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The combination of local features with sparse technique has improved image classification
performance dramatically in recent years. Although very effective, this strategy still has
two shortcomings. First, local features are often extracted in a pre-defined way (e.g. SIFT
with dense sampling) without considering the classification task. Second, the codebook
is generated by sparse coding or its variants by minimizing the reconstruction error which
has no direct relationships with the classification process. To alleviate the two problems,
we propose a novel boosted local features method with random orientation and location
selection. We first extract local features with random orientation and location using a
weighting strategy. This randomization process makes us to extract more types of informa-
tion for image representation than pre-defined methods. These extracted local features are
then encoded by sparse representation. Instead of generating the codebook in a single
process, we construct a series of codebooks and the corresponding encoding parameters
of local features using a boosting strategy. The weights of local features are determined
by the classification performances of learned classifiers. In this way, we are able to combine
the local feature extraction and encoding with classifier training into a unified framework
and gradually improve the image classification performance. Experiments on several public
image datasets prove the effectiveness and efficiency of the proposed method.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Image classification is a classic problem in computer vision. It tries to classify one image to a pre-defined class by
analyzing the image’s content. Recently, the use of sparse coding for image classification becomes popular. Sparse coding
[6] tries to minimize the reconstruction error of one given feature by selecting a relatively small subset of basis sets.
Since its introduction, the sparse coding technique and its variants have attracted more and more researchers’ attention
and have been proved effective for many vision applications [12,31,44,45].
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Basically, sparse coding based image classification method can be divided into three steps. First, local features are
extracted either by detection or dense sampling. Second, the codebook is generated (using sparse coding or its various vari-
ants) and local features are encoded accordingly. Finally, images are represented using the encoded parameters and SVM
classifiers are trained to predict the categories of images. Although this strategy has been proven very effective for image
classification. It still has two shortcomings. On one hand, the local feature extraction process and the classification task
are relatively independent. On the other hand, the optimal parameters for minimizing reconstruction error cannot be able
to help training discriminative classifiers for prediction. For example, the classifying of tiger and cat is different from sepa-
rating cat and dog. Although researchers have tried [2,9,46] to alleviate the two problems, the results are far from satisfac-
tory with heavy computational cost. If we can combine the local feature encoding and classifier training into a unified
framework, we are able to model images better for classification.

To alleviate the two problems mentioned above, we propose to classify images using boosted local features with random
orientation and location selection. We first extract local features by randomly choosing the locations and orientations with
re-weighting to extract more types of information than pre-defined local feature extraction strategies (e.g. dense sampling of
SIFT features). For each random extraction strategy, we generate the corresponding codebook with re-weighting and encode
the features accordingly. Then we train SVM classifiers to make prediction of image classes. The outputs of the trained clas-
sifiers are used to re-weight images. This process is iterated in a boosting way to combine the discriminative power of a ser-
ies of classifiers for classification. In this way, we can unify the extraction of local features, the generation of codebook and
the training of classifiers into a unified framework.

Our main contribution are as follows.

� We propose a random local feature extraction strategy with orientation and location selection. This helps us to extract
more types of information for classification. Besides, a re-weighting scheme is also imposed to extract more information
from the ‘hard’ images which may help the classification task.
� We iteratively generate codebooks using the randomly extracted local features with re-weighting. The weights are deter-

mined by the predictions of learned classifiers. The misclassified images gains more weights compared with the correctly
classified images, making the proposed method concentrates on the ‘hard’ images for each round.
� We unify the local feature extraction, codebook generation and classifier training into a unified framework iteratively by

using the boosting strategy. The discrepancy between the predicted classes and groundtruth is used to re-weight the
training images which are then used for local feature extraction. In this way, we can gradually improve the image classi-
fication performances by combining the sparse coding based image representation with the boosting strategy.

The rest of this paper is organized as follows. Section 2 introduces some related work. Section 3 gives the details of the
proposed boosted local feature with random orientation and location selection method for image classification. Experimental
comparisons are given in Section 4 and finally we conclude in Section 5.
2. Related work

The bag-of-visual-words (BoW) model [38] is widely used for image classification in recent years due to its simplicity and
efficiency. k-means is usually used for codebook generation and nearest neighbor assignment is leveraged to quantize local
features. This hard assignment strategy causes information loss which hinders final classification performance. Gemert et al.
[14] tried to softly encode local features while Yang et al. [45] used the sparse coding technique. Motivated by this, a lot of
works have been done [13,42,48–51]. Wang et al. [42] added locality constraints during the sparse coding process to speed
up the computation and improve the performance. Gao et al. [13] explored the relationship of local feature similarities and
encoded parameter similarities with Laplacian sparse coding. Zhang et al. [48] used non-negative sparse coding instead of
sparse coding to ensure consistency with the max pooling strategy.

Most image classification methods used histogram based features for local region description, such as SIFT [29] and HoG
[5]. To speed up computation of local features, many works have been done [1,18]. Speeded up robust features (SURF) was
proposed by Bay et al. [1] which can be computed 3–7 folds faster than SIFT. The hashing technique [18] was also proposed
by Indyk and Motwani. These local features are then encoded either by sparse coding or its variants to get the image repre-
sentation for classification. This is often achieved by minimizing the reconstruction error with sparsity constraints. Although
very effective, most of the above mentioned methods treated local feature generation and classifier training separately for
image classification. The objectives of codebook generation and local feature encoding are minimizing the reconstruction
errors while the objective of classifier training is to minimize the classification error. To solve this problem, Yang et al.
[46] tried to unify the codebook generation with classifier training for object recognition by modeling on the SIFT features
directly while the use of nearest neighbor information for direct image classification was also proposed by Boiman et al. [2].
Lowe [30] extended it by using nearest neighbor information to speed up the computation. However, the computational cost
of [2,30,46] are very high compared with the BoW model for classification.

Instead of using pre-defined local feature extraction strategy, the use of features learned from the images also becomes
popular [8,16,20,37] in recent years. Deep belief network (DBN) [16] and convolutional neural network (CNN) [20] tried to
learn multiple layers of nonlinear features from images. Shao et al. [37] used multi-objective genetic programming
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technique for automatic feature learning in order to classify images. Fan et al. [8] tried to generate binary features by recep-
tive field selection for object matching. These learning based methods have been proven very effective for handling with
large image datasets. However, how to tune the parameters of these methods to get reliable performances is still an open
problem that needs to be solved. The use of matrix factorization technique was also proven very effective by researchers
[23–27]. Besides, annotation [17,39–41,43] was also adopted to alleviate the deficiency between visual features and seman-
tic meanings.

Using randomness for image classification is also very popular. Zhang et al. [52] experimentally found that the randomly
selected codebook performs no worse than the codebook generated by k-means clustering. Instead of generating one code-
book, Moosmann et al. [32] used random clustering forests to construct a series of trees for local feature coding. These encod-
ing parameters are then concatenated to represent images. A randomization based multiclass boosting method is also
proposed by Paisitkriangkrai et al. [34]. Because their is no objective function to optimize, the randomness based methods
can be computed very efficiently.

Boosting was proposed by Schapire [36] to turn a set of weak learners into a strong learner as long as the weak learners
are not too ‘weak’ [53]. Boosting was widely used and extended since its introduction, e.g. AdaBoost [11], RankBoost [10] and
random forest [3]. The usages of boosting technique for image classification [28,34,50] are also very popular both for image
representation and classifier training with good performances. By iteratively adding weak learners to improve the perfor-
mance, we can finally get reliable image classification rates.

3. Image classification using boosted local features with random orientation and location selection

In this section, we give the details of the proposed image classification using boosted local features with random orienta-
tion and location selection algorithm. First, local features are extracted with random orientation and location. These local
features are then used to learn the codebook by sparse coding with re-weighting with the weights of each local feature is
determined by the discrepancy of the predicted label and the groundtruth of images from which it is extracted. We then
use the learned codebook for local feature encoding and extract image representation by spatial pyramid max
pooling. Linear SVM classifiers are then used to predict image categories and we use the predicted values for local feature
re-weighting. This process is iterated in a boosting way to get reliable image classification performance. Fig. 1 shows the
outline of the proposed method.

3.1. Local feature extraction with random orientation and location

Given an image, extracting proper local features is very important for image classification. Histogram based features are
often used. We follow this paradigm and extract local feature with random orientation and location. Images are first densely
divided into small spatial regions with multi-scale and overlap. We then compute the gradients of these local regions and
sub-divide it into spatial cells. We use the 4 � 4 cells with 8 gradient orientations in this paper, as [5] did. Note that other
cell partitions strategies can also be used. The 1-D histogram of gradients over the pixels of one cell is extracted to represent
this cell. The gradient information within each local region is called rare local feature in this paper.

Instead of using these extracted features for classification directly. We impose a random selection process to jointly con-
sider the classification task. Let wn; n ¼ 1; . . . ;N be the weight of the nth images. N is the number of training images. The
weights of images are set to be the same before the first iteration and are updated after each classification iteration. We give
the rare local features extracted from one particular image the same weight as the image’s. The rare local features are
weighted accordingly. We then summarize these rare local features to find the number of dominant gradients. The dominant
gradients are defined as the first K largest values of the summed rare local features. We randomly select K gradient orienta-
tions from the 4 � 4 cells of each local region as our local feature representation during this iteration. This selected gradient
has both orientation and the corresponding location information. We repeat this random selection process for M times to
Fig. 1. Outline of the proposed image classification using boosted local features with random orientation and location selection method.
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extract more information. In this way, we can extract local feature for image representation which can jointly consider the
classification task. In other words, the local feature extraction process is task dependent. This is different from most image
classification methods which extract local features independent of the classification task in a single round. Besides, this local
feature extraction process is repeated in an iterative way with the weighs updated by the learned classifiers. This means the
random selection process can extract different types of features for classification during different iterations.

3.2. Codebook generation with weighted local features

After the local features are extracted, we can use them to learn the codebooks for feature encoding. Since we extract dif-
ferent types of local features for each iteration and random selection strategy, we need to generate the corresponding code-
books. Formally, let xp;n

m;i 2 RK�1 denote the ith local feature extracted during the mth random selection from the nth training

image of the pth iteration, wp;n
m;i is the corresponding weight. Where m ¼ 1; . . . ;M;n ¼ 1; . . . ;N; p ¼ 1; . . . ; P, P is the number of

iterations. The sparse coding technique [35] tries to reconstruct the local features by jointly minimizing the reconstruction
error and sparseness as:
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m 2 RK�Q is the corresponding codebook to be learned for the mth random selection of pth iteration, vp;n
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the sparse coded parameters of xp;n
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m is the sparsity parameter. However, since our extracted local features have
weight information, it should also be included for local feature encoding. Hence, we added the weight constraints into
the sparse coding technique and use weighted sparse coding instead:
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In this way, we can jointly consider the codebook generation and classifier training. Recently, Gao et al. [12] found that
imposing encoding parameter consistency into the sparse coding process can further improve the performance. We follow
this strategy and propose the weighted Laplacian sparse coding as:
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where bp
m is the similarity smooth parameter. Si;j measures the similarity of weighted local features xp;n

m;i and xp;n
m;i as:
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With the similarities between xp;n
m;i and xp;n

m;i measured by histogram intersection kernel as:
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Problem (3) can be alternatively solved by fixing the codebook and encoding parameters. When the encoding parameters
are fixed, Problem (3) can be rewritten as:
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Which can be optimized using conjugate gradient decent method [21]. We optimize for the M codebooks during the pth
iteration independently. When the codebook is fixed, Problem (3) can be rewritten as:
minvp;n
m;i
;...;vp;n

m;I

X
i

wp;n
m;i xp;n

m;i � Up
m � vp;n

m;i

��� ���2

2
þ kp

m vp;n
m;i

��� ���
1
þ bp

m

X
i;j

vp;n
m;i � vp;n

m;j

��� ���2
Si;j ð7Þ
Jointly solving for the optimal encoding parameters for all local features is impossible. Hence we optimize them one by
one. This can be achieved by optimizing each local feature xp;n

m;i iteratively by fixing the encoding parameters of other local
features fixed as:
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Problem (8) can be solved by using the feature-sign-search algorithm [12,21,45].
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After the codebooks are learned, we can use them for encoding. The local features used for codebook generation is kept as
template features for new local feature encoding. The new features are encoded one by one based on the assumption that the
new feature does not affect the Laplacian graph [12]. This corresponds to solving for the optimization Problem (8) while
keeping the codebook and the encoding parameters of other local features. These encoded parameters are then used as
the image representation during the pth iteration.

For sparse coded local features, max pooling strategy with spatial pyramid matching [19] is often used to extract image
representation. It selects the maximum response of all the parameters within one particular region for representation. This
strategy is inspired by the biological model [33] with its performances for image classification proved by many researchers
[12,13,42,45,48]. Formally, let hp;n

m represent the max pooled features over one region with D local features of the nth image
and pth iteration, the jth dimension of hp;n

m can be calculated as:
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m;j ¼ max vp;n
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The final image representation hp;n is then obtained by concatenating the max pooled features hp;n
m of each random sam-

pling strategy as:
hp;n ¼ hp;n
1 ; hp;n

2 ; . . . ; hp;npM

� �
ð10Þ
3.3. Boosted local features for image classification

After the final image representation for the pth iteration is obtained, we can use it to train classifiers for classification
prediction. Given the training images fhp;n

; yng; n ¼ 1; . . . ;N; yn 2 f1; . . . ; Lg with their corresponding weights wp;n; L is the
number of image classes. For the pth iteration, we want to train a classifier such that the predicted value �yn ¼

P
p
�yp

n matches
with the groundtruth yn. In this paper, we use the multi-class linear SVM classifier for each iteration by training L linear
classifiers:
�yp
n ¼ maxccT
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by optimizing the following problem:
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with the quadratic hinge loss function as:
‘ cchp;n
; yn

� �
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� �� �2 ð13Þ
The linear classifier is shown to performance comparable with other kernel based methods when combined with sparse
coding and max pooling strategy. Besides, the parameters needed to be tuned are less for linear SVM classifier than non-lin-
ear classifiers.

We combine the outputs of these non-linear SVM classifiers for final image classification in a boosting way. At the pth
iteration, the predicted value is �yn ¼

P
p�yp

n. We use the exponential loss as the loss function which has the form as:
expð��yn � ynÞ ¼ exp �
Xp�1

i
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Let wp�1;n ¼ exp �
Pp�1

i
�yi

n � yn

� �
, Eq. 14 can be rewritten as:
expð��yn � ynÞ ¼ wp�1;n � exp ��yp
n � yn

� �
ð15Þ
And the overall loss function is defined as the summed exponential loss of all training images:
Loss ¼
X

n

expð�yn � �ynÞ ð16Þ
In this way, we can use the predicted values of the former iterations to weight images. These weighted images are then
used to extract local features and generate the corresponding codebooks. Instead of sequently extract local features, con-
struction codebook and make classification of images, we conduct it in an iterative way to combine them into a unified pro-
cess. This can not only makes the objectives of each process more consistent but also can improve the final classification by
concentrating on the ‘hard’ to classify images. Algorithm 1 gives the detailed procedure of the proposed image classification
using boosted local features with orientation and location selection method.
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Algorithm 1. The proposed image classification using boosted local features with orientation and location selection
algorithm.
Input: The training images and labels with initial weights, test images, boosting iteration number maxiter;
Output: The predicted classes of test images;
1: for iter ¼ 1;2; . . . ;maxiter
2: Extract local features with random orientation and location and weights from images as described in Section 3.1
3: Generate the codebooks and encoding schemes with weighted local features by alternatively optimizing over

Problems (6)–(8) as described in Section 3.2;
4: Train multi-class SVM classifiers to predict image categories for this iteration and re-weight training images

accordingly.
5: Check if iter > maxiter or the decrease of the summed exponential loss falls below a pre-defined threshold.

If unsatisfied
go to step 1

Else
stop, go to step 6

6: end for.
7: return The predicted classes of test images;

4. Experiments

To evaluate the performance of the proposed image classification method using boosted local features with random
orientation and location selection (B-ROL), we conduct image classification experiments on several public image datasets,
the Scene-15 dataset [19], the Caltech-101 dataset [22], the Caltech-256 dataset [15] and the PASCAL VOC 2007 dataset [7].

4.1. Experimental settings

We select image regions of multi-scale with the smallest image region is set to 16 � 16 pixels in this paper. Each image
region is sub-divided into 4 � 4 cells and eight gradient orientations are calculated for each cell as the rare local region
description for random selection. Since the images of PASCAL VOC 2007 dataset are more hard to classify than the other three
datasets, we first map the images into different color spaces (e.g. RGB, HSV), as Sande et al. [35] did in order to extract more
information. We randomly select about 50,000 local features for each codebook generation and feature encoding. The
codebook size is set to 1024, as Yang et al. [45] did. Max pooling with three scales of spatial pyramid (1 � 1, 2 � 2, 4 � 4)
is used to combine the spatial information for image representation. During each iteration, the random dimension number
K as well as the random selection times M are two important parameters that control the performances. Using more dimen-
sions for representation and selecting more times will help to improve the classification accuracy. However, this also costs
more computational power both for codebook generation and feature encoding. Besides, since different image datasets have
different difficulties to classify, K and M are also dataset dependent. A larger sparsity parameter kp

m results in more sparse
parameters than a smaller one while a larger smooth parameter bp

m ensures more similar encoding parameters for similar
features. Following the parameter settings of [2,12], we set the sparsity parameter k to 0.3–0.4 and the smoother parameter
b to 0.1–0.3 respectively.

We randomly select the training images per class and use the rest images for performance evaluation. This process is
repeated for ten times for each image dataset to get reliable results. Multi-class classification is done via the one-versus-
all rule: a SVM classifier is learned to separate each class from the rest and a test image is assigned the label of the classifier
with the highest response. As to the boosting process, the maximum boosting iteration is set to 50 in this paper. The average
of per-class classification rates is used to quantitatively measure the performance for all the datasets expect the PASCAL VOC
2007 dataset. As to the PASCAL VOC 2007 dataset, the mean average precision (mAP) is used for performance evaluation. The
randomly selected local feature dimension K and the random selection times M are two important parameters which control
the discriminative power of image representation during each iteration. We experimentally found that the performances
increases with large feature dimension and more random selection times. By selecting local features many times with more
dimensions, we can extract more information for each iteration. However, using larger K and M also costs more
computational power. Hence, we empirically set M to 5, 10, 10, 30 for the Scene-15, the Caltech-101, the Caltech-256 and
the PASCAL VOC 2007 datasets respectively.

4.2. Scene-15 dataset

The first image dataset we consider is the Scene-15 dataset. The fifteen scene dataset has 4485 images of fifteen classes,
which vary from natural scenes to man-made environments. We randomly select 100 images per class for training in order to
be consistent with other methods [13,14,19,45].
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Table 1 gives the performance comparison of the proposed method with other methods [13,14,19,45]. We also give the
performance of using boosted SIFT features for classification. This is achieved by directly extracting the SIFT features instead
of random local feature extraction. We can see from Table 1 that the proposed method is able to outperform other sparse
coding based methods. Specially, by imposing the boosting process, we can improve the classification over LScSPM by more
than 3%. Besides, by randomly select local features, we can extract more types of information with the re-weighting strategy,
hence improves the performance by about 1.5% over B-ROL (without random selection). Moreover, the combination of code-
book generation with classifier training by re-weighting also helps to encode local features more suitable for classification.
Finally, the jointly consideration of feature extraction, codebook generation and classifier training helps to improve the
classification performance over sparse coding by about 13%. This proves the effectiveness of the proposed method. We show
some example images that our method classified correctly and misclassified on the Scene-15 dataset in Fig. 2.

4.3. Caltech-101 dataset

The Caltech-101 dataset has 9144 images of 101 classes with the number of images per classes varies from 31 to 800. We
follow the experimental setup as [42] and randomly select 15, 30 training images respectively per class and use the rest
images for evaluation.
Table 1
Performance comparison of the proposed method with other methods on the Fifteen Scene
dataset. Numerical values in the table stand for mean and standard derivation. The bold
values are used to indicate the best classification performances.

Algorithms Classification rate

KSPM [45] 76.73 ± 0.65
KC [14] 76.67 ± 0.39
ScSPM [45] 80.28 ± 0.93
KSPM [13] 81.40 ± 0.50
LScSPM [12] 89.75 ± 0.50

B-ROL (without random selection) 91.85 ± 0.53
B-ROL 93.38 ± 0.55

Fig. 2. Example images correctly classified and misclassified on the Scene-15 dataset. For each class, the left/right images are correctly classified/
misclassified respectively.

Table 2
Performance comparison on the Caltech-101 dataset. The bold values are used to
indicate the best classification performances.

Methods 15 training 30 training

KSPM [19] 56.40 64.40 ± 0.80
KC [14] – 64.14 ± 1.18
NBNN [2] 65.00 ± 1.14 70.40
ScSPM [45] 67.00 ± 0.45 73.20 ± 0.54
LLC [42] 65.43 73.44
KMTJSRC [47] 65.00 ± 0.70 –

B-ROL 72.25 ± 0.70 76.92 ± 0.59



Fig. 3. Example images correctly classified and misclassified on the Caltech-101 dataset. For each class, the left/right images are correctly classified/
misclassified respectively.

Table 3
Performance comparisons on the Caltech-256 dataset. The bold values are
used to indicate the best classification performances.

Methods 15 training 30 training 45 training

KC [14] – 27.17 ± 0.46 –
KSPM [15] – 34.10 –
NBNN(1 Desc)[2] 30.45 38.18 –
KSPM [45] 23.34 ± 0.42 29.51 ± 0.52 –
ScSPM [45] 27.73 ± 0.51 34.02 ± 0.35 37.46 ± 0.55
LLC [42] 34.36 41.19 45.31
LScSPM[13] 30.00 ± 0.14 35.74 ± 0.10 38.54 ± 0.36

B-ROL 37.55 ± 0.29 42.12 ± 0.25 45.91 ± 0.27
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We give the classification performances comparison with [2,14,19,42,45,47] in Table 2. Compared with the ScSPM [45]
which used sparse coding along with max pooling for image classification, the proposed method improves the performance
by about 5.2/3.7% with 15/30 training images per class respectively. Besides, the proposed method also outperforms sparse
reconstruction for direct classification method KMTJSRC [47] by about 7.2%. Moreover, our method also improves over NBNN
[2] which uses local features directly for classification without training classifiers. By iteratively training classifiers in a
boosting way, we can extract proper information and improve the performance. The relative improvements of the proposed
method over other methods decreases with the increasing of training images. This is because the proposed method can adap-
tively select local features and make full use of training images by the boosting strategy. Finally, we can see the effectiveness
of the proposed method from Table 2. We also give some example images that our method classified correctly and mis-
classified on the Caltech-101 dataset in Fig. 3.

4.4. Caltech-256 dataset

The Caltech-256 dataset has 29,780 images of 256 classes with larger intra-class variability compared with the Caltech-
101 dataset. Each class has at least 80 images. We randomly select 15/30/45 training images per class for performance
evaluation and compared with [2,13–15,42,45].

Table 3 gives the performance comparison. We can see from Table 3 that the proposed method outperforms the baseline
methods which shows the effectiveness of the proposed method. We can have similar conclusions as on the Caltech-101
dataset. The proposed outperforms the sparse coding with max pooling method [45] and directly SIFT distance [2] based
method. B-ROL outperforms LScSPM [13] which also considers the encoding parameter similarities of local features by about
7.5% with 15 training images. This proves the usefulness of selecting local features and jointly considering the codebook
generation with classifier training. Besides, we can see that the relative performance improvement increases with the
decrease of training images. This is because we can extract more types of information and combine the feature extraction,
encoding and classification into a unified process via the boosting strategy for better image representation and classification.
We give some example images that our method classified correctly and misclassified on the Caltech-256 dataset in Fig. 4.

4.5. PASCAL VOC 2007 dataset

The PASCAL VOC 2007 dataset has about 10,000 images of 20 classes (person, bird, cat, cow, dog, horse, sheep, airplane,
bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, soft and tv/monitor). The images are divided
into train/validation/test sets. This dataset is more difficult to classify than the other three datasets.

We compared the performances of the proposed method with LLC [42], the best result’s of 2007 competition [7], the re-im-
plementation of fisher kernel [4] and the super vector based method [54] in Table 4. We are able to outperform the



Fig. 4. Example images correctly classified and misclassified on the Caltech-256 dataset. For each class, the left/right images are correctly classified/
misclassified respectively.

Table 4
Performance comparison on the PASCAL VOC 2007 dataset.

Object class LLC [42] Best’07 [7] FK [4] SV [4] SV [54] B-ROL

Airplane 74.8 77.5 80.0 74.3 87.1 82.6
Bicycle 65.2 63.6 67.4 63.8 67.4 68.5
Bird 50.7 56.1 51.9 47.0 65.8 59.3
Boat 70.9 71.9 70.9 69.4 72.3 72.8
Bottle 28.7 33.1 30.8 29.1 40.9 38.2
Bus 68.8 60.6 72.2 66.5 78.3 75.7
Car 78.5 78.0 79.9 77.3 69.7 80.9
Cat 61.7 58.8 61.4 60.2 69.7 62.8
Chair 54.3 53.5 56.0 50.2 58.5 57.6
Cow 48.6 42.6 49.6 46.5 50.1 51.6
Table 51.8 54.9 58.4 51.9 55.1 57.4
Dog 44.1 45.8 44.8 44.1 56.3 48.3
Horse 76.6 77.5 78.8 77.9 71.8 79.8
Motorbike 66.9 64.0 70.8 67.1 70.8 69.5
Person 83.5 85.9 85.0 83.1 84.1 85.2
Plant 30.8 36.3 31.7 27.6 31.4 33.7
Sheep 44.6 44.7 51.0 48.5 51.5 52.5
Sofa 53.4 50.9 56.4 51.1 55.1 56.8
Train 78.2 79.2 80.2 75.5 84.7 83.1
Tv 53.5 53.2 57.5 52.3 65.2 61.9

mAP 59.3 59.4 61.7 58.2 64.3 63.9

Fig. 5. Example images correctly classified and misclassified on the PASCAL VOC 2007 dataset. For each class, the left/right images are correctly classified/
misclassified respectively.
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performance of the compared methods which again proves the effectiveness of the proposed method. Besides, the proposed
method performs not as good as the super vector based method reported by [54]. We believe this is because of the imple-
mentation details, as pointed out by [4]. However, we are able to outperform the re-implemented super vector based method
by [4]. This also prove the proposed method’s effectiveness. On analyzing the per class performance, we can see that the rigid
objects are easier to classify than non-rigid objects. Besides, the proposed method improves the classification performance



Fig. 6. The changes of the summed exponential losses on the four datasets with the increase of iterations.
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mainly on the non-rigid objects over [4,7,42]. This is because non-rigid objects have large inter-class variations which should
be modeled with different types of models. The proposed method can generate a series of models to solve this problem. We also
give some example images that our method classified correctly and misclassified on the PASCAL VOC 2007 dataset in Fig. 5.
4.6. Convergence of B-ROL

We iteratively reweight the training images for classification. During each iteration, the corresponding codebooks and
encoding parameters are alternatively optimized by minimizing the objective values. Besides, the summed exponential loss
is reduced in each iteration. In this way, we can reduce the loss gradually. Moreover, because the summed loss is positive, the
proposed B-ROL converges. To intuitively show the convergence of the proposed method, we plot the summed exponential
losses on the four datasets in Fig. 6. With the iteration, the summed loss of training images decreases. Besides, the decrease
rate varies from different datasets. We believe this is because some datasets are more difficult to classify than others. For
example, of the four datasets, the PASCAL VOC 2007 dataset is the most difficult. Hence, the summed loss also decreases rela-
tively slow. However, the Scene-15 dataset is easier to classify which needs only about 10 iterations to converge.
5. Conclusion

This paper proposed a novel image classification method by using boosted local features with random orientation and
location selection. By randomly extract local features with varied orientation and location, we can get more types of infor-
mation than pre-defined features for classification. We learn the codebook and encoding parameters by weighted sparse
coding. The weights are determined by the predicted values of the learned classifiers and groundtruth in order to let the clas-
sifier pay more attention to the images which are hard to classify in the next iteration. The proposed method works in a
boosting way to gradually improve classification performances. In this way, the proposed method can unify the local feature
extraction, the codebook generation and the classifier training into a unified process for better classification accuracy. We
conducted experiments on several public image datasets and compared with other the state-of-the-art methods to demon-
strate the effectiveness of the proposed method.
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