
Fast Discrete Intersection Detection for Cloth
Penetration Resolution

Juntao Ye

Institute of Automation

Chinese Academy of Sciences

Beijing, China

Email: juntao.ye@ia.ac.cn

Timo R. Nyberg

Dept. of Industrial Eng. and Management

School of Science, Aalto University

Espoo, Finland

Email: timo.nyberg@aalto.fi

Gang Xiong

Cloud Computing Center

Chinese Academy of Sciences

Dongguan, China

Email: xionggang@casc.ac.cn

Abstract—Penetrations are often unavoidable in modeling cloth
or other deformable surfaces. It could exist as an initial configu-
ration or show up in the middle of a dynamics simulation process.
We present a new method for resolving such penetrations. To be
adapted to a wide range of applications, this method is based
on history-free discrete intersection detection (DID). It is also
orientation-free as it does not assume any front- and back- face
identification. Our method relies on dynamic repulsive normal
(DRN) to compute proper displacements to relocate vertices to
be intersection-free. First, intersection contours are constructed
and classified, followed by a global analysis of the collision
configurations. Then for some types of configurations, penetrating
(illegal) regions are identified using a heuristic paradigm “small
region is illegal”. For those surfaces having identifiable illegal
regions, proper displacements for incorrectly configured vertices
are computed using DRN. For those configurations that do not
clearly define legal/illegal regions, displacements are designed
to push one mesh to the boundary of the other. The proposed
method can also be used in the context of time-dependent simu-
lation of complex deformable surfaces, making it an competitive
alternative to the popular CCD-based approach.

I. INTRODUCTION

The majority of cloth and other soft body modeling systems

adopt continuous collision detection (CCD) to predict impend-

ing collisions, then attempt to prevent them from happening

by altering the particles’ velocities. The success of CCD-

based response relies on a hard constraint: an intersection-

free state for not only the initial configuration but also the

starting of every time interval in the simulation. There are

also applications in which an intersection-free initial state is

impossible, or the simulation context is subject to external

constraints forcing the cloth into illegal states for a number of

consecutive steps. Moreover, although every collision event

carries a time tag in CCD, they are often neglected, as

resolving all the events strictly according to their time order

can be too slow to halt the simulation. Thus simultaneous

response is often adopted.

Contrast to collision prevention methods, collision repair

strategy allows penetrations to occur but try to detect and fix

them. It employs discrete intersection detection (DID) so it

is history-free. DID is expected to be more efficient for two

points: bounding volumes are more tight-fitting and no cubic

solver is needed. For most cloth meshes there is no way to

define inside/outside, this strategy is also orientation-free. So

Fig. 1: Resolving five intertwined sheets. Three of them have 2, 754
particles each, and the flat one has 6, 561 and the other has 1, 681.

far it has largely been used as a complementary mechanism

to CCD-based framework.

We envision a DID-based collision correction framework,

not only for untangling penetrations, but also as an alternative

to the popular CCD-based approaches. However, designing a

purely history-free and orientation-free response algorithm is

often an ambiguous and ill-defined problem (see Fig 2 for such

an example). Recall that in CCD-based response, plane normal

plays an important role in detecting if a geometric primitive

(edge or vertex) is crossing a specific plane, and is also crucial

in defining repulsion force or impulse to stop the approaching.

The proper normal direction is so picked that it is consistent

with the negative approaching velocity. That is to say the

surface orientation is derived from the history information. Yet

history information such as velocity is unavailable in DID, so

heuristic has to be resorted to identify the penetration regions.

Instead of imposing a hard constraints as in CCD, we only

make an assumption which is easily satisfied: most of a surface

is of legal status at any time of the simulation.

This paper extends the previous correction-based work

by introducing dynamic repulsive normal (DRN). We first

perform an efficient discrete intersection detection (§3). Then

the intersection contours are constructed (§4.1), and classified

to identify the penetrating/illegal regions (§4.2) by using a

heuristic paradigm “small region is illegal”. For those meshes

having identifiable illegal regions, proper correcting displace-

ments are computed for incorrectly configured vertices using

DRN (§5.1). For those configurations that do not clearly define

legal/illegal regions, displacements are designed to push one

mesh to the boundary of another one (§5.1). In both cases,

the displacements are first computed per E-F (edge-face) pair

2015 IEEE International Conference on Multimedia Big Data

978-1-4799-8688-0/15 $31.00 © 2015 IEEE

DOI 10.1109/BigMM.2015.22

352

Fig. 2: The ambiguity in resolving the collision configuration in
the top-middle image. The heuristic we use will choose the bottom-
middle image as the after-collision configuration.

basis, then applied to corresponding vertices via either a local

or global scheme (§5.2). The above process is repeated in a

detect-correct-detect manner until the vanish of all intersection

contours.

II. RELATED WORK

CCD-based method is the dominant solution for cloth colli-

sion handling. Provot [1] proposed a cubic solver for detecting

penetration of two elastic moving triangles. Bridson et al. [2]

presents a comprehensive way of preventing intersections to

occur. Asynchronous contact model [3], [4] produces very

realistic effects. Another history-based response method for

the domain of geometric modeling was proposed in [5]. This

method resolves interference by reducing the magnitude of

STIV (space-time interference volume swept by the trajectory

of the penetrating regions) to zero through a minimization

process.

Baraff et al. [6] were probably the first to address the neces-

sity of collision correction in complex simulation environment,

and put forward a partial solution. Their method is limited to

closed regions and cannot handle intersection involving mesh

boundary. Wicke et al. [7] further investigated this problem

by taking consideration of boundary collisions. They analyzed

all possible collision configurations and presented a classifi-

cation criterion for intersection contours. Then two response

schemes were proposed to handle different types of contours.

Unfortunately their method has never been used as stand-

alone response mechanism in complex simulations, thus its

effectiveness is unclear. An intersection contour minimization

(ICM) method [8] was proposed and it does not suffer from the

limitations of open paths. This method resolves intersections

by inducing relative displacements which minimize the length

of the intersection contour. Aiming at a broader application

field, no contour classification is needed and all types of

contours are treated uniformly. While this method works fine

for open contours which either start from or end at the surface

boundary, it often fails for closed interior contours. Ye and

Zhao [9] pointed out that the failure or slow convergence of

ICM is due to ambiguous normal direction used.

III. THE DISCRETE INTERSECTION DETECTION

Surfaces intersections are typically detected as intersections

between edges and faces/triangles. This elementary test in DID

will be called E-F test thereafter. Extensive effort has been

devoted to CCD over the past few years, and a number of

acceleration techniques have been put forward. As CCD, our

broad-phase collision detection is performed using Bounding

Volume Hierarchies (BVH) with k-DOPs. While BVH can

provide high culling efficiency, there is still a very high number

of false positives, largely caused by BVs of adjacent triangle

primitives. Two techniques have been introduced [10], [11] to

the CCD pipeline to address this issue. One is called procedu-
ral representative triangles (PRT) for removing all redundant

elementary tests (both V-F and E-E) between nonadjacent

triangles. The other is orphan sets which exploit the mesh

connectivity to eliminate redundant elementary tests between

adjacent triangles. Using V-F PRT cuts the V-F test redundancy

by 5/6 (assuming the average vertex valence is six), and the

E-E PRT cuts the E-E test redundancy by one half, as each

edge is shared by two triangle.

Similarly in DID, redundant E-F tests exist because an edge

is typically shared by two triangles. We extend the PRT and

orphan set techniques to the elementary E-F test in DID,

putting forward the concepts of E-F PRT and E-F orphan
set. Using them will successfully cut the E-F test redundancy

by a half.

A. Acceleration with E-F PRT

For non-adjacent triangle pairs, we propose the technique

of E-F PRT, to guarantee that all necessary E-F tests will

be evaluated once and only once. As a common sense, each

triangle is identified by a unique index number in the mesh,

and the indexing is usually fixed to be unchanged throughout

the simulation. Of the two incident triangles to an edge, we

designate the one with the smaller index as the PRT for this

edge. The fixed indexing guarantees that for a given edge we

can always find the same triangle as its PRT. When an E-F

test comes from non-adjacent pairs, at least one of the edge’s

two adjacent triangles is not adjacent to the intersecting face,

which means the E-F PRT always make sense. Using E-F PRT,

every elementary test will be performed once and only once,

thus cuts the E-F test redundancy by a half, as each edge

is generally shared by two triangles. The completeness and

correctness of PRT are testified in [11].

B. Acceleration with E-F Orphan Set

As adjacent F-F pairs are never culled off in BVH culling,

they are treated differently from the non-adjacent pairs. Adja-

cent pairs have two categories, co-edge pair, and co-vertex
pair. When doing E-F tests out of adjacent pairs, not all

six E-F tests are necessary because of the common element

shared by the two triangles. Moreover, some E-F pairs between

adjacent triangles may be executed in non-adjacent pair phase,

thus not necessary to be done again. An E-F pair from a co-

vertex triangle pair that do not get performed during the non-

adjacent phase is called E-F orphan pair. All orphan pairs

353

constitute orphan set, which is a subset of the E-F tests from

adjacent triangle pairs. This relationship is similar to the V-F

and E-E tests from adjacent pairs in CCD, in which Tang et al.

[11] introduce an optimization algorithm based on the work

of Govindaraju et al. [12].

Although V-F orphan pairs and E-E orphan pairs exist in a

closed mesh for CCD, E-F orphan pairs only appear in meshes

with boundary. In a closed mesh, all the E-F tests can be

executed in non-adjacent phase, so no E-F test is needed in

the adjacent phase. In other words, the edge E in an E-F

orphan pair is a boundary edge. This makes the E-F orphan

set different from V-F and E-E orphan sets in CCD, in that E-F

test can not happen between co-edge triangle pairs. Moreover,

only an edge that is not incident to the shared vertex will be

part of an E-F orphan pair. That is to say, for a co-vertex

triangle pair, at most two E-F orphan pairs can be formed.

However, E-F orphan pair does not always exist in a co-vertex

triangle pair. It is sufficient to identify all E-F orphan set in a

pre-processing step. First, all the co-vertex triangle pairs are

constructed. Then for every pair, only the edge that is not

incident to the common vertex has potentials to intersect with

the other triangle, so only two edges from the pair need to be

tested.

IV. INTERSECTION CONTOUR CONSTRUCTION AND

CLASSIFICATION

A. Contour Construction

The above DID process only outputs a set of E-F inter-

sections. Many collision resolving algorithms [6], [8], [7], [9]

rely on the topology of the intersection contours to determine

the legal/illegal regions, so a robust intersection contour recon-

struction algorithm is necessary. The construction is performed

in a bottom-up manner in four stages, as will be detailed in

the following.

Register intersection points. For every E-F intersection

point, we register it to its host triangles. Each point will

generally has three host triangles, including the two adjacent

triangles incident to the intersecting edge and the correspond-

ing intersecting face in this E-F pair. If the edge is on the

boundary, there are only two host triangles. As a result, every

triangle has at least two E-F intersection points.

Construct in-face poly-lines. Using the PRT and orphan

set techniques imposes a little trouble for intersection contour

construction. Without using such tricks, each intersecting F-

F pair produces an intersection segment, thus concatenating

all these segments head-to-tail will recover the whole contour

of two intersecting meshes. With the acceleration techniques,

not all six E-F tests are executed in each F-F test, thus we

will not get a list of line segments immediately. Instead,

we are end up with a set of E-F intersection points without

connectivity information. For each face, there may be multiple

intersection points registered to it. With the concept of host

triangle for every intersection point, two conditions must be

satisfied simultaneously if two intersection points in one face

are to be connected:

• Two intersection points have two common host triangles.

• None of the two common host triangles is adjacent to the

intersecting edge.

Constructing global contours. After all the in-face poly-

lines for every single triangle are constructed, these poly-lines

must be further connected to form global contours. This is

done via a depth-first traversal of every contour. We have ever

attempted to do it via width-first traversal with the help of

BVH, but found it to be less efficient.

Group end-vertices. Vertices of the intersecting edges

along a contour are divided into two groups, one group is

in penetrating positions and the other is in valid position. An

edge could intersect multiple faces at one time, thus having

more than one intersection points. Odd number of intersections

implies the two end vertices belong to separate groups.

B. Determining Legal/illegal Regions

The success of the global intersection analysis depends on

the classification of the contour. We follow the classification

criterion given in [7], as shown in Figure 3. The top row shows

the collision configurations, and the bottom row shows the

contours drawn on each (part) of the mesh. This classification

is applicable as long as the cloth surface is a 2-manifold,

whether it is closed or with boundaries. Cases (d) (e) (f) (g)

have loop vertices, thus they only occur in self-collision. The

term loop-vertex was coined in [6] to refer to the common

vertex shared by two intersecting adjacent triangles. Contours

fold back onto themselves after reaching a loop vertex, so it is

often helpful to unfold such contours for classification. There

are five types of contours:

• CL: closed curve; no loop-vertex.

• BB: open; both ends on boundary; no loop-vertex.

• BLI: one end on boundary, the other inside; one loop-

vertex.

• BI: one end on boundary, the other inside; no loop-vertex.

• II: open; both ends inside; no loop-vertex.

In a collision configuration, the most common contour pairs

are of types CL/CL, BB/II and BI/BI. Some configurations

containing loop-vertex do not lead to a pair of contours, but

one single contour of type CL or BLI. Figure 3 (d) and (g)

are such examples. Note that a BB contour usually comes

along with an II contour. Very rarely is the case that a BB can

also correspond to a BI or BB contour. These configurations

(BB/BI and BB/BB) are unstable due to boundary-boundary

intersection. Depending on how the round-off error is handled

in the E-F test, they are often classified to either BB/II or

BI/BI. For the same reason, BLLB is another unstable contour

and is treated as two BLI contours for handling.

Of the five contour types, CL and BB were defined in [7]

as partitioning contours, i.e. they partition a mesh into two

components. However, we find it is true for BB contour only

if the mesh has one boundary. BB contours in multi-boundary

meshes (e.g. cylindrical surface) are more complicated to

handle and will be discussed in §7. For now, we assume the

mesh has at most one boundary. Type II always corresponds to

BB in which the illegal region can be identified, then II contour

354

(a) (b) (c) (d) (e) (f) (g)

Fig. 3: Contours classification. Loop vertices are marked on the contours. (a) CL/CL pair. (b) BB/II pair. (c) BI/BI pair. (d) Loop-loop
contour is unfolded to one CL contour. (e) closed contour with a single loop vertex is split to CL/CL pair. (f) The CROSS is split to BB/II
pair. (g) The unfolded BLI contour. Images (e)(f)(g) courtesy of Wicke et al.

will diminish automatically along with the diminishing of BB.

BI always corresponds to BI, and the BI/BI configuration is

resolved by pushing one mesh to the boundary of another

mesh, as will be detailed in §V-A.

It was proposed in [7] that BLI can be treated as a

partitioning contour by construct a cone and flatten it. As loop-

vertex occurs so rarely and creating a collision scene with a

loop-vertex is not easy, we have no chance to validate the

effectiveness of their method. And also please note that none

of the examples in this paper involves any loop-vertex, and

we focus on the first three penetration cases of Figure 3.

With the paradigm “small is illegal”, the small region

delimited by CL, BB or BLI is regarded as on the wrong

side. It is possible that a mesh has multiple contours and is

partitioned into more than two components. A fact is that the

two components on the different sides of a contour always

have opposite legal/illegal status. In the global analysis, these

components are divided into two groups and their summed

areas are compared. The flood-fill algorithm were typically

used to find the smaller region on a partitioned mesh in the

literature.

V. UNTANGLING WITH POSITION DISPLACEMENT

A. The Dynamic Repulsive Normals

In dynamics simulation, two triangles are allowed to be

close enough but should never penetrate. To fix the illegal

status of penetration, the simplest scheme is to re-located

the two triangles to an intersection-free configuration. Surface

normals play a very important role in bouncing back the

colliding geometric primitives. A polygonal mesh, with clearly

defined normal directions to denote inside/outside, can be

called oriented surface. For untangling two oriented surfaces,

two factors are considered in developing a scheme. First,

one mesh ought to be pushed along the “outside-pointing”

normal direction of the other mesh. Second, the length of

the intersection contour should be reduced, ultimately leading

to a complete disappearance. The task of untangling two

intersecting meshes can be broken down into separating a

series of E-F intersections. In a collision configuration shown

in Figure 4, edge e, shared by two green triangles, intersects a

nr

r1 r2

B1 e B2

A2
A1

(a)

r1
r1 r1

B0

B1 e B2

A

(b)

Fig. 4: (a) BB/II configuration where green mesh B is partitioned
by the intersection contour. The DRN nr is up for face A1. (b) BI/BI
configuration where the intersection contour does not partition either
meshes.

red triangle in mesh A. We denote r̂1 and r̂2 two unit vectors

on the intersection contour, originated from the intersection

point. Let us temporarily suppose that the normal vector nr

unambiguously designates the outside direction of mesh A.

According to the above discussion, the displacement applied

to e for separation has two components: one along nr to

push it outside of mesh A, and the other within the plane

of A to shorten the length of the contour. The direction of the

displacement is thus defined as

de = n̂r + λ(r̂1 + r̂2). (1)

nr is called the repulsive normal, to differentiate from normals

for the rendering purpose. The effect of λ(r̂1 + r̂2) is to

straighten the contour until r̂1 and r̂2 become collinear. To

avoid over-shooting, we choose small value: λ = 0.1, for the

in-plane component. The small λ also decreases the possibility

of moving the contour to be stuck at a local minima in the

case of concave surfaces.

Now that the direction of nr in Equ 1 has to determined.

It could be any of the two opposite directions perpendicular

to a triangle, but a wrong choice will simply push the

colliding geometries further in the wrong side. Naively using

the rendering normal of a face as its nr does not work for

many circumstances. For open surfaces (i.e. surfaces with

boundaries), there is no way to define inside/outside, and other

“invading” objects could come from either side. Even for a

355

closed surface, if it involves self-collision, using the outside-

pointing render normal as nr in Equ 1 is unsafe. Moreover, if

a polygonal mesh is penetrated at more than one spots by other

objects, each penetration region has its own repulsive normal.

Repulsive normal for a region could also vary from time to

time, along with changes of the collision configurations. Since

it is difficult to foresee the dynamic behavior of deformable

surfaces, pre-setting the repulsive normals is impossible. We

thus introduce the concept of dynamic repulsive normals
(DRN), which implies that direction of nr is determined on-

the-fly and always has the tendency to push any invading

objects back to where they came from.

The DRN is set for the face of an E-F intersection, and

points to the side that the legal region of the other mesh resides

in. In the configuration of Figure 4(a), the contour is of type

BB for the green mesh and type II for the red mesh. The

green mesh is partitioned and the top part is treated as legal.

To resolve the e-A1 intersection, the DRN for A1 is set to point

up and the displacement vector applied to edge e is computed

via Equ 1. Note there is no need to set DRN for face A2 as

it does not involve any E-F intersection.

If a contour pair is of type BI/BI, as shown in Figure 4(b),

no mesh is partitioned thus the DRN is undetermined. In this

case the DRN vector is set to zero, contributing nothing to the

displacement vector de. To resolve the E-F intersection, the

edge is pushed towards the boundary of the other mesh. Of the

two in-plane vectors r̂1 and r̂2 for an intersecting edge, from

a bookkeeping point of view r̂1 is picked this way: traveling

in the direction of every r̂1 along the contour will arrive at

the boundary of the other mesh. Then Equ.1 degenerates to

de = r̂1. (2)

To conserve the momentum of the whole system, once a vector

de is computed, either via Equ 1 or Equ 2, −de is introduced

and applied to the corresponding face. This works as a pair of

action and reaction forces which are equal but opposite.

Although neither Equ 1 nor Equ 2 is applicable to edges

along a type II contour, it is not a concern. As in Figure 4(a),

the type II contour in mesh A comes together with the

BB contour in mesh B, and the DRN for faces in B are

undetermined so vector de for intersecting edges of mesh A
cannot be computed. Fortunately face A1 receives −de from

edge e of mesh B, thus the intersection can still be untangled.

B. Applying the Displacement Vectors

Collision response is performed by enforcing the collision

constraints through position corrections distributed on mesh

vertices. After one pass of correction, intersection detection

is perform on the newly positioned meshes, and do another

pass of response if needed, and so on in an iterative manner.

[8] proposed a scheme for applying displacement vectors.

Vectors de and −de are distributed as position changes to

corresponding vertices. A vertex pi is usually shared by

multiple intersecting edges or faces, thus receives multiple

contributions: dpi =
∑±dej . The magnitude of the position

correction vector has to be carefully chosen. Small value

means large number of iterations needed for a complete

response. Large size could easily crash the simulation, as

dynamics simulator is vulnerable to brutal position or velocity

changes. A scaled arctangent function is adopted to calcu-

late the actual magnitude, so the final position correction is

h0
|dpi

|√
|dpi

|2+g2
0

d̂pi , where g0 defines a progressive slope of

the function, and d̂pi is unit vector. [8] also suggested a

global scheme that sums up all local corrections and then

uniformly apply it to all involved vertices. That scheme is

usually converges faster.

VI. APPLICATIONS AND RESULTS

To test the effectiveness of proposed method, we run various

examples on a single thread of a 2.13GHz Intel Xeon CPU.

A. Garment Fitting

Garment fitting is to “dress” a human model with an

existing garment model. The fitting process may restrict the

deformation to be subject to physical simulation or just within

the geometric domain. We show an example of the latter case

in Fig 5. Two layers of clothes are dressed on a lady, and the

penetrations exist between shirt and pants, as well as shirt/body

and pants/body. They are resolved according to specified ease-

of-allowance.

Fig. 5: Garment fitting starts with an initial penetration state.

B. Dynamics Simulation

Fig. 6: Four sheets, each modeled by 6,561 particles, fall on a cow
model.

Fig. 7: Simulation of a sheet of 6,561 particles falling on spikes.

The proposed framework has been integrated into a cloth

simulator. Figure 1 shows an example of untangling multiple

356

Fig. 8: Simulation of a sheet of 6,561 particles interacting with
moving spikes.

intertwined sheets. The initial state consists of different types

of collision configurations (e.g. BB/II and BI/BI), and they

all have been resolved simultaneously in a reasonable manner.

Note resolving the BB/II intersection (between the vertical

green sheet and the horizontal one) is challenging as the

position adjustments need to counteract the gravity. This is

also one of several configurations that cannot be resolved in

[8]. Figure 6 demonstrates four sheets falling on a cow model.

This example starts with a collision-free state, and resolves

all penetrations until collision-free at each simulation step.

It involves not only solid/cloth collisions but also extensive

cloth/cloth collisions. Figure 7 and 8 highlights our method’s

ability to handle sharp geometric features. A sheet interacts

with a bed of many spikes, with each spike being represented

by four triangles. We tested three different scenarios: a flat

sheet falling down onto the spikes, initial penetrations being

resolved, and moving the spikes with the sheet covering them.

The DID and the response algorithm works robustly and the

simulated result is free of penetration.

TABLE I: Performance data for examples in Fig.1, 6 , 7 and 8.

Fig. #vertices sim. exec.
cloth/solid dura. time

Fig 1 16.5k/0 4.4s 9,068s
Fig 6 26.2k/6.2k 6.4s 9,171s
Fig 7 6.5k/1.7k 3.3s 1,241s
Fig 8 6.5k/1.7k 6.3s 4,511s

Table I shows the computation time for these examples. We

have witnessed that majority of the penetrations were resolved

in no more than ten detect-correct-detect iterations. As shown

in previous experiments, the workload of ten rounds of DID is

equal to one CCD. Therefore we believe using the proposed

method beats the popular CCD based collision response in

these experiments.

VII. CONCLUSION

We have presented a DID-based response to untangle exist-

ing penetrations. When used in context of simulating complex

deformable surfaces, it is a competitive alternative to the

popular CCD-based approach. The core of the method is to

dynamically specify repulsive normal directions. Please be

advised in many circumstances surface orientation is either

explicitly given or implied in the context (e.g. closed surfaces),

and we should not be blind to that. Taking advantage of

predefined repulsive normals will save great effort on contour

construction and the legal/illegal determination.

An obvious advantage of DID-based over CCD-based ap-

proach is that simulator can tolerate the existence of insignifi-

cant penetrations at each step, as also being highlighted in [8].

In real production, the artist can opt, in some designated steps,

for incomplete response, as long as the intersecting regions do

not expand too much and the rendered images do not suffer

from visual artifacts.

Limitations. The proposed method also has several limita-

tions. One major problem is that we did not give an effec-

tive solution to handle intersection contours containing loop-

vertices. Another problem is that the BB contour partitions a

surface only if the surface has one boundary. Some models

in real production (e.g. T-shirt) have multiple boundaries, and

the BB contour is no longer a partition contour. Several tricks

can be adopted to avoid dealing with the BB case. Due to

the absence of sophisticated friction and contact handling in

our simulator, applying the proposed method to simulate more

complex scenes like clumped cloth involving massive self-

collisions is not easy at this moment. This certainly will be a

direction of our future work.

ACKNOWLEDGMENT

This work is supported by NSF China under the

grants #61379096, #61233001, and Finnish TEKESs project

SoMa2020: Social Manufacturing (2015-2017).

REFERENCES

[1] X. Provot, “Collision and self-collision handling in cloth model dedi-
cated to design garments,” in EG Workshop on Computer Animation and
Simulation, 1997, pp. 177–189.

[2] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of collisions,
contact and friction for cloth animation,” ACM Trans. Graph., vol. 21,
no. 3, pp. 594–603, 2002.

[3] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun, “Asyn-
chronous Contact Mechanics,” ACM Trans. Graph., vol. 28, no. 3, 2009.

[4] S. Ainsley, E. Vouga, E. Grinspun, and R. Tamstorf, “Speculative parallel
asynchronous contact mechanics,” ACM Trans. Graph., vol. 31, no. 6,
pp. 151:1–151:8, 2012.

[5] D. Harmon, D. Panozzo, O. Sorkine, and D. Zorin, “Interference aware
geometric modeling,” ACM Trans. Graph., vol. 30, no. 6, pp. 137:1–
137:10, 2011.

[6] D. Baraff, A. Witkin, and M. Kass, “Untangling cloth,” ACM Trans.
Graph., vol. 22, no. 3, pp. 862–870, 2003.

[7] M. Wicke, H. Lanker, and M. Gross, “Untangling cloth with boundaries,”
in Proc. of Vision, Modeling, and Visualization, 2006, pp. 349–356.

[8] P. Volino and N. Magnenat-Thalmann, “Resolving surface collisions
through intersection contour minimization,” ACM Trans. Graph., vol. 25,
no. 3, pp. 1154–1159, 2006.

[9] J. Ye and J. Zhao, “The intersection contour minimization method for
untangling oriented deformable surfaces,” in Proc. Symp. Computer
Animation, 2012, pp. 311–316.

[10] S. Curtis, R. Tamstorf, and D. Manocha, “Fast collision detection
for deformable models using representative-triangles,” in Proc. Symp.
Interactive 3D Graphics and Games, 2008, pp. 61–69.

[11] M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha, “ICCD: Interac-
tive continuous collision detection between deformable models using
connectivity-based culling,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 4, pp. 544–557, 2009.

[12] N. K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle,
M. C. Lin, and D. Manocha, “Interactive collision detection between
deformable models using chromatic decomposition,” in SIGGRAPH,
2005, pp. 991–999.

357

