh, there has to be a technique to attach the 
garment mesh to the body mesh. This new technique is 
analogous to the idea of skin-to-bone. We have made it an 
automatic process, with little intervention from the user. 
This method is the main contribution of this paper, and 
will be detailed in Section 4. 
 
3.5. Motion retargeting from BVH data 
 

Following the previous steps, we should have bound 
the new body mesh to a skeleton, and bound a new 
garment mesh to the body mesh. Now the body mesh can 
be driven by the skeleton if proper motion data is applied, 
and the body mesh will in turn drive the garment mesh 
automatically.  

To show the flexibility of our system, we intend to use 
popular motion data files, particularly those formats 
supported by motion capture devices. The BVH file 
format was originally developed by Biovision, a motion 
capture services company, as a way to provide motion 
capture data to their customers. A BVH file specifies a 
bone hierarchy, which may vary from file to file. It is also 
very likely that a BVH bone hierarchy is different from 
the Pinocchio’s built-in structure. Therefore the motion 
needs to be retargeted from one skeleton to another. This 
will be detailed in Section 5.  

 
In summary, through several stages of complex 

processing, we could refit a template garment model to a 
reshaped body and create animation for it. 
 
4. The Coat-to-mesh algorithm 
 

We want to bind the garment mesh to the body mesh, 
so that whenever the body deforms the garment will 
deform accordingly. This deformation must be in a 
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reasonable manner. It should not change the topology of 
the original mesh. It should maintain the spatial 
relationship of the two meshes. Particularly, if at the 
initial state the two meshes have no penetrations, so 
should be their deformed counterparts. We designed a 
binding approach, called the coat-to-mesh algorithm, 
which meets the above requirements. 
 
4.1. Background: barycentric coordinates on 
triangles 
 

Let us consider a triangle T defined as the convex hull 
constructed from the three vertices x1, x2 and x3. Any 
point x located on the plane defined by these three 
vertices may be written as a weighted sum of them, i.e. x 
=�1*x1+�2*x2+�3*x3, where �1, �2, and �3 are barycentric 
coordinates. They satisfy the constraint �1+�2+�3=1, thus 
there are only two independent components. If x is inside 
the convex hull, there is �i>0, i=1, 2, 3. Since barycentric 
coordinates are a linear transformation of Cartesian 
coordinates, it follows that they vary linearly along the 
edges and over the area of the triangle. 

 
4.2. Binding out-of-plane point to triangle 
 

Now we exploit the above in-plane barycentric 
coordinates to bind an out-of-plane point to a triangle. For 
a point p that is not coplanar with three vertices x1, x2 and 
x3, we use a quadruple (�1, �2, �3, d) for binding. First p is 
projected onto the plane along the plane normal n=(x2-x1)

(x3-x2)/||(x2-x1) (x3-x2)||. The projection point p’ has 
in-plane barycentric coordinates (�1, �2, �3). Using the 
normal n to denote the positive side of the plane, we 
calculate the signed distance from p to the plane: d=<p-p’, 
n>, where operator <,> stands for the inner product.  

On the other hand for a new configuration of x1, x2 
and x3, if the quadruple is known we can recover the 
Cartesian coordinate of point p:  

p=�1*x1+�2*x2+�3*x3+d*n.  
To be aware of the triangle area change caused by the 
new positions of x1, x2 and x3, we modify the above 
equation into 

p=�1*x1+�2*x2+�3*x3+sqrt (A/A0)*d*n,                 (1) 
where A0 is the initial triangle area and A is the area of the 
new triangle. According to the above discussion, we 
compute �1, �2, �3, d and A0 at the initialization step, and 
substitute them into Equ.1 to compute the new point 
position whenever x1, x2 and x3 are re-located. 

                     
       (a) bind p to one triangle              (b) bind p to multi-triangles 

Figure 2 . Bind an out-of-plane point to triangles. point p’ can be written 
as a weighted sum of triangles three vertexes. 
 
4.3. Binding out-of-plane point to multiple 
triangles 
 

So far we have introduced how to bind a point to one 
triangle. Usually a mesh consists of thousands of triangle, 
binding one point to only one triangle is prone to cause 
artifact. A better solution is binding one point to multiple 
triangles. 

Suppose point p is to be bound to m triangles, we 
represent the final coordinate as a linear combination of m 
points: , in which wi is the weight of the 
ith triangle. 

 We determine weight for each triangle only by to the 
point-to-triangle distance. The weight is the reciprocal of 
the distance. They are normalized to be within the range 
[0,1]. The formula for calculating weights is 

. They satisfy the constraint 

. 
 

4.4. The Coat-to-mesh algorithm 
 
How do we decide the number of triangles from the 

body mesh that affect each garment vertex? The number 
should not either be too large or too small. If too large, the 
garment mesh will appear too rigid. If two small, the 
deformation will appear unsmooth. We let the user to 
determine this number and place a parameter in the 
configuration file to specify the maximum m triangles 
allowed to affect a point. In general, there are mountains 
of triangles in a character mesh.  For each point, we find 
the nearest m triangles as the contributing triangles. This 
is done by the following steps: 

Step 1: Create an array of m elements to store the m 
smallest point-to-triangle distances and a variable to save 
the index of maximum distances. 

Step 2: Calculate distances one by one. Add the 
distance into the array until it’s full.  

Step 3: If the array is full, do comparison between the 
current distance and the largest value in array. Replace the 
largest value with the new one if the new one is bigger.  

Step 4: Keep calculating until the last triangles. 
Step 5: In order to guarantee the quality of binding, we 

filter the calculated m nearest triangles one more time. Set 
a distance range according to models’ size and shape. 
Only triangles whose distances fall in the range can be 
preserved as affecting triangles.  If no one satisfies this 
condition, just select the one whose distance is shortest as 
affecting triangle.  

 
The pseudo-code for this process can be written as: 
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for (i 0 to n)  // n is total number of triangles 
         do calculate the distance between p and the ith 
triangle. 
         if i < m  // m is the max effecting triangles number 
             put the distance in an m length array distance[] 
             update maxIndex 
         else 
             if distance > distance[maxIndex] 
                 delete the maxIndexth distance 
                 add the current distance in distance[] 
                 update max index  

end if 
        end if 
end for 
for (i 0 to m) 
      //reserve the shortest distance whatever 
      if distance[i] is the shortest    
         continue 
      end if 
      //the legal range of distance is [min, max] 
      if distance[i]<min or distance[i]>max  
         delete distance[i] 
     end if 
end for 

The maximum number of affecting triangles m and the 
distance range is specified by user according to the size 
and the shape of the input model.  
 

There are usually too many triangles in a mesh, 
therefore calculating all the point-to-triangle distances has 
quadratic complexity thus is time-consuming. We want to 
accelerate this process with some spatial data structure. 

We determine an appropriate stride size, and divide the 
three dimensional space into small cubes of the same size. 
The point p is sure to fall in one and only one of them. 
Register a triangle to a cube if the cube either contains or 
overlaps with the triangle. To calculate point-to-triangle 
distance, first process triangles located within the same 
cube as p, then the neighboring cubes. With this method, 
the efficiency of the algorithm can be improved a lot. 

 
5. Motion retargeting from BVH file 
 

Once the binding is done, we could apply motion 
capture data to the character. However, we want to use 
BVH format file, which is one of the standard formats for 
the human skeleton animation, instead of the old specific 
animation data format Pinocchio use. So, we have to 
make a format conversion follow on the character rigging.  

BVH file contains two pieces of information: the 
skeleton structure and the key frame data block. A human 
body skeleton structure described by a BVH file is shown 
in the figure below: 

 

 
Figure 3. Virtual human skeleton structure described by BVH file 
 

The rotation of the key points in BVH is Euler angles. 
So we need convert Euler angle to quaternion. How to 
transform Euler angle to the quaternion can be found in 
[19].  

We then establish a mapping relationship between 
BVH skeleton and embedded skeleton. The animation 
data drive the BVH skeleton, and then indirectly drive the 
embedded skeleton, to produce the animation. An 
example of mapping diagram between BVH skeleton and 
embedded skeleton is shown below: 

 

 
Figure 4. Mapping ralationship between embedded skeleton and BVH 
skeleton. Arrows indicate the mapping relationship. The animation data 
drive BVH skeleton,  mapping to the embedded skeleton.  
 
6. Experimental results 
 

To test our dressed human animation system, we run 
various examples. Given a standard human body and 
several garments, we reshape the body model (as figure 5) 
and do garment fitting (as figure 6).  
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Figure 5. There are 6,449 vertices, 12,894 faces in this human model. 
We reshape it to different sizes without changing its topological. 
 

  
Figure 6. We dressed the human models with this suit. There are 3,101 
vertices, 5,973 faces in it.  
 

 
Figure 7. Dress the human models with another suit. This suit is much 
more precise. Its vertices number is 9,701 and faces number is 18,890. 

 
After body reshaping, garment fitting, skeleton 

embedding and skin attachment, we input the human body, 
the matched skeleton, the matched garment and the BVH 
animation file, vivid dressed human animation can be 
produced now. Figure 8 shows some screen-shots of two 
pieces of animation. One is a climbing male model; the 
other is the walking model. We dressed the model with 
two different suits.  All these animations are generated in 
real-time. 

 

 
(a) Human climbing with suit #1 

 

 
(b) Human walking with suit #1. 

 

 

 
(c) Human climbing with suit #2. 

 

 

 
(d) Human walking with suit #2. 

Figure 8.  Animation screen-shots 
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7. Discussions and future work 
 

In summary, the virtual clothing framework provides a 
new tool, including body reshaping, garment refitting and 
garment animation, to create beautiful artworks. The 
implementation of the system relies on a series of 
sophistic techniques. We can envision the changes to 
happen to garment design and manufacturing, as well as 
animation production. Cloth animation effects for movies 
and games will be more realistic, and will be created in 
various ways. The garment industry will gradually change 
its traditional business mode, from design-craft-fit-
purchase to design-fit-order-craft. With the new garment 
designing and modeling tool, the audience will go beyond 
the role of passive viewers and get more involved in the 
artistic process, either with their aesthetic appreciation, or 
with their body shapes and motions. 
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