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 Abstract - The design of a novel composite adaptive control 
system for a class of uncertain systems using immersion and 
invariance (I&I) theory is presented. The interest here is to 
achieve a composite I&I adaptive control in the presence of 
model parametric uncertainties. Two sources of parameter 
information are combined for the parameter adaptation, which 
consists of tracking-error based adaptation law and prediction-
error based adaptation law. Particularly, the tracking-error 
based adaptation law is constructed using I&I theory, which 
leads to a more flexible and effective design process of adaptation 
law. Stability analysis is presented using Lyapunov theory. 
Representative simulations are carried out on the mass-damper-
spring system, which illustrate the superiority of the proposed 
composite I&I control scheme over the standard one. 
 
 Index Terms – Adaptive Control, Composite Adaptive, 
Immersion and Invariance 
 

I.  INTRODUCTION 

The problem of control design for dynamic systems with 
various uncertainties has been widely discussed in the 
literature [1-2]. Many advanced methods have been proposed 
to deal with this problem, among which adaptive control is 
one of the most common methods. In principle, adaptive 
control is the preferred method to get the satisfactory 
performance of a system in the presence of uncertainty or 
unknown variation in plant parameters [3-4]. 

Intuitively, “adaptive” means to regulate a behavior in 
response to a change in the system dynamics. The regulation 
is made by adjusting controller parameters on-line based on 
the measurable system signals. Various mechanisms are 
applied to adjusting parameters, leading to various adaptive 
controller schemes, where model-reference adaptive control 
and self-tuning regulators are two main types [2]. Some recent 
related works can be found in [5-7] and the references therein. 
Besides the continuing progress of adaptive control in 
theoretical, it is also of increasing interest to employ adaptive 
techniques in many engineering control systems [2, 8]. 

Among numerous advances in adaptive control research, 
one remarkable work is the so-called immersion and 
invariance (I&I) theory [9]. This theory offers a systematic 
process for adaptive law design, without requiring a prior 
Lyapunov function. Moreover, compared to the design of 
classical adaptive law, it has much more design freedom, 

which makes the dynamic behavior of the estimation error 
adjustable to some extent. Based on the significant theoretical 
advantages, many attempts have been made to adaptive 
controller design using I&I [10-13]. These applications show 
great potential of this theory for reducing the effects of plant 
uncertainty. More details about this theory can be found in [8-
9]. 

It is interesting to note that all the aforementioned results 
use only tracking errors to update the adaptive laws. However, 
the tracking error is not the only source of parameter 
information [2]. The parameter estimation error, namely the 
prediction error, can also offer useful information for 
parameter adaptation. When using the combination of the two 
information sources, a better result in parameter estimation 
often can be obtained. This method, called composite adaptive 
control, is one of the focused research area in adaptive 
control. Some efforts can be found in the literature [5, 14-16]. 
However, it appears that no attempt has been made to develop 
composite I&I adaptive control of uncertain nonlinear 
systems. Therefore, it is of great interest to propose a novel 
composite adaptive control theory based on the I&I. 

Focusing on this issue, an extension of I&I theory, which 
is called composite I&I adaptive control, is proposed in this 
paper. The main contribution of this paper lies in the design of 
a novel I&I-based composite adaptive controller for a class of 
uncertain systems. The rest of the paper is organized as 
follows. Section II is the problem formulation and presents the 
control objective. The I&I-based composite adaptive control 
design is presented in Section III, along with analysis of the 
closed-loop system stability. Then Section IV presents 
simulation results to validate the proposed method, and finally 
conclusions can be found in Section V. 

II.  PROBLEM FORMULATION 

Consider a class of uncertain systems that can be 
described as follows 
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where 1 2,x x  are the states, u is the scalar control input, 

nR∈θ  is the vector of unknown constant parameters, and 



1 1( )F x , 2 1 2( , )F x x , 1 1( )G x , 2 1 2( , , )G x x θ are nonlinear functions 
of the states. Consider the stabilization problem for (1) under 
the assumption that the vector of unknown parameters can be 
linearly parameterised. Therefore, (1) can be rewritten as  
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where 2 1 2 1 2( , , ) ( ) ( )T TG x x u u= +x g xθ ϕ θ θ , 1 2= [ , ]Tx xx  and 

1 2,T T T= [ ]θ θ θ . Moreover, ( )xϕ and ( )g x are the known 
“regressors”. 

The control objective is to find a continuous adaptive 
control law of the form 
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such that all the signals of the closed-loop system (2) with (3) 
are bounded and lim ( ) 0

t
x t

→∞
= . 

Remark 1. Physical systems that can be modelled by 
equations similar to (1) is very common in engineering 
practice. Typical examples in such form include the pendulum 
model, the mass-damper-spring system, the tunnel-diode 
circuit system, and so on [1]. Besides, the adaptive control law 
of higher order systems can be obtained similarly to the one of 
system (1) through a recursive backstepping procedure. 
Therefore, system (1) is of significant practical importance. 
  

III.  IMMERSION AND INVARIANCE BASED COMPOSITE 
ADAPTIVE CONTROL DESIGN 

A. Control law design 
 
To begin with, consider a surface defined by 
 

1 1 1p x xλ= +   (4) 
 
where 1 0λ > . Obviously, 1x will converge to zero if 0p = .  

Differentiating (4) yields 
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Rearrange (5) as follows 
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is employed for notational convenience. Now the control 
problem is reduced to designing a composite adaptive control 
law for system (6) such that 0p =  is a globally stable 
equilibrium  

The stabilizing signal for (6) can be chosen as 
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with 2 0λ > . _ _

ˆ ˆ
T i i P i+ +θ β θ  is the estimate of iθ , where 

_T̂ iθ  and _
ˆ
P iθ  are tracking-error based estimation and 

prediction-error based estimation respectively, and i p( )β  is a 
nonlinear vector function to be determined. The advantage 
offered by this extra term will be shown in the following. 
With this definition, the estimate error can then be written as  
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where 1 2[ , ]T T T=z z z . Using (6), (7) and (8), we have 
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B. Composite Adaptive Law Design 

 
In order to get the information of prediction error, both 

sides of (6) are filtered as follows 
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where 0fλ > , and s is the Laplace operator. Rearranging 
(10) yields 
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can be seen that the derivative of p  is removed and (11) is 
linearly parameterized in terms of θ . Therefore, (11) can be 
directly used for estimation. Introduce a virtual signal 
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Using (8), (11) and (12), we have 
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All the signals in the right side of (13) are available. 
Therefore, ( )T

fφ x z , which holds the information of 
prediction error, can be obtained from (13). 

Now consider the design of the composite adaptation 
law. Differentiating (8) yields the estimate error dynamics as 
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Considering (9) and (14), the tracking-error based 

estimation law T



θ  can be specified as 
 

[ ]2T
d p
dp

λ=




βθ  (15) 

 
And the prediction-error based estimation law can be 

specified as 
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where 2 0r > . Substituting (15) and (16) into (14) yields 
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Now the extra term p( )β in I&I theory is to be designed. 

By a proper selection of p( )β , the estimate error dynamics 
(17) can be rendered stable. Moreover, it is also observable 
that different selections of p( )β  will lead to different 
dynamic behaviour of (17), which implies the dynamic 
behaviour of the estimation error can be regulated to some 
extent. Here one choice for p( )β  is  

 

1 ( )d r
dp

φ= xβ  (18) 

 
with 1 0r > . Substituting (18) into (17), we have 
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Remark 2. With β , ˆ
P
θ  and T



θ  derived from (18), (16) and 
(15) sequentially, the stabilizing control signal can be 
obtained from (7). 
 
C. Stability Analysis 

 
Using (9) and (19), rewrite the dynamics of the closed-

loop system  
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To examine the stability of the whole closed-loop system, 

consider the following Lyapunov candidate function 
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Differentiating (21) and using (20), we have 
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By Young’s inequality, it can be concluded that  
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Therefore, ( , )p ∞∈z  and 2( , ( ) , ( ) )T T
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from (4), which completes the proof. 
 

Remark 3. Note that the Lyapunov function mentioned above 
is used only for stability analysis. For conventional adaptive 
schemes, parameter update laws are usually constructed by 
careful cancelation of terms in the time-derivative of 
Lyapunov functions. However, it can be observed from the 
above composite adaptive design process that there is no need 
of a Lyapunov function priorly at parameter adaptive law 
design level.  

IV.  NUMERICAL SIMULATION 

 To verify the proposed composite adaptive control 
scheme, an academy example, the mass-damper-spring system 
modelled as [17], is used here. Consider a mass m sliding on a 
horizontal surface. The mass is subjected to a control force u , 



a resistive force vk x  due to friction, a restoring force of the 
spring pk x  , and an unknown constant disturbance d . x  is 
the displacement from the origin, whose dynamics can be 
described as 
 

p vmx u d k x k x= + − −    (24) 
 
where m , pk  and vk  are unknown positive constant. The 
control objective is to design an adaptive state feedback 
control law making x  asymptotically track the reference 
command rx . 

To begin with, rewrite the model into the form of (1) 
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where 1x x= , 1 2( ) [ , ,1]Tx x= − −xϕ , 1 [ , , ]T
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Then define the surface p  as 
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According to Section III, the stabilizing signal for (25) 

and (26) can be chosen as 
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And the tracking-error based estimation of I&I T̂θ  and 

β  can be specified as  
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And the prediction-error based estimation law can be 

specified as 
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where ( )T

fφ x z  can be calculated from (13). 
The initial states of the mass-damper-spring system are 

set as 1 2( , ) (0,0)x x = , and the parameters are chosen as 
( , , , ) (10,1,1,1)p vm k k d = . A relatively aggressive reference 
command is considered here, which is a sinusoidal signal with 
an amplitude of 10 and a frequency of 1rad s . To illustrate 
the effectiveness of the proposed composite adaptive control 
scheme, the results conducted on the standard I&I-based 
adaptive control of the mass-damper-spring system are 
presented simultaneously, which are used as the baseline for 
comparison. Moreover, during simulations all the parameters 

of both the two control systems are the same except that there 
is an extra parameter estimation part of (29) for the composite 
adaptive control system. 

The initial values for the estimates of unknown 
parameters are firstly set as ˆ [0.1,0.1,0.1,0.1]T(0) =θ , which 
are around the actual values. The simulation results are shown 
in Figs. 1-4. Good tracking performances of 1x for the 
sinusoidal reference command can be seen in Fig. 1 and Fig. 2 
for both composite and standard I&I adaptive control. 
Moreover, it can be observed from Fig. 3 and Fig. 4 that the 
time histories of surface p  and ( )Tφ x z  asymptotically 
converge to zero. According to (4) and (9), this further implies 
the convergence of 1x  to the reference command. Overall, the 
state behaviour of both the two control systems are almost the 
same, except that surface p  of composite I&I adaptive 
control oscillates slightly. 
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Fig. 1 Trajectories of States (Composite I&I Adaptive Controller) 

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15

x 1

 

 

Standard I&I Adaptive Controller
Reference

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15

t(s)

x 2

 
Fig. 2 Trajectories of States (Standard I&I Adaptive Controller) 
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Fig. 3 p and ( )Tφ x z  (Composite I&I Adaptive Controller) 

 

0 1 2 3 4 5 6 7 8 9 10
-0.02

0

0.02

0.04

0.06

0.08

p

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

100

150

200

250

t(s)

Φ
(x

)T z

 
Fig. 4 p and ( )Tφ x z  (Standard I&I Adaptive Controller) 

 
Now the initial values for the estimates of unknown 

parameters are set as ˆ [0.5,0.5,0.5,0.1]T(0) =θ , which are far 
away from the actual values. The simulation results are shown 
in Figs. 5-8. Significant differences between the results of 
composite and standard I&I adaptive control can be observed 
obviously this time. Fig. 5 displays that the composite I&I 
adaptive controller can still provide rapid and accurate 
tracking of the reference command, while the standard I&I 
adaptive controller is severely degraded as shown in Fig. 6. 
Similar results can be found for p  and ( )Tφ x z . Fig. 8 shows 
that adaptation error ( )Tφ x z  of the standard I&I adaptive 
control oscillates severely, while Fig. 7 shows a stable and 
damped behavior of ( )Tφ x z  for the composite I&I adaptive 
control. Actually, a faster adaptation without getting the 
oscillatory behavior is the key feature of composite adaptive 
control. With these simulation results, it clearly demonstrates 
the superiority of the proposed composite I&I adaptive control 
system. 
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Fig. 5 Trajectories of States (Composite I&I Adaptive Controller) 
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Fig. 6 Trajectories of States (Standard I&I Adaptive Controller) 
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Fig. 7 p and ( )Tφ x z  (Composite I&I Adaptive Controller) 
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Fig. 8 p and ( )Tφ x z  (Standard I&I Adaptive Controller) 

 

V. CONCLUSION 

A novel immersion and invariance (I&I) based composite 
adaptive control is proposed in this paper. The design of a 
composite adaptive controller for a class of uncertain systems 
is presented. The main feature of this method lies in the 
construction of the estimator, which consists of tracking-error 
based estimation and prediction-error based estimation. I&I 
technology is used to design the tracking-error based 
estimation, with an extra nonlinear term that makes the 
estimation error dynamics adjustable to some extent. Stability 
analysis of the whole closed-loop system is demonstrated 
using Lyapunov theory. Two sets of simulations are 
performed on the mass-damper-spring system. Improved 
performance of the proposed composite I&I control has been 
illustrated via these simulations. 
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