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ABSTRACT

Hashing techniques with asymmetric schemes (e.g., only bi-
narizing the database points) have recently attracted wide
attention in the circle of image retrieval. In comparison with
those methods which binarize simultaneously both of the
query and database points, they not only enjoy the storage
and search efficiencies, but also provide higher accuracy.
Gearing to this line, this paper proposes a metric-embedded
asymmetric hashing (MEAH) that learns jointly a bilinear
similarity measure and binary codes of database points in
an unsupervised manner. Technically, the learned similar-
ity measure is able to bridge the gap between the binary
codes and the real-valued codes, which are represented pos-
sibly with different dimensions. What is more, this measure
is capable of preserving the global structure hidden in the
database. Extensive experiments on two public image bench-
marks demonstrate the superiority of our approach over the
several state-of-the-art unsupervised hashing methods.

Index Terms— Unsupervised hashing, asymmetric hash-
ing, bilinear similarity measure

1. INTRODUCTION

Similarity search aims to find some items whose distances are
smallest to a given query item, also known as nearest neigh-
bor search [1, 2]. Technically, similarity search is a funda-
mental task in some real-world applications such as image
retrieval [3, 4]. However, measuring the similarity between
high-dimensional data points is costly in large scale datasets.
To address it, various hashing techniques [5, 6, 7, 8, 9] have
been developed, which encode high-dimensional data points
into compact binary ones while preserving the similarity in
the original space. Based on these binary codes, the similari-
ty can be calculated with low computation and memory costs.

In general, hashing methods can be divided into symmet-
ric hashing and asymmetric hashing according to the encod-
ing schemes of the query and database. For symmetric hash-
ing, both of the query and database are embedded into bina-
ry codes by the same hash function [6, 7, 8, 10, 11, 12]. For
asymmetric hashing, different strategies are utilized to encode
the query and database [13, 14, 15, 16, 17]. In practice, the

tricks with asymmetric hashing have been proven to help im-
prove the performance of retrieval [13].

Among the existing asymmetric hashing methods, there
are several types of asymmetric structures. Typically, in
SDH [15] and COSDISH [16], explicit hash functions are
learned for query, while the binary database points can be
directly obtained unrelated to this hash function in training
stage. Neyshabur et al. [13] learned two distinct hash func-
tions to generate binary codes and demonstrated the power of
asymmetry theoretically and experimentally. All the above
methods are using binary codes of the query and database.
However, Gordo et al. [18] argued that binarizing the database
points without the query can provide higher accuracy and also
enjoy the storage and search efficiencies. For this reason, two
asymmetric distances are proposed to measure the similarities
between the real-valued codes and binary codes in [18].

Inspired by the above-mentioned asymmetric schemes,
we adopt the real-valued query and two distinct hash func-
tions [13, 14]. Among them, two distinct hash functions
are employed to generate the real-valued and binary codes,
respectively. Since real-valued and binary codes belong to
different distribution spaces, it may be inappropriate to di-
rectly compute the similarities between asymmetric codes via
commonly used distance functions, e.g., Euclidean distance.
Accordingly, a bilinear similarity measure is presented to
achieve this goal. With the learned bilinear similarity mea-
sure, the gap between the binary and real-valued codes can
be bridged. Meanwhile, we minimize the fitting error be-
tween the learned similarities and the affinities measured in
a dimension-reduced space. As such, the global structure in
the database can also be preserved.

In consideration of the difficulty in gaining semantic la-
bels in practical applications [6, 8, 10, 19, 20, 21, 22], our
approach is learned in an unsupervised manner. Extensive ex-
perimental results demonstrate that our approach outperforms
the state-of-the-art methods.

2. METRIC EMBEDDED ASYMMETRIC HASHING

2.1. Problem formulation

Given N data points X = [x1, . . . ,xN ] ∈ RD×N , where
xi, i = 1, ..., N is a D-dimensional vector. In our approach,
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each data point x ∈ RD×1 (subscript omitted) is further trans-
formed to a binary code and a real-valued code. For the binary
code, a binary hash function g(x) = sign (WTx) is learned
to embed x into K-bits binary code b ∈ {−1, 1}K×1, where
W ∈ RD×K is a projection matrix. As for the real-valued
code, we apply a dimension reduction method on x to gener-
ate the real-valued code x̃ ∈ RL×1, L < D. Accordingly, x
will be mapped into L-dimensional real-valued codes by the
embedding function h(x) = VTx, where V ∈ RD×L is a
projection matrix 1 . Note that since a real-valued code con-
veys more information than a binary one with the same length,
the optimal dimension of x̃ (dimension-reduced x) will not be
higher than that of b, i.e., L ≤ K.

Furthermore, the similarity between two data points in
the original space should be preserved in terms of the learned
corresponding binary codes and real-valued codes. Although
the similarity in the original space can be defined by many
distance functions (e.g., Euclidean distance, cosine distance),
directly utilizing these distance functions to compute the sim-
ilarity between data points by using binary and real-valued
codes is nontrivial. This is due to the fact the asymmetry
codes often follow two data distributions and even their di-
mensions may be different, e.g.,L < K. To address these
issues, we exploit a parametric similarity function with a
bilinear form [25] to measure the similarity between the
asymmetric codes. To be specific, this function is denoted by
s(xi,xj) = h(xi)

TMg(xj), where M ∈ RL×K is a matrix
that aims to parameterize the bilinear similarity measure. To
preserve the global structure in the original space, we mini-
mizing the fitting error, defined by the following function:

min
W,M

N∑
i,j=1

(s(xi,xj)−Aij)
2. (1)

Where Aij is the affinity between xi and xj in the original
space. As stated in [25, 26], when there is sufficient training
data, the matrix M is not strictly required to be positive semi-
definite or symmetric. Considering that our approach is an
asymmetric hashing and the bilinear similarity measure (also
a metric) s(xi,xj) is learned to fit the affinity matrix A in the
original space, we name our approach as Metric Embedded
Asymmetric Hashing (MEAH).

In this paper, there is no supervised information to reveal
the semantic similarity. Alternatively, we adopt the common-

ly used unsupervised metric denoted by Aij = e−
‖xi−xj‖

2
F

σ ∈
(0, 1], where σ is a parameter and σ > 0. Unfortunately,
computing all pairwise affinities in A ∈ RN×N between da-
ta points of X is extremely time-consuming in large scale
datasets. Therefore, we compute an approximation of A by a
product of two smaller matrices [10]. In addition, on the ba-
sis of chunklets (generated by k-means), relevant component

1The projection matrix V can be learned by any dimension reduction
methods, e.g., (Relevant Component Analysis, RCA) [23, 24], (Principal
Component Analysis, PCA). In this paper, we choose RCA.

analysis (RCA) can learn a discriminant projection space and
unravel the inherent structure of the data [23, 24]. Then, based
on the RCA-reduced data points X̃, the affinity matrix A can
be approximated by P (X̃)TQ(X̃) defined by:

P (x̃) = [

√
e2 − 1

eσ
e−
‖x̃‖2F
σ x̃;

√
e2 + 1

2e
e−
‖x̃‖2F
σ ], (2)

Q(x̃) = [

√
e2 − 1

eσ
e−
‖x̃‖2F
σ x̃;

√
e2 + 1

2e
e−
‖x̃‖2F
σ ]. (3)

With this approximation, we can avoid the O(N2) computa-
tion complexity when calculating the affinity matrix A.

Technically, with (2) and (3) the objective function (1) can
be further reformulated as follows:

min
W,M

‖X̃TMsign (WTX)− P (X̃)TQ(X̃)‖2F . (4)

Where X̃ = VTX and ‖ · ‖F is the Frobenius norm. Ob-
viously, because of the discrete sign function, it is difficult to
solve the above problem (generally NP hard). In order to re-
move the sign function, a common and effective strategy is to
incorporate a regulation [15]. Then, we rewrite the objective
function (4) as

min
W,M,B

‖X̃TMB− P (X̃)TQ(X̃)‖2F

+ λ‖WTX−B‖2F
s.t. B ∈ {−1, 1}K×N ,

(5)

where λ is a penalty parameter, balancing the fitting error and
the quantization loss. The first term in (5) is a fitting error. By
minimizing the fitting error, we can learn a bilinear similarity
measure (parameterized by M) to reveal the global structure
among the database. Meanwhile, the second term in (5) is
employed to the guarantee that the hash function is able to
learn binary codes with the minimum quantization loss.

In testing, we can calculate the similarities between one
query and all data points by (VTq)TMB, where q ∈ RD×1

is a given query. In this way, the retrieval results are returned
by sorting these similarities.

2.2. Optimization

Note that problem (5) is a non-convex problem with W,M,B
together. Accordingly, we choose to solve W, M and B in an
alternating fashion, i.e., optimize one variable while keeping
the others fixed at each time.

In practice, we initialize the variables (V,B,M) at the
beginning. Specifically, V is obtained by performing RCA
on the original data points X. Binary codes B is initialized
by ITQ [6]. And the matrix M is initialized with ones on the
main diagonal and zeros elsewhere.

W-Step. When M and B are fixed, the problem (5) is a
least-square regression problem. Thus, the matrix W has a
closed-form solution:

W = (XXT )−1XBT . (6)
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B-Step. With W and M fixed, the problem (5) is refor-
mulated as

min
B

‖RTB‖2F − 2Tr (BTZ)

s.t. B ∈ {−1, 1}K×N ,
(7)

where R = MT X̃, Z = RÂ+ λWTX, Â = P (X̃)TQ(X̃)
and Tr (·) is the trace norm. Obviously, solving the problem
(7) is nontrivial, due to the discrete constraints. However, as
mentioned in SDH [15], the single row of B has a closed-
form solution with other rows fixed. Based on this idea, we
circularly update B row by row. That is to say, we update
only one bit for all training samples with other bits fixed each
time. Specifically, the binary codes B are learned by discrete
cyclic coordinate descent method. Suppose that bT is one
row of B, and the remaining rows of B is represented as B′.
In a similar way, we suppose that rT , zT is one row of R, Z
corresponding to bT . R′ and Z′ are the matrix of R and Z
except rT and zT , respectively.

Therefore, we obtain the following problem w.r.t. b :

min
b

(rTR′
T
B′ − zT )b

s.t. b ∈ {−1, 1}.
(8)

Clearly, this problem has a closed-form solution:

b = sign (z−B′
T
R′r). (9)

M-Step. We update M with W and B fixed. Similar to
W step, the problem (5) turns out be a least-square regression
problem, and the matrix M has a closed-form solution

M = (X̃X̃T )−1(X̃ÂBT )(BBT )−1. (10)

The proposed Metric Embedded Asymmetric Hashing
(MEAH) is summarized in Algorithm 1.

Algorithm 1 Metric Embedded Asymmetric Hashing
Input: Training data points X ∈ RD×N ; the length of bina-

ry codes K; the length of real-valued codes L; maximum
iteration number t; penalty parameter λ.

1: Perform RCA on data points X, obtain matrix V ∈
RD×L for dimension reduction.

2: Calculate RCA-projected data X̃ = VTX ∈ RL×N .
3: Initialize B ∈ {−1, 1}K×N by ITQ and M with ones on

the main diagonal and zeros elsewhere.
4: while not converge or iteration number < t do
5: W-Step: Update W using Eqn. (6)
6: B-Step: Update B row by row using Eqn. (9).
7: M-Step: Update M using Eqn. (10).
8: end while

Output: Bilinear measure matrix M ∈ RL×K ; matrix V ∈
RD×L; binary codes B ∈ {−1, 1}K×N .

3. EXPERIMENTS

3.1. Datasets and Evaluation protocol
We evaluate our approach on two commonly used image
datasets: CIFAR-10 and ESP-GAME. CIFAR-10 is a single-
label dataset containing 60,000 color images from 10 seman-
tic categories. ESP-GAME is a multi-label dataset consisting
of 20,768 images assigned with multiple labels from 268 cate-
gories. For both two datasets, the 512-dimensional GIST [27]
features are extract to represent these images. In addition,
the ground-truth is defined by semantic labels, namely two
images are similar if they share at least one label. To evaluate
the retrieval performance of our approach, mean average pre-
cision (MAP) and top-K precision are chosen as evaluation
protocol. Naturally, 1000 samples are selected for testing,
and the remaining samples for training models each time.

3.2. Compared Methods
To demonstrate the effectiveness of our proposed approach,
we compare MEAH against one data-independent method
LSH [5], and some representative unsupervised hashing
methods [28], including ITQ [6], SH [8], AGH [19] and
SGH [10]. In our experiments, two query strategies are em-
ployed for verifying the effectiveness of real-valued codes.
Specifically, we search database by (VTq)TMB. This real-
valued query strategy is denoted by MEAH. Additionally, we
can also perform query by sign ((VTq)TM))B. This binary
query strategy is denoted by MEAH-B.

3.3. Experimental settings and results
Unless otherwise specified, we empirically set the parameters
on both two datasets as follows. In (5), λ is taken as 0.5. The
maximum iteration number t is set to 10 and the reduced di-
mension L is set to 30 in (1). As for other compared hashing
methods, we set the parameters as the suggestions of the cor-
responding authors. All experiments are conducted on a PC
with 3.5 GHz CPU and 32 GB RAM. The results are reported
based on the average of 10 random runs.

The MAP performance of different hashing methods are
reported in Table 1. It can be obviously seen that MEAH
obtains the best performance on both two datasets, while
MEAH-B is superior to other binary hashing methods with
high bits (more than 32 bits) in terms of MAP . In comparison
with MEAH-B, MEAH shows better search accuracy. For ex-
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Fig. 1. The top-K precision of different numbers of top re-
turned images on (a) CIFRA-10 and (b) ESP-GMAE.
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Table 1. The MAP of different hashing methods are compared on two datasets. The best results are reported in boldface.

Method CIFRA-10 ESP-GAME
32 bits 64 bits 96 bits 128 bits 32bits 64 bits 96 bits 128 bits

MEAH 0.3120 0.3494 0.3592 0.3630 0.3325 0.3385 0.3398 0.3404
MEAH-B 0.2614 0.3127 0.3302 0.3432 0.3108 0.3252 0.3313 0.3334

SGH 0.2669 0.2906 0.2997 0.3047 0.3125 0.3208 0.3243 0.3257
AGH 0.2941 0.3041 0.3083 0.3105 0.3055 0.3142 0.3168 0.3176
ITQ 0.2757 0.2940 0.3023 0.3082 0.3175 0.3233 0.3259 0.3278
SH 0.2232 0.2285 0.2264 0.2297 0.2912 0.2893 0.2914 0.2895

LSH 0.2077 0.2405 0.2548 0.2670 0.2927 0.3040 0.3115 0.3151

ample, MEAH outperforms MEAH-B by 11.74% and 4.09%
with 64 bits on CIFRA-10 and ESP-GMAE, respectively.
This observation indicates that utilizing the real-valued codes
rather than binary ones can obtain remarkable improvements.
Meanwhile, SGH yields favorable performance among the
compared methods. It should be also noted that the frame-
work of MEAH-B is similar to SGH. Benefited by asymmet-
ric scheme, our MEAH-B achieves better performance than
SGH. Compared to SGH with 64 bits, the MAP of MEAH is
clearly higher than SGH with a large margin (over 20.23%)
on CIFAR-10. Additionally, on ESP-GAME, ITQ is the
second best method which is slightly better than SGH, but
worse than MEAH. This shows that MEAH can also deal
with multi-label datasets and achieve the best performance.

Simultaneously, the top-K precision with 64 bits is illus-
trated in Figure 1. On CIFAR-10, MEAH surpass other meth-
ods with a obvious margin under different number of returned
images. While on ESP-GAME, the top-K precision of MEAH
is a little higher than other methods (also the best). Conse-
quently, experimental results demonstrate the best search per-
formance of MEAH in terms of MAP and top-K precision.
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Fig. 2. The effect of different RCA-reduced dimensions on
MAP performance on (a) CIFRA-10 and (b) ESP-GMAE.

To evaluate the effect of RCA-reduced dimensions, the
MAP performance of different values of L is shown in Fig-
ure 2. We can see that MAP is sensitive to the RCA dimension
reduction. Concretely, when L is small between 20 and 40,
MEAH remains a stably promising performance. However,
whenL becomes smaller or larger, the performance of MEAH
degrades significantly. This observation is consistent with our
intention that moderately low-dimensional real-valued codes
convey sufficient information for representation. Hence, the

dimension of two datasets is reduced to 30 in MEAH.
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Fig. 3. The effect of λ on MAP performance on (a) CIFRA-10
and (b) ESP-GMAE.

Figure 3 illustrates the MAP of different parameter λs.
Clearly, the MAP of MEAH is not sensitive to λ when 0.1 <
λ < 1. While the performance becomes worse in the case of
λ > 1. The underlying reason is that MEAH mainly focus
on minimizing the fitting error, while the quantization error is
only a regularization term. Thus, the fitting error term should
be more critical than the quantization error term. For this
reason, we set the tradeoff parameter λ to 0.5 on two datasets.

4. CONCLUSION

In this paper, we have proposed a novel unsupervised asym-
metric hashing method named MEAH, which exploits an
asymmetric structure based on binary and real-valued codes.
Different from previous binary hashing methods which mea-
sure the similarity in Hamming space or Euclidean space,
MEAH learns a bilinear similarity function to directly mea-
sure the similarity between these asymmetric codes. The
learned bilinear similarity measure can bridge the gap be-
tween the binary and real-valued codes and also preserve the
global structure in the database. By leveraging the underly-
ing information of the real-valued codes, the more precise
similarity can be calculated in the query stage. Experimental
results show that MEAH achieves superior performance over
several state-of-the-art binary hashing methods.
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