IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 12, DECEMBER 2015

2937

Local Laplacian Coding From Theoretical Analysis
of Local Coding Schemes for Locally Linear
Classification

Junbiao Pang, Lei Qin, Chunjie Zhang, Weigang Zhang, Qingming Huang, Senior Member, IEEE, and Baocai Yin

Abstract—Local coordinate coding (LCC) is a framework to
approximate a Lipschitz smooth function by combining linear
functions into a nonlinear one. For locally linear classification,
LCC requires a coding scheme that heavily determines the non-
linear approximation ability, posing two main challenges: 1) the
locality making faraway anchors have smaller influences on
current data and 2) the flexibility balancing well between the
reconstruction of current data and the locality. In this paper, we
address the problem from the theoretical analysis of the sim-
plest local coding schemes, i.e., local Gaussian coding and local
student coding, and propose local Laplacian coding (LPC) to
achieve the locality and the flexibility. We apply LPC into
locally linear classifiers to solve diverse classification tasks.
The comparable or exceeded performances of state-of-the-art

methods demonstrate the effectiveness of the proposed
method.
Index  Terms—Image classification, local coordinate

coding (LCC), local Gaussian coding (LGC), local Laplacian
coding (LPC), local student coding (LSC), locally linear
classification, nonlinear approximation.
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I. INTRODUCTION

OCAL coordinate coding (LCC) is a general framework

to approximate any nonlinear function with linear ones,
requiring a set of anchor points (or called as anchors) to
build local coordinates [44]. Compared with other nonlinear
models, such as kernel machines [6], the computation cost of
LCC is proportional to the number of anchors. Meanwhile,
the accuracy of LCC is determined by coding schemes in
local coordinates. Due to the balance between the effectiveness
and the efficiency—achieving the nonlinear ability yet a lower
computation cost, LCC has been successfully applied to visual
feature learning [35], [43] or locally linear classifiers [15].

Given a large size of dataset and a sample to be encoded,
LCC needs both a coding scheme and a set of anchors to
locally reconstruct this sample. Rather than the overcomplete
bases in spare coding [7], [14], the number of anchors is
usually small [37] in locally linear classification in terms of
balancing between accuracy and speed.

In recent research, some local coding schemes (LCSs) [25]
adopt the “explicit” locality: the reconstruction coefficients
(local codings) are defined by special decay functions
(see Fig. 1). As theoretically discovered in [44], the nonlinear
approximation ability of LCC is bounded by both reconstruc-
tion and locality errors. Therefore, explicit coding scheme
faces two problems: which one of the definitions of locality is
better than the others, and how to balance between reconstruc-
tion and locality errors. For instance, some of these coding
schemes try to explain—to some degrees—the locality from
the empirical results [35], [36], [43], [48].

The motivation of our solution is that the theoretical analysis
of locality contributes to two aspects: compare different cod-
ing schemes, and further help understand the nature of locality.
The upperbound is a natural choice in comparing local-
ity errors of different LCSs. However, obtaining comparable
upperbounds is a challenge problem.

In this paper, we first seek the comparable upperbounds,
and use these theoretical results to discover an efficient local
Laplacian coding (LPC). Rather than predefining decay func-
tions in LCSs, LPC only requires that if two anchors are similar,
the local codings from these anchors are also similar. This
implicit coding scheme grants more freedom to minimize the
reconstruction error. This paper is an extension of [25]. We
extend this paper in the following two aspects: 1) first of all, we
amend the theoretical results about LCSs, and extend them into
a general scenario, i.e., the impact of negative local codings and
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2) we propose implicit coding scheme, and present this paper
more completely, including the optimization of local codings
for LPC, etc. To the best of our knowledge, this paper is the first
to investigate Laplacian matrix for LCC, presenting a compre-
hensive series of experiments to illustrate the benefits of this
implicit scheme for locally linear classification.

The rest of this paper is organized as follows. Section II
provides an in-depth review of LCC, and discuss its con-
nections to sparse coding and locally linear classification. In
Section III, we first discuss the theoretical aspects of LCSs,
and then discover the drawback of the explicit coding scheme.
Section IV presents the details of the proposed coding scheme,
and discusses its pros and cons. In Section V, extensive exper-
iments are carried out to compare the proposed method with
the state-of-the-art ones.

II. BACKGROUND AND RELATED WORK
A. Sparse Coding, LCC, and Locally Linear Classification

The seemingly most similar work to LCC may be sparse
coding [7]: adding different constraints into a reconstruction
loss. The goal of sparse coding is to represent an input signal
approximately as a globally linear combination of an over-
complete dictionary [14], [37], which is often learned with ¢
norm [17]. The locality in LCC brings sparsity into coding
coefficients, since only the anchors closing to the input would
be given more weights [44]. In contrast, dictionary of sparse
coding selected from the whole dataset does not favor this
choice.

LCC aims at achieving nonlinear ability by merging local
structures into the globally nonlinear consistency [2], [44].
Instead of reconstructing an input signal with the number of
bases as small as possible, LCC encodes a sample with anchors
as locally as possible. There are two important threads of
the applications of LCC. One is the feature learning, a work
using the nonlinear representation ability [35], and the other
is incorporating nonlinear ability into classification [15], [34].

In the former case, local codings are combined with other
hand-crafted features [35], [43], [50]. For instance, a varia-
tion of LCC [35] is combined with spatial pyramid match-
ing (SPM) [16] and max pooling [37]. Recent experiments
have observed that the number of anchors should be large
enough to characterize the features distribution in the whole
feature space well [35]. “We do find that using a larger
codebook helps the performance from what we have tried.”!
Therefore, feature learning requires a coding scheme that
performs well when a large number of anchors are available.

The other is locally linear classification based on LCC
framework. Let D = {x;, yi}i.V: | be a training set, where x; € RP
denote the ith sample, y; € {+1, —1} denote the binary label
for a given object category, and N is the number of samples.
Local linear support vector machine (LLSVM) [15] combines
a set of linear ones f;,(x)

M M
FO) =) ym(OWLX+ Y yn(X)bp
m=1 m=1

=yXTWx+yx7b (1)

1 http://www.ifp.illinois.edu/~jyang29/LLC.htm
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where y,,(x) is a local coding for the linear classifier f;,(x) =
wlx + by, the transformation W € RM*P can be considered
as a finite kernel transformation which turns a D-dimension
problem into a M x D-dimension one [15]. From the viewpoint
of computation complexity, LLSVM requires a coding scheme
that performs well when the number of anchors is as small as
possible. It is totally different from the applications of feature
learning.

B. Related Work

Locality is the key notation to approximate a nonlinear
function with linear ones in machine learning. The classical
example is the k- or the e-neighborhood graph in manifold
learning [1], [20], [27]. Generally, locality at least contains the
following two components: 1) the way to define a local area
and 2) the coding scheme among these data points.

Once a local area is determined, the coding scheme
would govern the quality of the nonlinear approximation
ability. Explicit coding scheme, such as [15], first uses
k-means to generate anchors, and then adopts the inverse
Euclidean distance for coding. Locality-constrained linear
coding (LLC) [35] uses Gaussian distribution as the decay
function to constrain local codings. On the contrary, the other
abandons the notation of locality, instead adopts “anchor
plane”—assuming infinite anchors live on a plane [48].

In this paper, we propose implicit coding scheme which
does not necessarily aim at defining a special decay func-
tion, but instead learning local codings from the manifolds of
datasets. This paper follows the notation of locality, proposing
to use the Laplacian matrix [20] to define locality.

Previously, Laplacian matrix has been studied as a
general way to describe manifolds for numerous appli-
cations, e.g., semi-supervised learning [30], dimension
reduction [1], [41], [47], image reranking [40], and classifi-
cation [39], [42] as well as feature learning [9], [29], [50]. In
contrast to these previous work, Laplacian matrix in this paper
does not be built with every point in a dataset, but with the
limited number of anchors, which allows our method to scale
up well.

III. THEORETICAL ASPECTS OF LOCAL CODING SCHEME
A. Revisit Local Coordinate Coding

Following the convention of pattern recognition, we give
a summary of some notations used in this paper in Table I.
Moreover, some definition and conclusion about LCC are
firstly revisited.

Definition 1 (Lipschitz Smoothness [44]): A function
f(x) € RP is (a, B,p)-Lipschitz smooth with respect
to the || - |> norm, if |f(X) — f(X)] < «|x — X/| and
If(X) = f(x) — VI®)T (X = x)| < Bllx — x'||'*7, where we
assume o, § > 0 and p € (0, 1].

Definition 2 (Coordinate Coding [44]): Let (y,C) be an
arbitrary coordinate coding on RP. Let f be an (a, B, p)-
Lipschitz smooth function. We have for all x € RP : y(x) =
ZveC Yv(X)V.

Lemma 1 (Linearization [44]): Let (y,C) be an arbitrary
coordinate coding on RP. Let f be an (a, B, p)-Lipschitz



PANG et al.: LPC FROM THEORETICAL ANALYSIS OF LCSs FOR LOCALLY LINEAR CLASSIFICATION

TABLE I
SOME NOTATIONS IN THIS PAPER

| Notation | Definition

(%) An (a, B8, p)-Lipschitz smooth function

v € RP A D-dimension anchor

C CRP A set of anchors

Yo (x) €R The local coding of a data x on the anchor
v(veCl)

Yz € R/ The local coding vector of a data x by all
anchors

Y € RM The local coding for the data x;

(v,C) A coordinate coding with coding scheme ~y

L € RM*M The Laplacian matrix built from M anchors

smooth function. We have for all x € RP

<alx—y®|°?

) =D n®Fm)

veC
+ B> In®IIv—y®[". (@)
veC
Lemma 1 indicates that the nonlinear function f(x)

is bounded by the weighted sum of the reconstruction
X — ¥ (x)|| error and the locality |y, (X)|[[lv—y X)]| 47 error.
A common practice to define a coding scheme in (2) is to
assign a special value to p [36]. But the optimal value p is
difficult to be determined.

B. Local Gaussian Coding and Local Student Coding

If a sample x is closer to anchors v,,, according to the prin-
ciple of locality, the local codings y;,(x) should be larger and
vice versa [27], [44]. Local Gaussian coding (LGC) and local
student coding (LSC) represent the heavy-tail decay function
and the short-tail one, respectively. More concretely, LGC
presumes that the relation between samples and anchors is

2
—|lv—x
Y xi v, 0) o em(%) 3)
where v (v € RP) is an anchor, and the hyper-parameter o con-
trols the weight decay speed to achieve locality. While LSC
uses Student #-distribution with one degree of freedom which
is the same as Cauchy distribution

X -1
v v, o) o (o2 + v = xI1?) )

where the hyper-parameter o also controls the weight decay
speed. Student r-distribution has the nice property that
(024 |lv—x|H! approaches an inverse square law for a
large pairwise distance ||v — x|

Both LGC (3) and LSC (4) belong to explicit coding
scheme, as both /7% and (0% + d*>~! explicitly prede-
fine how local codings change with respect to the distances
d = ||lvim — X|| (see Fig. 1).

1) Upperbound of Locality Error: Inspired by the idea
in [48], we theoretically compare the locality errors of dif-
ferent coding schemes to answer the problem: given several
different coding schemes, which one has a lower locality error
than the others?
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Fig. 1. Decay ability of the two LCSs: ¢=4°/9> for 3) and 1/(02 + d2)
for (4).

Theorem 1 (Locality Error of LGC): Let (y,C) be an LGC
in (3) on RP, and let f be an (a, B, p)-Lipschitz smooth
function. For all v € C, we denote 1 < ||v|| < A, and

d, = maxmax [|x — v|[.
veC X

Then the locality error in Lemma 1 has the following upper-
bound:

Il v =y I
veC
I+p

2 (d;
[5h2+ﬁ<—'§—1)] 2 ifd, >0,
o
<

(-] T

Theorem 1 discovers that the locality error of LGC is con-
trolled by the hyper-parameter o': if the choice of the parameter
o makes (d,% /02) < 1, we would obtain more lower error
than other ones; besides, d,% < o2 means that there exists the
optimal hyper-parameter o for LGC.

Theorem 2 (Locality Error of LSC): Let (y,C) be an
LSC (4) on RP, and f be an (a, B, p)-Lipschitz smooth
function. For all v € C, we denote 1 < ||v|| < h, and

otherwise.

d; = minmax ||x — v/, d, = max max ||x — V||
veC X veC X

= min(y,f“(x)(a2 + v — X||2>),
veC

= max(yvlsc(x)(a2 + |lv— X||2>)
veC

Then the locality error in Lemma 1 has the following upper-
bound:

oIl v =y P
veC
I+p
2¢id?

< |5 - — . (6)
culCl(0? + d2)

Theorem 2 indicates that if we reduce the hyper-
parameter o, the locality error of LSC also decreases, because
the term —(2cla'lz/c,4|C|(a2 + d,%)) is always negative.

Example 1 (Drawback of Explicit Coding Scheme):
A simple example, illustrated in Fig. 2, reconstructs a
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LGC with RMSE = 9.4882

(@) (b)

LSC with RMSE = 13.3393 Local Gaussian Coding

The value of local coding
IS

*
0.05| 4

F a
0 50 100 150 200 250 300
Distances from encoded data to anchors

(c) (d)

Fig. 2. Reconstruction of swiss-roll by both LGC and LSC.
(a) Sampled swiss-roll. (b) Reconstructed manifold with 32 anchors by LGC.
(c) Reconstructed manifold with 32 anchors by LSC. (d) Distribution of local
codings generated by LGC.

swiss-roll manifold. The reconstructed manifolds from differ-
ent LCSs are shown in Fig. 2(b) and (c), where 4096 points
are randomly sampled from the ideal manifold. Thirty-two
points are randomly sampled as anchors in the reconstruc-
tion stage, with performances evaluated by root mean square
error. When a limited number of anchors are supplied, the
swiss-roll is badly reconstructed by both LGC and LSC.
Moreover, the distribution of local codings [Fig. 2(d)] almost
follows the shapes of Gaussian function (Fig. 1). Therefore, the
poorly reconstructed manifolds are caused by the difference
between the local codings computed by minimizing recon-
struction error and the limited freedom predefined in explicit
coding scheme.

Although the locality errors of both LGC and LSC are
bounded, explicit coding scheme does not balance well
between reconstruction and locality in LCC. Nevertheless
what the other useful observations can we draw from these
theoretical results?

IV. LocAL LAPLACIAN CODING

Revisiting Theorems 1 and 2, we find that both LGC and
LSC share the same point—the built-in locality guarantees
the existence of bounded locality error. However, the prede-
fined locality does not balance well between reconstruction
and locality errors. To overcome the deficiency of explicit cod-
ing scheme while still obtaining the bounded locality error,
implicit coding scheme is proposed to grant more freedom
to minimize reconstruction error. Rather than predefining how
local codings decay with respect to the distances from encoded
data to anchors, the distribution of local codings is implic-
itly described by the manifold of datasets, and local codings
are optimized by jointly minimizing both reconstruction and
locality errors.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 12, DECEMBER 2015

Given Laplacian matrix L = D — W [20], the locality of
LPC satisfies the following optimization problem:

arg min v Ly; = arg min > i = Vi)W (D)
m,n

where L is a M x M matrix built with anchors V =
[vi,...,vml, v, are the codings generated by anchors
vy, for the ith sample, w,, are the weights between
anchors v, and v,. The locality of LPC (7) has the built-
in locality. Because if anchors v,, and v, are close to each
other, then local codings y;, and y;, will be similar to each
other and vice versa. Besides, local codings y; are optimized
from the manifold of datasets, instead of following the special
decay function. Theorem 3 discovers that the negative local
codings tend to increase the locality error of LPC.

Theorem 3 (Impact of Negative Local Codings in LPC):
Let (v, C) be an LPC on RP, and let f be an (a, B, p)-Lipschitz
smooth function. For all v € C, we denote 1 < ||v|| < &, and
K = maxx |[{v € C : P°(x) < 0}]. We also denote

v = min{ ‘min y‘fpc(x) ‘ max y‘fpc(x) H
veC X X

Yu = maxl ‘min yvlpc(x)‘, max y‘fpc(x)‘ }
veC X X

Then the locality error of (7) has the following upperbound:

DIl v—y 7

veC
1+p
v2h? + 2|C|y3h2] 2

K]
ICly}?

viIC]

<22 2y,
Vi

®)

Example 2 (Implicit Coding Scheme and Reconstruction
Error): Fig. 3 plots the reconstructed manifold and the
distribution of local codings. As illustrated in Fig. 3(b),
LPC has the implicit locality by enforcing the anchors far-
away from the encoded data have small values. When the
number of anchors increases, some of the local codings
faraway from the input data are negative [see Fig. 3(c)].
Because LPC does not enforce non-negativity in local
codings.

To remedy this drawback and speedup coding process, we
can simply use the neighborhood anchors of x; by sam-
pling k-NN graph, and solve a much smaller linear system.
Concretely, let I, (I, € RM) be the index of s nearest anchors
of x, the subsampled graph sW is a subgraph of W

sW = W(l,, L) )

where W € RM*M s the original k-NN graph. Rather than
using s nearest anchors to directly rebuild a new k-NN graph,
the subsampled graph naturally preserves the structure of the
original manifold. In the following section, LPC-S is used to
denote LPC with the subsampled k-NN graph.



PANG et al.: LPC FROM THEORETICAL ANALYSIS OF LCSs FOR LOCALLY LINEAR CLASSIFICATION 2941
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Fig. 3.
(c) Distribution of local codings with 128 anchors.

A. Approximated Anchors for LPC

Since Theorem 3 proves that the locality error of LPC is
also bounded, we only minimize the regularized reconstruc-
tion error as

. 1

min  J(y;, V) = < [Ix; — )/,‘VII2 + )»)/l-TLyi
i,V 2

'}/iTl = 1

S.t. : (10)

where A is the tradeoff parameter between reconstruction and
locality, and 1 denotes the identity vector [1, ..., 117.

For real applications, Laplacian matrix in (10) may be non-
differentiable, for instance, the histogram intersection is used
to build Laplacian matrix. Therefore, a simple way to generate
anchors is clustering-based methods, i.e., k-means. According
to our experimental results in Section V, the anchors gener-
ated by k-means produce satisfactory accuracy. In this paper,
Laplacian matrix is computed by heat kernel [1].

Solving local codings is a constrained linear least-square
problem when anchors are learned. To determine the optimal
local codings y;, the constrained problem can be solved with
the Lagrangian function L(y;, v)

1
L(yi,v) = =|Ixi = Vyill> + 2y Lyi +v(1 = 1)
2
1
= EViTCDVi + Ay Ly +v(1 = 1)

where matrix ® is (x;17—V)T(x;17—V), and v is Lagrangian
multiplier. Let dL(y;, v)/dy; = 0, the optimal local codings
y; satisfy that

Y

7i=(®+2xL)"11
vi = 7/ (71).
It should be noted that the matrix @ is symmetric and semi-
positive. If the matrix & is singular or nearly singular, the
matrix @ 4 2)L is still conditioned. Because 21L penalizes

large distance that exploits correlation beyond some level of
precision between data points.

(12)

V. EXPERIMENTS
A. Methods in Comparison Study

Our specific experimental goal is to compare the proposed
approach with state-of-the-art methods.

Reconstruction of swiss-roll from LPC. (a) Reconstructed swiss-roll with 32 anchors and 5-NN. (b) Distribution of local codings with 32 anchors.

1) LGC and LSC [25]: For a sample x;, both LGC and
LSC are directly computed as

— (Vi — xill?
i A
o
— Vi — xi]|?
vaéc Y 0-2
-1
(0 + v — xil1?)

Yvmec (@2 4 1V — xill?)

It should be noted that both LGC and LSC ignore the
reconstruction problem in LCC.

2) LLC [35]: For a sample x;, LLC [35] is originally
proposed to learn feature as follows:

Vim = 13)

Vi = (14)

Ix; — Vyill> + Allpi © vill?
st. pyl1=1

min,,
(15)

where the symbol © denotes the element-wise multiplication,
and p is the locality adaptor as exp(||v — x||>/¢%). Compared
with LGC, LLC is jointly optimized with both reconstruction
and locality errors.

3) LCC-£; [36]: This approach sets p = 2 to locality in (2),
and formulates this special constraint as least angle regression
shrinkage (LARS)-Lasso [31] problem

M
. 2 2
miny, v,, 1% — Vill* + 2 D 193, |1V — xill*.

m=1

(16)

4) Orthogonal Coordinate Coding [48]: For a sample x;,
orthogonal coordinate coding (OCC) assumes that coding
scheme satisfies that
x7v,,

Vi X 17)
Om
In training stage, OCC applies singular value decomposition
to find M largest singular values o, and the corresponding
anchors v,,.
5) Graph Regularized Sparse Coding [50]: For a sam-
ple x;, graph regularized sparse coding (GRSC) optimizes the

following problem:

M
miny, v, 1% = V¥ill® + ey Lyi + B 17, l-

m=1

(18)
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Fig. 4. Classification error as a function of the number of k in k-NN graph
with M =100 and A = 0.6.

GRSC and its extension [18] originally are not proposed
for locally linear classification problem, but for image
representation. The £;-based sparsity can be considered as
an alternative to our subsampled k-NN graph in (9). As dis-
cussed in Section II-A, ¢; globally selects anchors from all
these anchors. Compared with GRSC, LPC-S is a more local
approach by explicitly subsampling nearest anchors to recon-
struct a sample. This simple change in LPC-S largely alleviates
the well-known “crowding problem” [21] in manifold learning:
high-dimensional points with moderate distances tend to crowd
together in the low-dimensional map. The subsampled nearest
anchors in LPC-S naturally make these points with moderate
distances disappear in the low-dimensional map. Moreover,
GRSC has to face the negative local coding problem stated in
Theorem 3.

B. Experimental Tests

1) LPC Parameter Choices: In LPC formulation, the
important parameters include: the number of & in k-NN graph,
the weight A about Laplacian constraint, and the sparsity
s to sample a subgraph. We experimentally test the choice
of parameters on United States Postal Service (USPS) data
set [13]. USPS consists of 7291 training examples and 2007
gray-scale 16 x 16 ones for test. Each label corresponds to 0-9
digits. During the experiments, the means of raw images are
first removed, and then we normalize images with £ norm.
LLSVM is trained by primal estimated sub-GrAdient solver
for Svm method [28].

The effect of k in building k-NN graphs is shown in Fig. 4.
We can see from the results that error rates decrease rapidly
when the locality constraint is used. Although k changes
from 7 to 35, the performances are very robust. This result ver-
ifies our claim that LPC has the implicit locality and balances
well between reconstruction and locality errors in LCC.

Fig. 5 plots classification errors over a series of the trade-
off parameter A. LPC is an efficient locality constraint, as
the error rates decrease from 5.43% (with A = 0) to 2.14%
(with A = 0.05). Moreover, the implicit coding scheme makes
LPC robust to the change of parameter A. This phenomenon
is consistent with the observations in Fig. 4.

Finally, the choice of s in LPC-S, the ratio of subsampled
neighborhood anchors, is studied. Fig. 6 illustrates the effec-
tiveness of sparsity in LPC-S, showing that the error rates
first decrease when the number of neighborhood anchors is

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 12, DECEMBER 2015
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Fig. 5. Classification error as a function of A with M = 100 and 5-NN.

-6-LPC-5(=0.1,KNN=5,M=100)|

Error(%)
S

5 1b 1‘5 26 2‘5 Sb 3‘5 40
Number of nearest neighborhood in LPC-S

Fig. 6. Classification error as a function of the sparsity in LPC-S.

TABLE II
CLASSIFICATION ERROR RATE (%) ON USPS WITH
DIFFERENT NUMBER OF ANCHORS

The number of anchors |

Coding scheme |

20 ‘ 40 | 60 | 80 | 100 ‘ 120 | 140 | 160 | 180 | 200 |
LGC 293 221 242 2.66 2.77 329 3.88 3.88 4.18 423
LSC 2.64 3.38 4.40 4.52 4.59 4.73 4.99 5.10 5.35 5.78
LPC 2.37 2.01 1.76 1.74 1.74 191 1.89 1.83 1.96 1.95

increased, but increase rapidly if the number of anchors is
larger than a certain threshold. The minimal error rate achieves
at s = 10/100. In our comprehensive tests, reported in the
following sections, we will present results with the setting:
s=0.1, A=0.1, and k = 5.

2) LPC Versus LGC and LSC: As both LGC and LSC
are the inspiration of LPC, even if not the state-of-the-art
methods, we perform an initial comparison in Table II.
We perform 5-fold cross-validation to find the best param-
eters in LGC and LSC. The test values for the o are
{0,0.2,0.5,1,1.5,2,3,5,7,9, 10}. When a very small num-
ber of anchors are used (< 80 for all classes), LPC achieves the
excellent performance among these coding schemes. Besides,
if the number of anchors continuously increases (> 100 for all
classes), the error rates of LPC increase slightly. This compari-
son discovers that LPC does not explicitly predefine how local
codings decay with respect to the distances from encoded data
to anchors. This grants more freedom to minimize reconstruc-
tion error in LCC (2). On the other hand, Theorem 3 already
points out that the negative local codings of LPC increase
the locality error. Consequently the error rate increases when
the number of anchors is larger than a threshold (> 100 for
all classes). This phenomenon will be further discussed in
Section V-B3.
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Fig. 7. Comparison between LGC and LSC with the different value of o.

3) Justification of the Theoretical Results: Fig. 7 illustrates
that the error rates of LGC first decrease until a certain number
of anchors are used, and then the error increases gradually.
This observation well verifies the conclusion in Theorem 1:
there is an optimal o in LGC to reduce the locality error.
For Theorem 2, Fig. 7 illustrates that the error rates of LSC
rise gradually when the o increases. Obviously, Theorem 2
explains that the o should be as small as possible to reduce
the locality error.

To give a view of how negative local codings impact the
locality error of LPC, the ratio of negative local codings is
measured as, 1/N Zivz 1 (Z%zl [i,,]1/M), where the operation
[A] means that, [A] = 1, if A < 0, otherwise [A] = 0. Fig. 8
shows the ratio of negative local codings for both LPC and
LPC-S, where the number of anchors ranges from 20 to 200
with the step size 20. As discussed in Theorem 3, the number
of negative local codings increase the locality error, and as a
result the error rates of LPC increase at about 50% negative
local codings. Also notice that the error rates of LPC-S con-
sistently decrease with the increase of the number of anchors.
Because the ratio of negative local codings is restricted to be
smaller than that of LPC.

C. Comparative Evaluation

In this section, we compare the proposed approach specifi-
cally to the state-of-the-art methods on USPS, Mixed National
Institute of Standards and Technology database (MNIST), and
Chars74K datasets. Because these datasets are widely used to
evaluate classification performance. MNIST contains 40 000
training and 10000 test 28 x 28 gray-scale images, which are
reshaped directly into the 784 dimension vectors. The label of
each image is one of the ten digits from 0-9. Chars74K com-
prises 62 classes (“07—9,” “A’—“Z,” “a”—*z”), 7705 characters
obtained from natural images, 3410 hand drawn characters
using a tablet PC, and 62992 synthesized characters from
computer fonts, with over 74K images in total. To give a
fair comparison, we follow [49] to resize each image into a
8 x 8 gray image, then randomly split it into two indepen-
dent sets, 7400 images as test data and the rest as training
data, and finally vectorize each image into a 64 dimensional
vector. During the experiments, the mean of each raw image
is also first removed, and then we normalize these images
with €> norm. To make the comparison as meaningful and fair
as possible, we directly use some experimental results from
OCC [48], [49].
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Fig. 8. Relation between the ratio of negative codings and classification
accuracy on USPS dataset.

Only local codings at testing stage are computed for
locally linear classification, if anchors are already learned at
training stage. Therefore, we begin with an analysis of the
computation cost at testing stage in Table III. It is clear that the
relative complexities are determined by the number of anchors
M and the dimension of features D, respectively. The com-
putational complexities of OCC, LSC, and LGC are lowest
among these methods. Both LCC-¢, and GRSC have to solve
a sparse problem which is computationally intensive process
for a high-dimension coding. Compared with both LPC and
LLC, LPC-S greatly accelerates the coding speed by sampling
k-NN graphs.

We further compare the empirical computation time at both
training and testing stages. To give a fair comparison, the
training time includes both the anchors learning and local
codings optimization without training LLSVM, and the test-
ing time only contains the computation of local codings.
Table IV lists the results based on unoptimized MATLAB code
on a single thread of a 2.67 GHz CPU with 4G memory.
For training both GRSC and LPC-S achieve faster speeds
than the others. Because there is no complex optimization,
just k-means. At testing stage, sparse coding-based method is
slower than the others since both LARS-Lasso [31] in LCC-¢,
and feature-sign search [17] in GRSC are applied to every
sample. Generic OCC (G-OCC) has the lowest computation
cost than the others at testing stage. Because G-OCC just
multiples between anchors and samples and normalizes local
codings. Compared with LLC, LPC-S only solves a much
smaller linear system (12) by sampling k-NN graph.

The best published USPS, MNIST, and Chars74K classifi-
cation error rates are 1.36% [4], 4.38% [32], and 16.48% [38],
respectively, achieved by support vector machine (SVM)-based
methods. Our goal is to achieve exceeded or comparable per-
formances in LLSVM with the number of anchors as small
as possible. Both Tables V and VI present a comparison of
Class-specific OCC (C-OCC), G-OCC, LCC-¢,, LLC, CRSC,
and LPC-S, using different numbers of anchors. The results
of C-OCC and G-OCC are taken from [48], and all the other
error rates are computed by us.

In contrast to LLC, LCC-£>, and OCC, LPC-S not only
tends to offer a higher classification accuracy, but also uses
a much smaller number of anchors. For instance, LPC-S
achieves 1.81% error rate with 100 anchors on MNIST, while
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TABLE III
COMPARISON OF TIME COMPLEXITY AT TESTING STAGE AMONG LSC, LGC, LLC, OCC, GRSC, AND LPC

‘ Method | Time Complexity | Comments |

LSC (LGC) O(M) LSC or LGC directly computes local codings without any
optimization.

LLC O(M) + O(M?) LLC firstly computes the locality adaptor with O (M),
and operates matrix inverse on the M X M matrix with
O(M?) [12].

LCC-£5 O(MDs + Ms?) + O(M?) | LCC-£5 firstly costs O (M Ds+Ms?) to solve a Cholesky-
based implementation of LARS-Lasso problem [22], and
then computes the matrix inverse with O(M?).

OCC O(M) OCC directly computes dot product between anchors and
samples.

GRSC O(t-M 2) In each iteration, GRSC solves a quadratic programming
(QP) problem O(M?) to optimize local codings by feature-
sign search algorithm [17]

LPC O(M?) LPC calculates matrix inverse with O(M?).

LPC-S O(M) + O(s?) LPC-S first searches the s neighborhood anchors, and solves
the matrix inverse problem with (’)(52), s &K M.

Here, s counts the number of nonzero coefficients in LASSO problem, or the number of nearest anchors in LPC-S.
To produce better results, typically, s is around the 10% of M. ¢ is the number of iteration in sparse coding by

feature-sign search algorithm.

TABLE IV
COMPUTATIONAL TIME COMPARISON BETWEEN DIFFERENT
CODING SCHEMES ON MNIST AND USPS

. Training time (sec.) Testing time (sec.)
Coding schemes | —yrrer—"{/eps T MNIST —USPS }
G-OCC 1.85x10%  50.00 8.02 0.08
LCC-¢y 308.89 178.51 971.55 90.96 ‘
LLC 210.38 70.68 292.87 100.03
GRSC 172.11 7.71 1.56 x10%  172.96

LPC-S 172.11 7.71 28.94 2.03

The number of anchors is 200.

TABLE V
CLASSIFICATION ERROR RATE (%) ON USPS WITH
DIFFERENT NUMBER OF ANCHORS

Coding schemes [ The number of anchors |

| 20 40 60 80 100 | 120 | 140 | 160 | 180 | 200 |
C-0CC 4.75 4.61 4.40 4.10 4.31 N/A N/A N/A N/A N/A
G-0CC 4.50 4.60 4.50 4.60 522 N/A N/A N/A N/A N/A
LCC-£o 10.75 8.62 7.14 7.06 6.85 6.62 6.01 5.87 5.52 533
LLC 253 2.16 1.95 1.86 1.83 1.77 1.61 1.59 1.60 1.58
GRSC 2.63 2.13 2.08 1.85 1.84 1.79 1.61 1.57 1.50 1.47
LPC-S 2.73 2.05 1.85 1.64 1.58 1.55 1.53 1.51 1.48 1.46
TABLE VI

CLASSIFICATION ERROR RATE (%) ON MNIST WITH
DIFFERENT NUMBER OF ANCHORS

The number of anchors |
80 | 100 | 120 | 140 | Te0 | 180 200 |

Coding schemes } 30 ‘ 70 ‘ %0 |

C-0CC 345 225 1.85 1.81 175 N/A N/A N/A N/A N/A
G-0CC 225 1.85 2.00 2.10 1.90 N/A N/A N/A N/A N/A
LCC-£o 9.63 7.67 6.26 5.35 4.76 4.52 4.21 3.85 347 332
LLC 378 2.85 230 2.12 1.87 1.78 1.75 1.71 1.68 1.67
GRSC 3.92 2.87 2.59 2.05 1.97 1.81 1.82 1.71 1.68 1.68
LPC-S 3.69 2.68 2.18 2.09 1.81 1.73 1.67 1.65 1.64 1.64

120 anchors is required for LLC to achieve a comparable per-
formance. Because both LLC and LCC-¢; belong to explicit
coding scheme which predefines the distribution of local cod-
ings by special decay functions. LPC-S achieves slightly better
results than GRSC, as GRSC has to face the “crowding prob-
lem” and the negative local coding problem. In contrast,
subsampling in LPC-S not only largely avoids above prob-
lems, but also accelerates local codings by solving a small
linear system.

Table VII further presents the overall best classification
performance achieved by different SVM-based classifications
with any parameter setting. The proposed LPC-S obtains the
lowest error rate on USPS, and achieves slightly higher errors

TABLE VII
CLASSIFICATION ERROR RATE (%) ON MNIST, USPS, AND CHARS74K

Algorithms (# anchors for all classes) | MNIST USPS Chars74K
PEG-LLSVM+LPC-S 1.64(200)  1.46(200) 16.48(1280)
Linear SVM+LCC(4096) [44] 1.90 N/A N/A
Linear SVM+ improved LCC(4096) [43] 1.64 N/A N/A
Linear SVM + LLC (4096) [35] 2.28 4.38 20.88
LA-SVM(2 passes) [3] 1.36 N/A N/A
SV Mstruct [32] 1.40 4.38 N/A
LL-SVM(10 passes, 100) [15] 1.85 5.78 N/A
ALH [38] 2.15 4.19 16.26
LIBLINEAR [5] 8.18 8.32 54.61

than MCSVM with radial basis function (RBF) kernel on
MNIST and adaptive local hyperplane on Chars74K, respec-
tively, despite the fact that the computational costs of both
SVMgiruet and MCSVM with RBF kernel are far larger than
that of LLSVM with LPC-S.

D. Results on Other Datasets

We also wish to test LLSVM-LPC-S on other benchmark
datasets. As we note that sometimes we could not reproduce
their results, largely due to subtle engineerings, e.g., the way of
dealing with preprocessing, the details in extracting features.
Therefore, some results are directly taken from their published
results.

1) Caltech 101 Dataset: The Caltech 101 dataset [8] con-
tains 101 categories (including animals, vehicles, flowers, etc.)
with high-shape variability. The number of images per cat-
egory varies from 31 to 800. Most images are medium
resolution, i.e., about 300 x 300 pixels. The SIFT [19] is
extracted on the image with a step of ten pixels and for the
four different radii 4, 8, 12, 16. The SPM [16] feature is fur-
ther extracted from 1 x 1,2 x 2, and 4 x 4 blocks on three
levels with £ norm. The codebook is learned by k-means with
1024 clusters, and as a result the final SPM features are very
high-dimension. We follow the common experiment setup for
Caltech 101, training on 15 and 30 images per category and
testing on the rest.

Fig. 9 shows the performance among different coding
schemes with different number of anchors. By varying the
number of anchors per class we aim to test the coding schemes
on concurrence of the high-dimension feature and the multi-
class problem. Our method shows much higher accuracy than
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Fig. 9. Recognition performance of different coding schemes with different
number of anchors per class for Caltech 101 dataset.

TABLE VIIT
CLASSIFICATION ERROR RATE (%) ON CALTECH 101

Algorithms (#anchors) ‘ 15 training 30 training
SVM-KNN [45] 59.10£0.60  66.20£0.50
KSPM [16] 56.40 64.440.80
SVM+LLC [35] 65.43 73.44
KC [10] N/A 64.14£1.18
PEG-LLSVM+LPC-S(60 per class) | 62.63£0.43  71.60+0.54

other coding schemes. We also notice that LCC-{; achieves the
poorest recognition accuracy, and this may result from the fact
that the local codings in (16) can be considered as a variant
of LSC which generally achieves poor performance [25].

As shown in Table VIII, we can observe that the proposed
method achieves similar performance to SVM-K-neighbor
hood, but obtains a lower error than the kernel methods, i.e.,
kernel SPM. As listed in both Tables V and VI, the per-
formance of LPC-S is comparable to other state-of-the-art
methods. Note that SVM + LLC [35] applies LCC for feature
learning, in which both max pooling [37] and local coding on
codebook are adopted; while our current implementation only
uses the classical SPM feature.

2) Face Recognition: We evaluate our method on Extend
Yale B dataset [11] and A. Martinez and R. Benavente (AR)
dataset [23]. Extended Yale B contains 38 categories, and 2414
frontal-face images. The cropped image size is 192 x 168.
Following [14], we randomly select a half of images in each
category as training images, and use the rest as test ones.
AR dataset contains over 4000 frontal face images corre-
sponding to 126 persons, and the images include more facial
expressions, illumination and occlusions. Thus AR is more
challenge than Extended Yale B. We choose 47 male persons
and 43 female ones for our evaluation. For each person, 26
images are taken in two separate sessions, where 14 images
only contain variance in illumination and facial expressions.
Following [14], we use 7 out of 14 images as training images
and use the rest as test images. We use eigenface [24], [33]
and downsaple feature [14], and each feature is normalized by
£> norm.

Fig. 10 compares the average recognition rate. The dimen-
sion of the eigenface is 504, and we perform ten random
trials. It can be observed that LPC-S consistently outperforms
other coding schemes. Interestingly, LPC-S performs worse
than LLC when the number of anchors is relatively small, and
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Fig. 10. Recognition performance of different coding schemes with different
number of anchors per class for (a) extended Yale B dataset and (b) AR
dataset.

TABLE IX
PERFORMANCE OF DIFFERENT METHODS FOR FACE RECOGNITION ON
EXTENDED YALE B AND AR DATASET (%)

( [ Extended Yale B Il AR ]
[ [ Dimension | 56 | 120 | 504 || 54 | 130 [ 540 |
Figen CRC [46] 8562 | 9441 | 9855 7667 | 8730 | 8762
SC[14] 9163 | 9395 | 96.77 8032 | 8381 | 8950
Tincar SVM 8432 | 0314 | 9685 8437 | 8904 | 9206
LLSYM-LPCS | 9256 | 9564 | 98.75 8518 | 00.64 | 93.78
b CRC [46] 8284 | 9293 | 97.23 6921 | 8317 | 71.90
v SC[14] 8616 | 9213 | 97.10 7556 | 8651 | 8373
Tinear SVM 955 | 7907 | o161 7303 | 8345 | 0032
LISVM-LPCS | 9002 | 9456 | 9758 || 8045 | 8645 | 9234

this may be caused by Laplacian matrix that can not grasp
manifold structure when a small number of anchors are used.

Table IX further compares the performances of LPC-S on
Extended Yale B and AR face datasets with different fea-
tures and feature dimension. All the results are based on
ten independent trails. Experimental results show that LPC-S
with LLSVM outperforms other methods. Especially for low-
dimensional features, the improvement is significant, for exam-
ple, LLSVM-LPC-S outperforms linear SVM about 8.24% on
Extended Yale B. Moreover, we also note that LLSVM-LPC-S
performs better than linear SVM when downsample feature is
adopted.

VI. CONCLUSION

In this paper, we propose LPC from the theoretical anal-
ysis of LCSs, leading to results matching or surpassing
the state-of-the-art methods for locally linear classification.
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The theoretical analysis discovers that negative local codings
in LPC increase the upperbound of the locality error. The LPC-
S is therefore proposed to handle this problem by subsampling
k-NN graphs. There are significant distinctions between the
proposed coding schemes and previous studies in LCSs.

1) Granting more freedom to minimize the reconstruction
error, the proposed implicit coding scheme balances well
between the reconstruction and locality errors in LCC.
When the same number of anchors is used, implicit cod-
ing scheme tends to achieve better performance than
explicit one.

2) We theoretically analyze the impact of negative local
codings in LPC and compare it with other LCSs.

The promising results of this paper motivate the following

directions.

1) Anchor Learning [26]: Currently, we use k-means to
approximately solve the anchors of LPC. How to
optimize the anchors with Laplacian constraint is an
interesting problem.

2) Applications of LPC: For example, LPC enforces
the stable coefficients to help coding-based method
more robust. Recently, the reconstruction-based clas-
sification has achieved promising results on object
recognition [14], and LPC may also be used to solve
this recognition problem.
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