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Abstract— A novel immersion and invariance (I&I) adaptive
control with σ-modification is proposed for flexible air-breathing
hypersonic vehicles in the paper. Based on the framework of
backstepping, the controller is a combination of I&I adaptive
control and σ-modification. The control system can not only
deal with the significant aerodynamic parameter uncertainties
in AHVs model, but also guarantee the stability of the adaptive
law in the presence of unavoidable nonparametric uncertainties.
With the introduction of σ-modification, the adaptive law is
designed away from the problem of parameter drift. Moreover,
the structured design process and taking amplitude/rate con-
straints of states and actuators into account make the control
system feasible to engineering practice. The stability of the
closed-loop system is demonstrated by Lyapunov theory and
the effectiveness of the method is illustrated by numerical
simulations.

Index Terms— immersion and invariance; adaptive control;
hypersonic vehicles; σ-modificatoin.

I. INTRODUCTION

Air-breathing hypersonic vehicles (AHVs) have been a
research hotspot and frontier in the aerospace community
during the last decade. Because of the extremely fast speed
and large flight range, it is potential to be an available access
to the economically reusable space shuttle and prompt global
strike, and is recognized as game-changing technologies [1].
The successes of the NASA X-41 and USAF X-51A indicate
that sustainable hypersonic flight will be a reality in the
foreseeable future.

However, it is a great challenge to design control systems
for AHVs at this stage [2]. The complex mechanism of
hypersonic flight brings great difficulties to the vehicles mod-
eling, which results in significant uncertainties in the current
AHVs mathematical models. Moreover, both the integrated
engine-airframe configuration adopted in AHVs and severe
requirements of flight speed/altitude needed for scramjets
working lead to the strong couplings between propulsive
thrust, aerodynamic forces and structural flexibility. These
complex plant characteristics including strong nonlinearity
and fast time-varying, which are distinct to conventional
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aircraft, are insurmountable obstacles for the existed linear
flight control system design methods which either can not
meet the requirements or are too costly to implement in large
flight envelope. Therefore, many nonlinear control methods
are investigated in AHVs flight control system design.

In [3], pure sliding mode controller (SMC) and adaptive
SMC are designed based on feedback linearization frame-
work for a generic hypersonic vehicle model respectively.
Simulations illustrate that the pure SMC is robust to para-
meter uncertainties, but the price is large controller gains
and control chattering. In adaptive SMC case, by contrast,
there is a prominent performance improvement in terms of
smaller control effort and free of control chattering. It is
indicated that the combination of adaptive control and robust
control will reduce controller gains and improve control
performance. Actually, the adaptive robust control has been
the mainstream research ideas for AHVs control. In [2], a
robust adaptive control, which is a combination of adaptive
dynamic inversion and adaptive backstepping, is proposed for
AHVs where the Lyapunov synthesis approach is adopted
for adaptive law designing like in [3]. Whereas, there is
not a generic or systematic technique to choose a Lyapunov
function for adaptive control system design. Particularly, for
some complex nonlinear systems, like AHVs, the design may
be complicated. In [4], an immersion and invariance (I&I) [5]
adaptive control system, which bypasses the issue of choosing
Lyapunov function at the adaptive law design level.

When adaptive control is applied to practical cases, an-
other issue called parameter drift which is the unpredictable
instability phenomena caused by nonparametric uncertainty
and measurement noise, must be dealt with [6]. Though
many robust adaptive control schemes are proposed for AHVs
[7], [8] and good tracking performances are illustrated by
simulations, as far as I know, few work addresses the two
issues together. What’s more, it appears that no attempt has
been made to design I&I adaptive laws with σ-modification
[9] in AHVs control. Motivated by this, a new I&I adaptive
control scheme with σ-modification is proposed in this paper,
aiming to design an implementable adaptive robust control
system for AHVs.



II. HYPERSONIC VEHICLE MODEL

The longitudinal dynamics of flexible AHVs can be de-
scribed by [2]

V̇ = (T cosα−D)/m− g sin γ (1a)

ḣ = V sin γ (1b)
γ̇ = (L+ T sinα)/(mV )− (g cos γ)/V (1c)
α̇ = −(L+ T sinα)/(mV ) +Q+ (g cos γ)/V (1d)

Q̇ = M/Iyy (1e)

η̈i = −2ζiωiη̇i − ω2
i ηi +Ni, i = 1, 2, 3. (1f)

The expressions of the aerodynamic forces, pitch moment,
generalized forces, and the corresponding aerodynamic coef-
ficients can refer to [10].

The model is comprised of five rigid-body states x =
[V, h, γ, α,Q]T , six flexible states η=[η1, η̇1, η2, η̇2, η3, η̇3]T

and three control inputs u = [φ, δe, δc]
T . The controlled

output is y = [V, h]T . And the reference command is denoted
by yc = [Vc, hc]

T . The control object is to design robust
adaptive control system for AHVs to achieve stable tracking
of velocity and altitude reference trajectories in the presence
of significant parametric and nonparametric uncertainties.

The model above is used for simulation to validate the
performance of the control system. For control system design,
the model is simplified from the following two points [4].
First, the flexible dynamics are removed and their effects are
taken as internal disturbances. Then, the canard is ganged
with the elevator as δc = kecδe, where the coefficient kec is
a negative constant [11], then the control inputs are reduced
as u = [φ, δe]

T .
It’s assumed that all aerodynamic coefficients, i.e., C(·)

T ,
C

(·)
M , C(·)

L and C(·)
T are uncertain which are modeled as Cj =

C∗j (1 + ∆Cj), where C∗j and ∆Cj are nominal value and
uncertainty respectively. In the paper, a maximum variation
for each coefficient is set within 40%, namely, |∆Cj | ≤ 0.4.

III. ADAPTIVE CONTROL SYSTEM DESIGN

AHVs are MIMO, high-order and nonlinear systems. To
begin with, the model (1) is decomposed into velocity sub-
system and altitude subsystem from the control viewpoint.
Furthermore, the altitude system is taken as a sequentialyum
install centos-release-scl loop structure, and the backstepping
method is applied for controller design of each order subsys-
tem. The block diagram of the control system structure is
shown as Fig. 1. Note that each controller has a amplitude
and rate constraints filter [12] as output to take the physical
constraints of states into account.

A. Velocity subsystem controller
Velocity subsystem is a 1st-order system. Define the veloc-

ity tracking error as Ṽ , V − Vc. Substituting the expresses
of aerodynamic forces and moment into (1a), we can arrange
the dynamics of velocity tracking error as

˙̃
V = θTv1ϕv1 + θTv2ϕv2φ− g sin γ − V̇c, (2)
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Fig. 1. Block diagram of the control system.

where θv1 ∈ R9, θv2 ∈ R4 are vectors of unknown
parameters and

ϕv1 =
q̄S

m

[
α3 cosα, α2 cosα, α cosα, cosα,−α2,−α,

−δ2e ,−δe,−1
]T

θv1 =
[
C3
T , C

2
T , C

1
T , C

0
T , C

α2

D , CαD , C
δ2e
D + k2ecC

δ2c
D ,

CδeD + kecC
δc
D , C0

D

]T
ϕv2 =q̄S cosα

[
α3, α2, α, 1

]T
/m

θv2 =
[
Cφα

3

T , Cφα
2

T , CφαT , CφT

]T
.

The estimates of θv1 and θv2 are defined as θ̂v1 +βv1 and
θ̂v2+βv2 respectively. It’s different with Lyapunov synthesis
adaptive approach in terms of β(·) which are introduced by
I&I adaptive method. The additional term β(·) provides extra
design freedom for shaping the dynamics of estimation errors,
that has great advantage over the traditional adaptive control
which has little knowledge about that. Then, the estimation
errors can be defined as

θ̃v , θ̂v + βv − θv, (3)

where θ̃v = [θ̃Tv1, θ̃Tv2]T , θ̂v = [θ̂Tv1, θ̂Tv2]T , βv =
[βTv1, β

T
v2]T and θv = [θTv1, θ

T
v2]T .

To get the nominal control command, the controller can
be designed as

φcd =
−kvṼ − (θ̂v1 + βv1)Tϕv1 + g sin γ + V̇c

(θ̂v2 + βv2)Tϕv2
, (4)

where kv is a positive constant.
Taking account of the dynamics of the scramjet, the desired

command cannot be guaranteed to always be reached, espe-
cially during the transient process. Thus, the feasible control
command φc and its time derivative φ̇c can be generated by
passing φcd through the constraint command filter. It can be
assumed that φ = φc as φc is physically realizable by the
actuator.

Define the compensated velocity tracking error as [13]

V̄ , Ṽ − ξv, (5)



where

ξ̇v , −kvξv + (θ̂v2 + βv2)Tϕv2(φc − φcd). (6)

It’s obvious that the compensated velocity tracking error will
converge to the velocity tracking error when the constraints
of actuator are not in effect in view of the definitions.
Substituting (2) and (6) into the differentiation of (5), we can
write the dynamics of compensated velocity tracking error as

˙̄V = −kvV̄ − θ̃vΦv, (7)

where Φ = [ϕTv1,ϕ
T
v2φ].

Differentiating (3) and using (7), yields

˙̃
θv =

˙̂
θv +

∂βv

∂V̄
[−kvV̄ − θ̃vΦv]. (8)

In view of the dynamics of estimation errors, the adaptive
law is designed as

˙̂
θv =

∂βv

∂V̄
(kvV̄ )− rvσv(θ̂v + βv)

∂βv

∂V̄
= rvΦv,

(9)

where σv is a small constant, rv is a positive diagonal matrix
and rv = diag[rv1I9×9, rv2I4×4], rv1 > 0, rv2 > 0.

The term including σv in the adaptive law is brought in
by the so-called σ-modification which ensures the update
law bounded in the existence of modeling errors. As known,
in practical control engineering, the model for control sys-
tem design exits not only parametric uncertainties, but also
nonparametric uncertainties, such as unmodeled dynamics
and measurement noises. However, both conventional and
I&I adaptive control may excite parameter drift phenomenon
in adaptive law and lead to estimations divergence and
instability of the closed-loop system under the circumstances
of nonparametric uncertainties. It is intolerable and must be
carefully addressed in AHVs flight control for the significant
uncertainties of the model. Therefore, the adaptive law which
is a combination of I&I adaptive control and σ-modification
is designed here. And the important role of σ-modification
will be shown in the stability analysis section.

Substituting (9) into (8), the estimation error dynamics are
rewritten as

˙̃
θv = −rvΦvθ̃

T
v Φv − rvσv(θ̂v + βv). (10)

B. Altitude subsystem controller

The Altitude subsystem is a 4th-order system, whose
dynamics can be rewritten as

ḣ = V sin γ

γ̇ = θTγ1ϕγ1 + θTγ2ϕγ2α−
g

V
cos γ

α̇ = Q− γ̇
Q̇ = θTq1ϕq1 + θTq2ϕq2δe,

(11)

where θγ1 ∈ R10, θγ2 ∈ R, θq1 ∈ R11, θq2 ∈ R are unknown
constants and

ϕγ1 =
q̄S

mV

[
δe, 1, α

3φ sinα, α2φ sinα, αφ sinα,

φ sinα, α3 sinα, α2 sinα, α sinα, sinα
]T

θγ1 =
[
CδeL +kecC

δc
L , C

0
L , C

φα3

T , Cφα
2

T , CφαT , CφT , C
3
T , C

2
T , C

1
T , C

0
T

]T
ϕγ2 =q̄S/(mV ), θγ2 = CαL

ϕq1 =
q̄S

Iyy

[
zTφα

3, zTφα
2, zTφα, zTφ, zTα

3, zTα
2,

zTα, zT , c̄α
2, c̄α, c̄

]T
θq1 =

[
Cφα

3

T , Cφα
2

T , CφαT , CφT , C
3
T , C

2
T , C

1
T , C

0
T , C

α2

M , CαM , C
0
M

]T
ϕq2 =q̄c̄S/Iyy, θq2 = CδeM + kecC

δc
M .

The estimates of unknown constants are defined as θ̂γ1 +
βγ1, θ̂γ2 +βγ2, θ̂q1 +βq1 and θ̂q2 +βq2 respectively. Thus
the estimation errors are

θ̃γ , θ̂γ + βγ − θγ (12a)

θ̃q , θ̂q + βq − θq, (12b)

where θ̃γ = [θ̃Tγ1, θ̃
T
γ2]T , θ̂γ = [θ̂Tγ1, θ̂

T
γ2]T , βγ = [βTγ1,β

T
γ2]T ,

θγ =
[
θTγ1, θ

T
γ2

]T
, θ̃q = [θ̃Tq1, θ̃

T
q2]T , θ̂q = [θ̂Tq1, θ̂

T
q2]T ,

βq = [βTq1, β
T
q2]T and θq = [θTq1, θ

T
q2]T .

The control object of the subsystem is to design elevator
δe to achieve altitude trajectory tracking. In view of (11),
the first equation, i.e., altitude dynamics, does not satisfy
the parametric strict-feedback form, but it is deterministic,
namely, there is no uncertainty between altitude and FPA.
Therefore, the common practice is to design a command
converter which converts altitude reference command to FPA
reference directly [4]. Then, the altitude subsystem that is
4th-order originally can be reduced into a 3th-order system
to which the backstepping will be applied because it is
parametric strict-feedback.

1) FPA controller: Define the PFA tracking error as γ̃ ,
γ − γc, whose dynamics is

˙̃γ = θTγ1ϕγ1 + θTγ2ϕγ2α−
g

V
cos γ − γ̇c. (13)

To get the nominal virtual control command, the stabilizing
function can be designed as

αcd =
−kγ γ̃ − (θ̂γ1 + βγ1)Tϕγ1 +

g cos γ

V
+ γ̇c

(θ̂γ2 + βγ2)Tϕγ2
, (14)

where kh > 0. Pass αcd through the command filter to
produce the magnitude and rate limited command signal αc
and its derivative α̇c.

Define the compensated FPA tracking error as

γ̄ = γ̃ − ξγ , (15)

where

ξ̇γ = −kγξγ + (θ̂γ2 + βγ2)Tϕγ2(αc − αcd + ξα), (16)



and ξα will be defined in the next section. Substituting (13),
(14) and (16) into the differential of (15), yields the dynamics
of the compensated FPA tracking error as

˙̄γ = −kγ γ̄ − θ̃Tγ Φγ + (θ̂γ2 + βγ2)Tϕγ2ᾱ, (17)

where ᾱ is the compensated AOA tracking error that will be
defined in the next section.

Substituting (17) into the derivative of (12a), the dynamics
of the estimation errors can be written as

˙̃
θγ =

˙̂
θγ +

∂βγ
∂γ̄

[
−kγ γ̄ − θ̃Tγ Φγ + (θ̂γ2 + βγ2)Tϕγ2ᾱ

]
(18)

The I&I adaptive law with σ-modification can be designed
as 

˙̂
θγ =

∂βγ
∂γ̄

[
−kγ γ̄ + (θ̂γ2 + βγ2)Tϕγ2ᾱ

]
− rγσγ(θ̂γ + βγ)

∂βγ
∂γ̄

= rγΦγ ,

(19)

where σγ is a small constant, rγ is a positive diagonal matrix
and rγ = diag[rγ1I10×10, rγ2], rγ1 > 0, rγ2 > 0.

Substituting (19) into (18), the dynamics of the estimation
error can be rewritten as

˙̃
θγ = −rγΦγ θ̃

T
γ Φγ − rγσγ(θ̂γ + βγ). (20)

2) AOA controller: Define the AOA tracking error as α̃ ,
α− αc, whose dynamics is

˙̃α = Q− γ̇ − α̇c. (21)

The nominal virtual command trajectory for the pitch rate
can be designed as

Qcd = −kαα̃+ γ̇ + α̇c − (θ̂γ2 + βγ2)Tϕγ2γ̄, (22)

where kα > 0. The feasible virtual command Qc and its
derivate Q̇c can be produced by passing Qcd through the
magnitude and rate constraints filter.

Define the compensated AOA tracking error as

ᾱ = α̃− ξα, (23)

where

ξ̇α = −kαξα +Qc −Qcd + ξq, (24)

and ξq will be defined in the next section. Differentiating
(23) and using (21), (22) and (24), gives the dynamics of the
compensated AOA tracking error as

˙̄α = −kαᾱ− (θ̂γ2 + βγ2)Tϕγ2γ̄ + Q̄. (25)

3) Pitch rate controller: Define the pitch rate tracking
error Q̃ , Q−Qc, whose dynamics is

˙̃
Q = θTq1ϕ

T
q1 + θTq2ϕ

T
q2δe − q̇c. (26)

To get the nominal reference command for the elevator,
the controller is designed as

δecd =
−kqQ̃− (θ̂q1 + βq1)Tϕq1 + q̇c − ᾱ

(θ̂q2 + βq2)Tϕq2
, (27)

where kq > 0. Pass δecd to generate achievable control signal
δec through a magnitude and rate constraints filter which is
the model of the elevator. As δec is feasible by physical
actuator, it is reasonable to assume that δe = δec. Define
the compensated pitch rate tracking error as

Q̄ = Q̃− ξq, (28)

where

ξ̇q = −kqξq + (θ̂q2 + βq2)Tϕq2(δec − δecd). (29)

Substituting (26), (27) and (29) into the derivative of (28), one
can get the dynamics of the compensated pitch rate tracking
error as

˙̄Q = −kqQ̄− θ̃qΦq − ᾱ. (30)

Differentiating (12b) and using (30), the dynamics of the
estimation errors can be written as

˙̃
θq =

˙̂
θq +

∂βq

∂Q̄

(
−kqQ̄− θ̃qΦq − ᾱ

)
. (31)

The I&I adaptive law with σ-modification can be designed
as 

˙̂
θq =

∂βq

∂Q̄

(
kqQ̄+ ᾱ

)
− rqσq(θ̂q + βq)

∂βq

∂Q̄
= rqΦq,

(32)

where σq is a small constant, rq is a positive diagonal matrix
and rq = diag[rq1I11×11, rq2], rq1 > 0, rq2 > 0.

Substituting (32) into (31), the dynamics of the estimation
error can be rewritten as

˙̃
θq = −rqΦqθ̃Tq Φq − rqσq(θ̂q + βq). (33)

C. Stability analysis

The adaptive control system for hypersonic vehicles model
is comprised of (4), (9), (14), (19) and (22), (27). Considering
the nonparametric uncertainties, the dynamics of the closed-
loop system are described as

˙̄V = −kvV̄ − θ̃vΦv + ∆v

˙̃
θv = −rvΦvθ̃

T
v Φv − rvσv(θ̂v + βv)

˙̄γ = −kγ γ̄ − θ̃Tγ Φγ + (θ̂γ2 + βγ2)Tϕγ2ᾱ+ ∆γ

˙̃
θγ = −rγΦγ θ̃

T
γ Φγ − rγσγ(θ̂γ + βγ)

˙̄α = −kαᾱ− (θ̂γ2 + βγ2)Tϕγ2γ̄ − Q̄+ ∆α

˙̄Q = −kqQ̄− θ̃qΦq − ᾱ+ ∆q

˙̃
θq = −rqΦqθ̃Tq ΦQ − rqσq(θ̂q + βq),

(34)



where ∆(·) are additive modeling errors with unknown
bounds. Assume that ‖∆i‖ ≤ ηi, ηi are positive constants,
i = v, γ, α, q. To analyze the stability of the whole closed-
loop system, a composite Lyapunov function is defined as

W =
1

2

(
V̄ 2 + k−1v θ̃

T
v r

−1
v θ̃v + γ̄2 + k−1γ θ̃

T
γ r

−1
γ θ̃γ

+ᾱ2 + Q̄2 + k−1q θ̃
T
q r

−1
q θ̃q

)
,

(35)

whose dynamics along (34) is

Ẇ = V̄ ˙̄V + k−1v θ̃
T
v r

−1
v

˙̃
θv + γ̄ ˙̄γ + k−1γ θ̃

T
γ r

−1
γ

˙̃
θγ

+ ᾱ ˙̄α+ Q̄ ˙̄Q+ k−1q θ̃
T
q r

−1
q

˙̃
θq

≤ −kvV̄ 2 − V̄ θ̃Tv Φv + ‖V̄ ‖ηv − k−1v (θ̃Tv Φv)2

− k−1v σvθ̃
T
v (θ̂v + βv)− kγ γ̄2 − γ̄θ̃Tγ Φγ + ‖γ̄‖ηγ

− k−1γ (θ̃Tγ Φγ)2 − k−1γ σγ θ̃
T
γ (θ̂γ + βγ)− kαᾱ2

+ ‖ᾱ‖ηα − kqQ̄2 − Q̄θ̃Tq Φq + ‖Q̄‖ηq
− k−1q (θ̃Tq Φq)

2 − k−1q σqθ̃
T
q (θ̂q + βq).

(36)

By inequalities

‖V̄ ‖ηv ≤
1

2
V̄ 2 +

1

2
η2v

−V̄ θ̃Tv Φv ≤
kv
2
V̄ 2 +

k−1v
2

(θ̃Tv Φv)2

−θ̃Tv (θ̂v + βv) ≤ −1

2
‖θ̃v‖2 +

1

2
‖θv‖2,

(37)

when kv, kγ , kq > 2, kα > 1, one can get

Ẇ ≤ −ηW +M, (38)

where

M =
1

2
(k−1v σv‖θv‖2 + k−1γ σγ‖θγ‖2 + k−1q σq‖θq‖2

+ η2v + η2γ + η2α + η2q )

η = min
[
kv, kγ , kq,

σv

λmax(r−1v )
,

σγ

λmax(r−1γ )
,

σq

λmax(r−1q )

]
.

The symbol λmax(·) means the maximum eigenvalue of the
matrix. Notice that the σ terms in (36) introduce the square
terms of estimation errors, namely ‖θ̃i‖2, i = v, γ, q, to (37).
It implies that for W ≥ W0 = M/η, Ẇ ≤ 0. Thus, the
closed loop adaptive control system is uniformly ultimately
bounded, namely, V̄ , θ̃v, γ̄, θ̃γ , ᾱ, Q̄, θ̃q ∈ L∞.

IV. SIMULATIONS

To validate the effectiveness and performance of pro-
posed method, two numerical simulations are conducted.
One is performed with significant parametric uncertainties,
to verify the tracking performance of the control system.
The other is with significant parameter uncertainties and
process noises, to test the robustness of the system. The
initial flying state is set as x0 = [V0, h0, γ0, α0, Q0]T =
[7846.4 ft/s, 85000 ft, 0 rad, 0.0219 rad, 0 rad/s]T with η0 =
[0.594, 0, −0.0976, 0, −0.0335, 0]T and the initial control
inputs are u0 = [φ0, δe0]T = [0.12, 0.12 rad]T [2]. To

increase fidelity, the dynamic characteristics of actuators are
taken into account.

The simulation results of the first case are listed as Figs.
2∼5, where a parameter uncertain condition of ∆CL =
∆CT = −40% and ∆CD = ∆CM = 40% are considered
which means a 40% decrease in the lift and thrust while
a 40% increase in the drag and pitch moment. Note that
it’s a quite tough situation for flight control. The closed-loop
system has good velocity and altitude tracking characteristics
illustrated by Fig. 2. The internal states, including FPA, AOA
and pitch rate, also can tracing the intermediate virtual com-
mand fast and smoothly shown by Fig. 3. Fig. 4 shows that
the adaptive estimators are converge to a small neighborhood
of zero which agree with the σ-modification. The flexible
modes are stable and converge to constants while the output
of the actuators are smooth and meet the constraints shown
by Fig. 5.

The results of the second case are presented as Fig. 6∼7,
where a model process noises are considered in (1a) and
(1b) together with the same parametric uncertainties as the
first case. And the process noises are set as additive zero-
mean Gaussian white noise whose variance is 100. With the
significant parametric and nonparametric uncertainties, the
closed-loop system still represent good tracking performance
shown as Fig. 6. Though there exist slight jitter, the adaptive
estimators are converge to a small neighborhood of zero and
free of parameter drift shown as Fig. 7.

V. CONCLUSION

Focusing on the unpredictable instability phenomena of
conventional adaptive control, a new robust adaptive control
system is designed for AHVs in the paper. Based on I&I the-
ory and σ-modification, the closed-loop system is free from
parameter drift and robust to nonparametric uncertainties
and unmodeled dynamics. The structured design process and
the consideration of states and actuators constraints make
it easy to design and engineering implement. Theoretical
analysis and simulation results demonstrate the effectiveness
and robustness of the proposed method.
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Fig. 2. Response of velocity and altitude with parametric uncertainty
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Fig. 3. Response of intermediate states with parametric uncertainty
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Fig. 5. Outputs of actuators with parametric uncertainty
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