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Robust Latent Poisson Deconvolution From
Multiple Features for Web Topic Detection
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and Baocai Yin, Member, IEEE

Abstract—Detecting “hot” topics from the enormous user-
generated content (UGC) data on web poses two main difficulties
that the conventional approaches can barely handle: 1) poor feature
representations from noisy images or short texts, and 2) uncertain
roles of modalities where the visual content is either highly or
weakly relevant to the textual cues due to the less-constrained UGC.
In this paper, following the detection-by-ranking approach, we
address above challenges by learning a robust latent representation
from multiple, noisy and a high probability of the complementary
features. Both the textual features and the visual ones are encoded
into a k-nearest neighbor hybrid similarity graph (HSG), where
nonnegative matrix factorization using random walk is introduced
to generate topic candidates. An efficient fusion of multiple HSGs
is then done by a latent poisson deconvolution, which consists of a
poisson deconvolution with sparse basis similarity for each edge.
Experiments show significantly improved accuracy of the proposed
approach in comparison with the state-of-the-art methods on two
public datasets.

Index Terms—K-nearest neighbor similarity graph, latent
poisson deconvolution (LPD), multi-view learning (MVL), user-
generated content (UGC), web topic detection.

I. INTRODUCTION

W ITH the rapid development of social media, User-
Generated Content (UGC) [28] is quite pervasive for
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people to either share or exchange their options and experiences.
Meanwhile, the content of UGC is more sparse, unconstrained
and less predicable than that of the professionally edited articles,
since everybody is both the producer and the consumer of me-
dia. As a result, the unprecedented explosion in the volume of
“we-media” has made it difficult for web users to quickly access
hot and interesting topics [32]. Web topic detection [28], [42] is
such an effort to organize web data into more meaningful and
interpretable topics automatically. Web detecting topics here is
defined as the task of discovering of a tiny fraction of webpages
strongly connected by a seminal event from a large amount of
social media [28].

One of the important approaches is to exploit multiple modali-
ties of data themselves. Generally speaking, “we-media” is often
posted at will across multiple modalities, reflecting social real-
ities from multiple aspects. Therefore, these less-constrained
UGC data often face several challenging problems: 1) the prob-
ability of a deficiency of some modality; 2) inefficient feature
representations either from short text [43] or noisy images; and
3) the uncertain roles of different modalities. The last is an ex-
tremely universal phenomenon in social media, where the visual
cues are possibly more important than the textual ones to ex-
press the content of a webpage while the textual cues may serve
a dominant role for other webpages. The existing methods, at
the modality level, combine multiple representations from the
different modalities with possible noises. For instance, different
modalities are linearly averaged into a unified representation
by the well-tuned weights [42]. However, the varying roles of
different modalities in each sample are not considered.

Therefore, we seek a robust, and datum-wise framework to
exploit multiple and noisy feature representations, based on two
motivations. First, although an enormous volume of literatures
has been devoted to the feature fusion problem, most of them
consensually assume that features nearly have no noise. Second,
we want to avoid the disadvantages of the popular modality-
level fusion methods, e.g., the linear weight approach [42]. The
modality-level methods obviously have a difficulty in dealing
with the uncertain role of different modalities. In summary, our
goal is to robustly detect topics from multiple noise represen-
tations of the multi-media data where the importance of the
modality varies with respect to each individual webpage.

In this paper, we propose a latent Poisson deconvolution
(LPD) framework to explicitly handle the possible noises as-
sociated with the different feature representations. As shown in
Fig. 1, following similarity cascade (SC) [28], we in the pre-
processing stage extract multi-view features from the different
modalities, and then compute a similarity graph with each de-
scriptor. The adverse impacts of noises are naturally encoded
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Fig. 1. Proposed LPD framework.

into the similarity graph. To partially reduce these unfavorable
impacts, we only select the top-k most similar values to build
a k-Nearest Neighbor Similarity Graph (k-N2SG). Next, each
paired k-N2SGs from both the textual modality and the visual
one are equally weighted into a Hybrid Similarity Graph (HSG).
Instead of directly using k-N2SG from each modality, the mo-
tivation behind HSGs is that the visual cues still contain some
minor yet meaningful information, although it is extremely dif-
ficult to convert the visual cues into the social-related concepts
due to the “semantic gap” challenge.

Further in generating topic candidates from these HSGs, non-
negative matrix factorization using random walk (NMFR) [40]
is used to generate multi-granularity candidates. The advantage
lies in that random walk empowers NMF to capture manifold
structure among data points, producing high-quality topic
candidates.

In the detection-by-ranking stage [28], rather than firstly
learning a shared graph (which is a common approach in multi-
view learning, however unnecessary in our approach as will be
discussed) we instead propose LPD to learn the reconstructed
latent graph and sparse basis similarities from different HSGs,
in the hope of not only avoiding the complicated optimization
problem but also adaptively fusing multiple cues in the datum-
wise fashion. The last is crucial to deal with the uncertain roles
of the different modalities for individual webpage.

By considering the uncertain roles of the different modalities,
LDP learns a latent shared representation for each webpage.
To the best of our knowledge, this is the first to investigate
multiple-view learning (MVL) for web topic detection, by
adaptively fusing features from the multiple modalities int
the datum-wise fashion. The proposed method is concep-
tually simple, yet exceptionally powerful. We develop a
web topic detection method that exceeds five state-of-the-art
approaches [10], [13], [18], [28], [42] on two public datasets.

The rest of this paper is organized as follows. Section II
reviews the related work. We describe the details of our approach
in Section III. Experimental results are presented in Section V
and the paper is concluded in Section VI.

II. RELATED WORK

Topic detection from the single modality of data: In the
single-modality based approach, it is reasonable to assume
that one of the modalities always plays the dominant role
in determining the content of social media. Based on this
assumption, existing approaches define different topic patterns
either from the textual modality or from the visual one. Due to
the “semantic gap” between visual information and the social

concepts, nearly all approaches only use the textual modality,
assuming that elements in a topic have higher similarities be-
tween each other, e.g., news [2], [3], [9], blogs [33]. Therefore,
many literatures about topic detection consider web topics as
clusterings. There are three important research threads in the
topic-as-clustering method.

One popular way explicitly defines an intra-similarity to
group a set of elements into a topic. For example, Yang et al. [39]
propose a classical framework in which the group-average clus-
tering is used to discover topics. In [35], an agglomerative clus-
tering method based on average pair-wise similarities is pro-
posed to group news into topics. He et al. [17] propose periodic,
aperiodic features and the characteristics of word trajectory, for
event detection in news.

The second method adopts topic models to handle the poly-
semous phenomenon in topic detection [28]. Topic models have
been proposed to infer hidden themes for document analysis,
allocating a document into several hidden topics. The classi-
cal topic models include latent dirichlet allocation (LDA) [6],
hierarchical dirichlet processes (HDP) [34], probabilistic latent
semantic analysis (pLSA) [19] and various variations. In [38],
nonnegative matrix factorization (NMF) shows more accurate
performance than that of the spectral methods in document clus-
tering. These topic models generally work well on long and
structured documents [16]. Compared with the intra-similarity
approach, the second method tends to fail on short and noisy
text from social media since they are heavily dependent on word
co-occurrence. Besides, the assumption adopted in topic mod-
els, every webpage evolves into a topic, does not hold for social
media. Because web topic is a kind of a needle in a haystack,
discovering a subset of meaningful and interesting webpages
from an enormous web data.

The third approach incorporates the possible side informa-
tion that could probably guide the text-based clusterings. This
category aims to utilize possible cues from the other informa-
tion channels beyond itself. For instance, [33] proposes to use
queries recorded in searching engines to filter out false pos-
itives. Similarly, [13] detects topics in a user-oriented manner
and proposes a query-guided topic detection method. In [25], by
leveraging the external sources such as online news and blogs,
news videos are clustered into a hierarchical structure. Often the
most severe drawback of this approach is that the quality of side
information should be close to that of the supervised one.

Generally speaking, the topic-as-clustering method works
well in some scenarios, e.g., news, blogs and scientific doc-
uments [23]. As mentioned above, however, web topics are not
equivalent to these long and structured documents since the
noisy and spare data are more serious than that of other ap-
plications. Noticing above challenges in the topic-as-clustering
method, the detecting-by-ranking approach is proposed to covert
the topic detection as ranking problem [28]. More concretely,
the multi-granularity topic candidates are firstly generated to
describe overlapping, mutual exclusion, and subsumption rela-
tionship between topics, and then the Poisson Deconvolution
(PD) [28] is used to rank the interestingness of candidates. The
proposed method in this paper belongs to the PD based method.
However, since our goal is to exploit the multi-modalities of
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data, our formulation introduces a latent shared representation,
resulting in a efficient datum-wise feature fusion scheme.

Topic detection from the multi-modality of data: This ap-
proach aims to exploit the possible complementary modalities
from data themselves. In this approach, there are two important
threads of research. One extends clustering algorithms into the
multi-modality data [7], [30], and the other is the fused similarity
graph method [29], a work based on the multi-modalities fusion.

In the former case, the discovery of topics involves extending
the single-modality based models into multi-modal data. For
instance, multi-modal LDA [30] is proposed to group images
with tags into topics. In the similarity graph method, multi-
modal information is fused into the edges of a similarity graph.
Cao et al. [10] first generate events on video tags by k-means,
and then link these ones into topics based on the textual-visual
similarity. For instance, Wu et al. [36] use weighted similar-
ity between nearly-duplicated keyframe (NDK) and the speech
transcripts from news videos.

The key problem of the fused similarity graph method is how
to efficiently fuse multiple cues. Generally, the fusion problem
is conceptually formulated as follows: assume that we have a
set of graphs Gi extracted from different features, a fused graph
G is linearly weighed as

G =
∑

i

αiGi with αi ≥ 0, and
∑

i

αi = 1. (1)

Compared with the method extending topic modelings [6]
into multi-modal data, the fused similarity graph method is
both computationally simple, and easily extendable for the other
graph-based algorithms [1]. Although different methods are pro-
posed to learn these weights, the fusion scheme in (1) barely
considers the uncertain roles of different modalities of data; be-
sides, the scheme (1) nearly has no ability to deal with the noises
in the less-constrained UGC. In contrast, our method does not
necessarily aim at designing a perfect weight scheme to fuse
heterogenous graphs at the modality level, but rather adaptively
fuses multiple similarities in the datum-wise fashion.

Multi-view learning: MVL is the problem of machine learn-
ing from data represented by multiple feature sets. In this pa-
per, multiple views mean HSGs from a given dataset. Many
methods have been proposed for multi-view classification [46],
retrieval [20], clustering [5].

Conceptually, existing methods for MVL can be roughly cat-
egorized into two categories. The methods in the first stream
integrate multi-view features into some common representa-
tion [21], [44]. For example, Bickel et al. [5] incorporate multi-
view features to construct the loss function for clustering. The
methods in the second stream project each view of features
onto a common low-dimensional subspace. A representative
method in this stream is canonical correlation analysis (CCA)
for MVL [11]. For more recent progress on MVL, we refer
the interested readers to a literature survey of MVL [37]. The
proposed method in this paper belongs to the first stream. How-
ever, the common representation in our LPD is hidden, not be
explicitly computed.

Recently, there has been a trend of explicitly handling the
noises in multiple inputs via sparse decomposition in machine

learning. For example, the robust data fusion methods [27], [41]
separate the considerable noise in multiple inputs via low-rank
and sparse decomposition. All have shown increased robust
power of the models. Following this trend, LDP assumes that
each HSG is explicitly corrupted by noises, and then learns a
latent shared graph by exploiting the joint statistics.

III. GENERATING CANDIDATES ON HYBRID SIMILARITY GRAPH

A. Combining k-N2SGs Into an HSG

Given a set of data points {x1 , . . . ,xN } where each sam-
ple xi = (xv

i , xt
i) contains the visual modality xv

i and the
textual one xt

i . We extract the multiple visual descriptors
fm

v (m = 1, . . . , M ) and the multiple textual ones fm
t (m =

1, . . . ,M ) from a webpage, respectively. Based on these fea-
tures, we can construct a pair-wise similarity matrix Sm

v and
Sm

t , m = 1, . . . ,M . Let sij (sij ∈ S) denote the similarities on
a pair of data points xi and xj .1

Further, let (V,E,Wm ) be a weighted graph with the vertex
set V , the edge set E, and the corresponding weight matrix Wm ,
where each vertex vi (vi ∈ V ) associates with a webpage xi , and
an edge eij (eij ∈ E) associates with a weight wm

ij (wm
ij ∈ Wm )

between xi and xj . We propose to use Gaussian kernels to
covert the similarity matrix Sm , i.e., wm

ij = exp
(
−‖sm

ij ‖2/σ2
)

where ‖ · ‖2 denotes the �2 norm and σ2 denotes the deviation.
Gaussian kernel nonlinearly scales different similarity Sm

ij into
a uniformly one ranging from 0 to 1. Because different features
from diverse modalities not necessarily use the same similarity
measurement, e.g., cosine distance for TF-IDF, and Euclidean
distance for fisher vector (FV) [31].

Once similarity graphs are computed, the top-k most similar
data xi are inserted as its neighbors on the graph, and the other
similarities are assigned with zeros. In general, the selection of
k is determined by the degree of noises in different datasets.
The higher noise is in a dataset, the lower value is assigned
to k. Because a smaller k tends to remove more incorrect or
unnecessary correlations between webpages. Therefore, the k
of the visual modality is usually smaller than that of the textual
one. Because mining the social-related semantics from the visual
information is more challenge than that of the textual one.

We term the resulting sparse graphs as k-N2SG. Subse-
quently, a pair of the visual k-N2SG (V,Em

v ,Wm
v ) and the

textual one (V,Em
t ,Wm

t ), are equally merged into a HSG

Gm = (V,Em ,Wm ) , m = 1, . . . ,M (2)

where Em = Em
v ∪ Em

t , and Wm = (Wm
v + Wm

t )/2. The
unbiased weight scheme in HSG (2) is a reasonable interme-
diate solution during the datum-wise fusion in Section IV.
Moreover, (2) naturally solves the deficiency of a modality
problem [29]. We summarize some notations used in this paper
in Table I.

1In the following, we ignore the superscript and subscript in the different
context, if it does not cause confusion.
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TABLE I
SOME NOTATIONS IN THIS PAPER

Notation Definition

x i A multimodal sample
wi j ∈ Wi j A weight between x i and xj in graph G

ei j ∈ Ei j An edge in graph G

Ck A topic candidate
μk ∈ μ The weight of the candidate Ck

B m The basis similarity matrix
Gm A hybrid similarity graph
� The matrix transpose operator

B. Generating Topic Candidates

NMFR is carefully chosen to generate topic candidates, in or-
der to exploit the non-neighborhood relationship on these sparse
HSGs Gm . Let Um ∈ RN ×K be nonnegative and orthogonality
matrix, the objective function of NMFR is as

min
U m ≥0

−Tr(Um�
AUm ) + λ‖Um‖2

F

s.t. : Um�
Um = 1

in which A is the random walk distance, A = (I −
αDm−1 / 2

Wm Dm−1 / 2
)−1 , where α ∈ (0, 1) is a decay parame-

ter, and Dm is a diagonal matrix with Dm
ii =

∑N
j=1 Wm

ij . [40]
proposes a relaxed algorithm to optimize Um without explicitly
computing the matrix A.

By the winner-take-all principle, Um generates the topic can-
didates Cm

k (k = 1, . . . ,K) [28]. Formally, Cm
k = cm�

k ◦ cm
k

where the indicator vector cm
k ∈ {0, 1}1×N , in each of whose

bin 1 or 0 means that the candidates Cm
k whether contains the

sample xi or not. The operation ◦ means that the diagonal of
matrix cm�

k cm
k is set to zero.

IV. ROBUST LATENT POISSON DECONVOLUTION

A. Latent Poisson Deconvolution

The basic assumptions in LPD are threefolds: 1) in the context
of MVL, each HSG Gm is considered as a view of a dataset,
being sufficient to discover most of correlations among web-
pages; 2) the matrix Wm of each graph Gm is corrupted by
noises; and 3) different HSGs Gm have different basis similar-
ities to indicate the “background” similarities. Based on above
assumptions, the similarity matrices Wm (m = 1, . . . ,M ), can
be naturally decomposed into three parts as follows:

∀m, Wm = W + Bm + noise (3)

where W is a latent shared similarity matrix that reflects the
underlying true correlation among webpages, Bm represents
different basis similarities, and noise is a noise term.

Compared with the linear weight scheme in (1), the
datum-wise fusion approach in (3) instead of directly learns a
fused representation W for each sample. Meanwhile, the basis
similarities are optimized to discover these “background” simi-
larities. Therefore, the datum-wise approach in (3) robustly and
adaptively fuses multiple inputs. A key question arising here

Fig. 2. Graphical model of the LPD model.

is how to solve the latent matrix W , and the basis similarity
matrix Bm .

For the latent matrix, a naı̈ve approach is to simply feed the
matrix W into PD [28], once the latent matrix W is computed.
Following Poisson noise assumption adopted in PD [28], this
idea has to apply twice expectation-maximization (EM) algo-
rithm to separatively optimize W and μ, resulting in an ineffi-
cient numerical solution. More efficiently, we can approximate
W ≈

∑K
k=1 μkCk where Ck ∈ union(Cm

k ), (m = 1, . . . , M ,
k = 1, . . . ,K). Because the latter approach only applies once
EM algorithm.

For the basis similarity, each basis similarity matrix Bm repre-
sents the difference between W and Wm . Since we assume each
graph Gm is sufficient to identify most of the shared graph G, it
is reasonable to assume that only a small fraction of elements in
Wm being significantly different from the corresponding ones
in W . That is, basis similarity matrix Bm tends to be sparse.

Under the above assumptions, the similarity of an edge can
be decomposed as follows:

∀m, wm
ij ∼ Poisson (aij ) (4)

where aij =
∑K

k=1 μkCki j
+ Bm

ij . This leads to a graphical rep-
resentation of the model in Fig. 2.

Given the model parameters, we formulate LPD as the
MVL problem by minimizing the following regularized
log-likelihood L(μ, Bm ):

min− ln
M∏

m=1

∏

wm
i j ∈W m

aij
wm

i j e−ai j

wm
ij !

︸ ︷︷ ︸
L(μ,B m )

+λ

M∑

i=1

‖Bm‖1

s.t. : μk ≥ 0, k = 1, . . . ,K (5)

where λ is a non-negative trade-off parameter, μ =
[μ1 , . . . , μK ]�, and the �1 norm ‖ · ‖1 is well-known to produce
a sparse solution. The constraints μk ≥ 0 lead to a nearly sparse
solution, automatically reducing the redundancy among the
topic candidates. L(μ, Bm ) in (5) learns a reconstructed, shared
and latent graph from M hybrid ones in the context of MVL.

B. Optimization

The optimization problem in (5) is challenging due to its
non-smooth terms ‖Bm‖1 . We apply the idea of alternating
direction method of multipliers (ADMM) [8] to convert the
optimization problem into several sub-problems by introducing
auxiliary variables Zm , m = 1, . . . ,M

min
μ≥0,B m ,Z m

L(μ, Bm ) + λ

M∑

m=1

‖Bm‖1

s.t. : μ ≥ 0, Bm = Zm , m = 1, . . . M. (6)
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In ADMM, we optimize the augmented Lagrangian of the
above problem that can be formulated as follows:

Lρ = L(μ, Bm ) + λ

M∑

m=1

‖Zm‖1 +
ρ

2

M∑

m=1

‖Bm − Zm‖2
F

+
M∑

m=1

trace(Y m�
(Bm − Zm )) (7)

where ρ ≥ 0 is called the penalty parameter, ‖ · ‖F denotes
the Frobenius norm, and the matrices Y m are the dual variables
associated with the constraints, Bm = Zm , m = 1, . . . , M . The
algorithm for solving the above augmented Lagrangian problem
involves the following iterative steps:

μt+1 , Bmt + 1
= arg min

μ≥0,B m
Lρ(μ, Bm , Zmt

, Y mt

)

Zmt + 1
= arg min

Z m
Lρ(μt+1 , Bmt + 1

, Zm , Y mt

)

Y mt + 1
= Y mt

+ ρ(Bmt + 1 − Zmt + 1
). (8)

The advantage of the sequential update is that we separate mul-
tiple variables and thus optimize them at a time.

Solving for μ and Bm : When solving for μ and Bm in (7),
the relevant terms from Lρ are

arg min
μ≥0,B m

L(μ, Bm ) +
M∑

m=1

trace(Y m�
(Bm − Zm ))

+
ρ

2

M∑

m=1

‖Bm − Zm‖2
F . (9)

By Jansen’s inequality, (9) has the following upper bound:

−
M∑

m=1

∑

wm
i j ∈Gm

(
wm

ij

(
K∑

k=1

Pk ln
μkCki j

Pk
+ Pm

ij ln
Bm

ij

Pm
ij

)

−
K∑

k=1

μkCki j
− Bm

ij

)
+ trace

(
Y m�

(Bm − Zm )
)

+
ρ

2
‖Bm − Zm‖2

F

where Pk and Pm
ij are the hidden variables that satisfy Pm

ij +
∑K

k=1 Pk = 1 (Pm
ij ≥ 0, Pk ≥ 0)

Pk =
μkCki j

Bm
ij +

∑K
k=1 μkCki j

(10)

Pm
ij =

Bm
ij

Bm
ij +

∑K
k=1 μkCki j

. (11)

Solving (9) by minimizing the upperbound of (10) has the
closed form solution, and the non-negativity constraints are

automatically taken care of

Bmt + 1

ij = (−A +
√

A2 + 4ρD)/2ρ (12)

μt+1
k =

∑M
m=1

∑
ei j ∈Gm wm

ij Pk

M
∑

ei j ∈Gm Cki j

(13)

with

A = Y m
ij − ρZm

ij + 1ei j ∈Gm

D = wm
ij Pm

ij

where the operation 1ei j ∈Gm means that if an edge eij exists in
the HSG Gm , it outputs 1; otherwise, it returns 0.

Solving for Zm : The optimization problem for Zm can be
equivalently written as

min
Z m

λ‖Zm‖1 +
ρ

2
‖Zm − Y m /ρ − Bm‖2

F

which has a closed form solution

Zmt + 1
= Sλ/ρ(Y m /ρ − Bm ) (14)

where Sα (x) = max(x − α, 0) + min(x + α, 0) is the shrink-
age operator [22].

Since the objective (5) is convex subject to nonnegative con-
straints, and all of its subproblems can be solved exactly based
on the existing theoretical results [24], LPD converges to global
optima. The optimization of LPD is summarized in Algorithm 1.

Once μk and Bm are computed, the interestingness of top-
ics are ranked as, ik = μk · |Ck |, where |Ck | is the number of
webpages in a topic Ck [28]. Note that our method during the
evaluation adopts the Non-Maximal Suppression (NMS) [15] to
handle the problem that which one is selected as the real topic
if several topics intersect with each others.

C. Time Complexity

Solving μ in (13) involves point-wise multiplication between
the latent variables Pk and wm

ij . For Solving for μ, and Bm , this
leads to a complexity of O(M · |μ| · |Cm

k | · s) for μ, and O(M ·
|Wm | · s) for Bm , where s is the number of MM iterations,
|Cm

k | and |Wm | are the number of edges in the topic Cm
k and

in the graph Gm respectively. The time cost for Solving for Zm

can be omitted since it is usually much smaller than the update
of μ and Bm . Usually, the number of the topics |μ| is larger
than that of edges in a graph, |Gm |. Therefore, the time cost
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TABLE II
SUMMARY OF DATASETS USED IN THE EXPERIMENTS

Dataset #Topic #Webpage #Webpage in all
topics

Dictionary size Average
#word/page

# images in
dataset

Average #
image/page

Comments (the cues used in our
experiments are indicated

in bold.)

MCG-WEBV 73 3,660 832 9,212 35 108,925 29.8 Keyframes of video clips and
their surrounding titles, tags and
descriptions on Youtube from
Dec 2008 to Feb 2009.

YKS 298 8,660 990 80,294 228 71,063 8.2 News articles on Sina, titles,
tags, descriptions and keyframes
of web videos on YouKu from
May 2012 to June 2012.

Fig. 3. Sample keyframes from some topic in MCG-WEBV. This topic con-
tains several unexpected yet funny “fail” stories in daily life. 3107807: “Xmax
fail song is an awesome win :)”, 3139545: “Verizon math fail”, 3139526:
“Celebration Fail”, and 3139586: “Motorcycle fail”.

of LPD is dominated by the size of μ. The time complexity
of LPD is O(M · |μ| · |Cm

k | · s · T ). In practice, s is frequently
smaller than 10, the maximum size of topics |Cm

k | is also smaller
than 100, and the number of iteration is usually less than 100.
Therefore, the proposed LPD is quite efficient.

V. EXPERIMENT AND DISCUSSION

A. Datasets, Features, Evaluations, and Experimental Setup

We evaluate our method on two public datasets, i.e., MCG-
WEBV [10] and YKS [42]. MCG-WEBV is downloaded from
the “Most viewed” videos of “This month” on YouTube. YKS
is a cross-media dataset crawled from YouKu and Sina respec-
tively. The statistics of two datasets are summarized in Table II.

Since dictionaries of these sets contain multi-language words,
as well as user-defined abbreviations, the dictionary size is ex-
tremely large, especially for YKS dataset. As a result, the text
from social media is shorter and noisier than news articles [43].
Moreover, the visual contents of keyframes in a topic are very
diverse, and contain a certain amount of noises (see examples
in Fig. 3). Naturally, booting the detection performances via the
noisy visual cues is a challenging task.

We choose two multi-view features for the textual cues, i.e.,
LDA [6] and TF-IDF, and use FV [31] for the visual cues.
In our experiments, the dictionary size of LDA is 1,000. FV
with 256 Gaussian components is used to represent keyframes
of a video clip, where SIFT points are densely sampled from
24 × 24 image patches. Once keyframes are encoded by FV,
video signature [14] is computed as similarity between two clips.

The cosine distance is used to measure the similarity between
textual features. For MCG-WEBV, the surrounding text of each
video is considered as a set of words. While YKS in the pre-
processing stage, is tokenized by NLTK package.2 Therefore,
two HSGs, TF−IDF+FV and LDA+FV , are generated.

As listed in Table II, the dictionary size of YKS is larger than
that of MCG-WEBV. Moreover, all texts of MCG-WEBV are
from titles, tags and descriptions; while, YKS, a cross-platform
dataset, is a mixture of the long and the short texts. Therefore,
the resulting text descriptors from YKS contain more noises than
that of MCG-WEBV. Following the principle in Section III-A,
a smaller k is assigned to YKS, in contrast to MCG-WEBV. In
our experiments, k is assigned 100 for MCG-WEBV and 20 for
YKS in the textual k-N2SG. For the visual graphs, k is assigned
5 for both datasets.

During evaluation, it is necessary to introduce the factor of
the number of detected topics. Because it is impossible to pre-
define the number of topics for this task. Therefore, we use two
metrics to measure the performances: Top-10 F1 versus number
of detected topics (NDT) and accuracy versus false positive per
topic (FPPT) [28]. Top-10 F1 v.s. NDT measures the top-10
best detections, if we only need to measure top-n best results of
a system without measuring false positives; while accuracy v.s.
FPPT evaluates performances for each detected topics. That is,
the former only evaluates the top-n best detections, while the
latter measures the topic-wise performance. Moreover, accuracy
(the truncated jaccard similarity) is more rigorous than top-10
F1 , since a low F1 value does not model the coherence problem
in topics [26], as discussed in [28].

For top-10 F1 v.s. NDT, given a detected topic Dt , a ground
truth topic Gt , the top-10 best F1 scores are averaged to measure
the performance

F1 =
2 × Precision × Recall

Precision + Recall
(15)

where Precision = |Dt ∩Gt |
|Dt | is the precision, Recall = |Dt ∩Gt |

|Gt | is
the recall, and | · | denotes the number of webpages in a topic.

For accuracy v.s. FPPT, the accuracy is defined as

Accuracy =
#Successful

#Groundtruth
. (16)

2[Online]. Available: www.nltk.org
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A topic candidate Dt is recognized as a successful detection, if
Normalized Intersected Ratio (NIR) r = |Dt ∩Gt |

|Dt ∪Gt | is larger than
a threshold [28]. In this paper, the threshold of NIR is set as 0.5.
Note that if both methods have the same top-10 F1 or accuracy
score, the one with smaller NDT or FPPT achieves a better
performance.

In all the experiments, SC is assigned the set of thresholds,
{0.1, 0.5, 0.9}. In NMFR, the number of clusters is the set
{100, 500, 900, 1300}, and the random walk parameter λ

is 0.8.

B. Methods in Comparison Study

We specific experimental goal is to compare to the proposed
approach with the state-of-the-art methods.

1) Discriminative Probabilistic Models (DPM) [18]: This
baseline belongs to the text-modality based method,
coming from the temporal discriminative probabilistic
model for news streams. In the following experiments,
we first resort to its offline version to embed docu-
ments into the discriminative feature space, and then
the soft partition, vMF mixture model [3], is used to
generate topics. DPM has reported better performance
than LDA [6] in terms of discovering topics on several
testbeds.

2) Event-Clustering-Based Method (ECBM) [10]: This
baseline belongs to the multi-modality based method.
Different from our scheme, the work [10] first clusters
the tags in each time units, and then both the NDKs and
the tag events are grouped into topics. Note that this
approach involves many engineering details and hyper-
parameters. We implement this method by ourself and
report the best tuned results.

3) Multi-Modality Graph (MMG) [42]: The method be-
longs to the multi-modality method. Zhang et al. [42]
the NDKs of videos and the text information, to build
the similarity graph [29], and utilizes graph shift [23]
on this graph to discover topics. Different from our
method, this work assumes that the elements in a topic
should be closely correlated. Therefore, MMG usually
generates a small number of topics.

4) Side-Information-Based Method (SIBM) [13]: This
method belongs to the text-modality based method.
Chen et al. [13] first extract the hot searched queries
from search engines, and refines the topics with
an ad-hoc approach. This baseline demonstrates that
our approach can achieve superior results without
any supervised information on both MCG-WEBV
and YKS.

5) Maximal Cliques With Poisson Deconvolution
(MCPD) [28]: This baseline belongs to the text-
modality based method. Different from our method,
MCPD uses maximal cliques (MCs) as topic pattern,
and further utilizes the PD approach to rank topics. The
comparisons demonstrate the effectiveness of the way
to exploit multi-modalities data in our method.

Fig. 4. Comparisons between k-N2 SG and FSG (best viewed in color).

C. Analysis of Our Approach

In this subsection, we use MCG-WEBV to test the effective-
ness of our method:

1) Verify the effectiveness of k-N 2SG to partially reduce
unstable correlations;

2) Compare the idea of learning a latent shared representation
with the linear weight scheme (17);

3) Study the role of basis similarity to explain why the
datum-wise fusion achieves better results than the baseline
method (17);

4) Visualize the relationship between the μk and the size of
Ck to make a better understanding of our method;

5) Discuss the scalability of the proposed method.
1) The Analysis of k-N2SGs: In order to show that k-

N2SGs partially reduce the impact of noises, 100-N2SGs
and full similarity graphs (FSGs) are separatively built from
HSGs, TF−IDF+FV and LDA+FV . In this experiment,
NMFR generates 4,240 and 3,445 topic candidates from the
TF−IDF+FV and the LDA+FV 100-N2HSGs respectively.
Meanwhile, 4,245 and 3,289 topic candidates are generated
by NMFR from the TF−IDF+FV and LDA+FV FSGs,
respectively. Accuracy versus FPPT is used to evaluate the per-
formances.

As illustrated in Fig. 4, 100-N2HSG achieves a higher accu-
racy than that of FSG, when the FPPT value is smaller than 6. It
indicates that k-N2HSG indeed reduces a certain amount of un-
favorable correlations from the less-constrained UGC, and thus
increases the robustness of HSG. Also noticed that accuracies
outputted by 100-N2HSG increase faster than that of FSG, and
as a result, the 100-N2HSG outperforms FSG approximate 10%
accuracy at FPPT = 1 and about 25% one at FPPT = 3, respec-
tively. The increased performances of k-N2HSG are consistent
with our claim arguing against FSGs.

2) The Effectiveness of Latent Shared Representation: In the
first experiment, to give fair comparisons, the PD approach [28]
on the single HSG, TF−IDF+FV or LDA+FV , is con-
sidered as the baseline method. Fig. 5 illustrates the effec-
tiveness of exploiting multi-modalities data in topic detection.
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Fig. 5. PD on the single HSG versus LPD (best viewed in color).

Fig. 6. Comparison between with and without LPD. False positive webpages
are indicated in blue (best viewed in color). (a) Topic ranged by LPD is the
interesting stories about cat. (b) Topic ranked by PD does not belong to the
ground truth.

LPD largely outperforms the PD [28] method (denoted as the
legend “LDA+FV”) on the LDA+FV HSG. Compared with
the results from the TF−IDF+FV HSG, LPD obtains very
similar results when FPPT value is smaller than 2, but surpasses
the PD method by about 5% accuracies where FPPT values are
from 3 to 20. The consistently improved results indicate that the
latent shared representation efficiently fuse the complementary
information from the multiple HSGs.

Fig. 6 further visualizes the top-1 topics respectively ranked
by LPD and PD on TF−IDF+FV for a vivid comparison, in
which a webpage is represented by sampled keyframes and
its title. Fig. 6 shows that LDP successfully detects one of
the ground truth with NIR = 0.62. In contrast, although top-
1 topic returned by PD in Fig. 6 is about TV series “Time
Memory”, this clustering does not belong to the ground truth.
That is, it is not an interesting topic on social media. More-
over, the clustering about “Time Memory” is ranked as the
312th one by LPD, while the topic about cat is ranked as

Fig. 7. Comparisons between the modality-level fusion and LPD (best viewed
in color).

the 34th one by PD. The comparisons again indicate that:
1) web topic detection is not equal to the clustering task;
and 2) the importance of exploiting multi-modal cues in topic
detection.

Next, we compared LPD with the conventional method, the
modality-level fusion in (1), which assumes that every HSG has
a non-negative weight

Gfusion = α ∗ GT F −IDF +F V + (1 − α) ∗ GLDA+F V (17)

where α is the non-negative weight. In our experiments, a set of
α, {0, 0.2, 0.4, 0.6, 0.8, 1.0}, is used to tune the optimal fusion
parameter. The resulting Gfusion is deconvoluted by the PD
method [28] with topic candidates generated by NMFR. Note
that the optimal hyperparameter α is determined in an exhaustive
searching method [4]. By the grid search, we compared our
method with the best results achieved the linear combination
method in (17).

Fig. 7 illustrates the comparisons between our method and
the modality-level fusion approach. As is unexpected, fusing
the TF -IDF+FV and LDA+FV HSGs at the modality-level
in (17) does not obtain the improved results. Interestingly, the
LDA+FV HSG even drags down the performances of the TF -
IDF+FV one, when α is assigned from 0.2 to 0.8. On the
contrary, LPD consistently improves the performances on both
HSGs. These results indicate that the datum-wise fusion is more
suitable for UGC data than the modality-level approach.

3) The Role of Basis Similarity: As Bm serves as the basis
to decompose the “background” similarities from the ones cor-
rupted by noises, we wish to experimentally explain why sparse
basis similarities help the datum-wise fusion. In this experiment,
we begin with an analysis of the necessary of basis similarity
and its sparsity, summarized in Fig. 8. Between the without
basis similarity model “LPD-NoBm ” and the with basis simi-
larity one “LPD-No‖Bm‖1”, it is clear that the basis similarity
Bm plays an efficient role to increase the performances. For in-
stance, when FPPT values range from 0 to 5, “LPD-No‖Bm‖1”
achieves better results than “LPD-NoBm ”. In terms of the spar-
sity of the basis similarity, the performances of “LPD” largely
outperform the counterpart “LPD-No‖Bm‖1”. These two sets



2490 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 12, DECEMBER 2016

Fig. 8. Role of the sparse basis similarities (best viewed in color).

Fig. 9. Relationship between μk and |Ck |. Blue points are the topic candidates
generated from HSGs, red ones are the successfully detected topics (best viewed
in color).

of experiments indicate that the importance of imposing sparsity
on the basis similarities Bm .

4) Analysis of the Relationship Between μk and |Ck |: Fig. 9
illustrates two important observations of LPD, in terms of the
relationship between μk and |Ck |. The first is that about 85%
μk (k = 1, . . . ,K) are nearly equal to zeros, i.e., μk ≤ 1e−5 ,
although we do not explicitly enforce the spare constraint on μk .
Moreover, the sizes of these zero-weight topics range from 4 to
90. This indicates that LPD is quit robust to the number of topic
candidates, since only a few meaningful ones are selected. The
second is that there is no close correlation between μk and |Ck |.
That is, LPD does not favor the larger size of Ck by assigning
a larger value to the corresponding μk . This observation also
verifies the importance of the combination of the size of topic
and its weight to identify a real topic.

5) Scalability: Since scalability is a major problem for tack-
ling web data, we analysis the scalability of our method. Notic-
ing that the scalability of a system involves the algorithms from
the different components in a system, and their different im-
plementations. The scalability of the proposed method involves
three main components: k-N2SG, candidates by NMFR, and
LPD. The k-N2SG can be efficiently approximated by recursive
Lanczos bisection [12]. NMFR has been justified to have a good
scalability ability [40]. LPD can be efficiently implemented by
the scalable ADMM [45]. Therefore, the proposed method is

Fig. 10. Comparisons between the state-of-the-art methods and our method
by Top-10 F1 versus NDT on MCG-WEBV (best viewed in color).

theoretically scalable, if every important component is properly
implemented.

D. Qualitative Comparisons with Other State-Of-The-Art
Methods

In this subsection, we compare the proposed approach on
other benchmark datasets. To make comparisons as meaningful
as possible, we use the same experimental setups proposed by
each dataset.

1) Web-Video Topic Detection in MCG-WEBV: Fig. 10
shows the comparison results by Top-10 F1 versus NDT on
MCG-WEBV. Our method achieves the highest Top-10 F1 score
than the others. Besides, Top-10 F1 scores of our method in-
crease quickly along with number of the generated topics. For in-
stance, to achieve approximate 0.9 top-10 F1 score, MCPD [28],
MMG [42], SIBM [13] and DPM [18] generate 70, 179, 430,
and 275 topics respectively on MCG-WEBV, while our method
only generates 20 topic candidates.

The main explanation is that ECBM [10] totally depends on
the clustering of tags, and then utilizes the visual and tempo-
ral consistency to link clusterings into topics. Naturally, a few
noises in tags would greatly deteriorate the clustering results,
due to the sparsity of tags per webpage, making its Top-10 F1
remarkably low. Compared with SIBM [13], we can see that
Top-10 F1 is very close to MMBM [42]. Because the well se-
lected key words from queries naturally filter out many false
positives. On the other side, the NDT of SIBM [13] is much
higher than MMBM [42], MCPD [28] and our approach. The
explanation is that these key words from searching engines tend
to have no correlation with these topics generated from social
media. Among all these approaches, the PD based methods, both
MCPD [28] and LPD, start with multi-granularity topics can-
didates, and then try to identify real topics in an unsupervised
fashion. Therefore, Top-10 F1 of the PD based approaches are
much higher than that of all the other approaches.

To further evaluate the topic-wise performance, accuracy ver-
sus FPPT curves are plotted. As shown in Fig. 11, our approach
is consistently better than MCPD [28], MMBM [42], DPM [18],
SIBM [13] and ECBM [10]. Our system significantly outper-
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Fig. 11. Comparisons between the state-of-the-art methods and our method
by accuracy versus FPPT on MCG-WEBV (best viewed in color).

Fig. 12. Comparisons between the state-of-the-art methods and our method
by Top-10 F1 versus NDT on YKS (best viewed in color).

forms all the other state-of-the-art methods. For instance, when
FPPT value equals to 5, the accuracy of our method is 0.78.
As a contrast, the state-of-the-art MCPD [28] only obtains 0.28
accuracy. The explanation mainly includes two aspects: 1) the
quality of topic candidates is critical to identify topics, as already
observed in [28]; and 2) the datum-wise fusion is important to
boost the performances, as discussed in Subsection V-C.

2) Web Topic Detection in YKS: YKS, a cross-platform
dataset, requires to grasp more diverse types of topics than
MCG-WEBV. Fig. 12 shows that our method consistently out-
performs MCPD [28], MMBM [42], DPM [18], SIBM [13] and
ECBM [10], if the same number of topics is generated. For
instance, Top-10 F1 of our method is 1, while ECBM [10] is
0.78, when 200 topics are generated for both methods. Com-
pared with the results on MCG-WEBV dataset, Fig. 12 shows
that both MMBM [42] and DPM [18] require to generate much
more number of topics than that of our approach. For instance,
MMBM [42] and DPM [18] have to generate 435 topic candi-
dates and 590 ones in order to archive 0.95 Top-10 F1 , respec-
tively. As a comparison, our approach only generates 100 topic
candidates to obtain the same Top-10 F1 score. This indicates the
generalization ability of our approach across different data sets.

Fig. 13 further illustrates the accuracy versus FPPT curves
on YKS. Our approach consistently outperforms these state-of-
the-art methods. For instance, our method achieves an accuracy

Fig. 13. Comparisons between the state-of-the-art methods and our method
by accuracy versus FPPT on YKS (best viewed in color).

of 0.67, outperforming the MCPD [28] about the accuracy of
0.33. Moreover, if we compare Fig. 11 with Fig. 13, the accura-
cies of our method increase very fast. It means that our approach
produces less false positives than the other state-of-the-art meth-
ods. Moreover, this observation again verifies the generalization
ability of our method across different data sets.

Although the novelty of both top-k truncated similarity graph
and candidates generated by NMFR is relative weak. Both
contributions may seem small independently, as observed in
Figs. 10–13, the resulting system improves the performances on
both datasets significantly, e.g., from 0.31 accuracy for MCPD
to 0.67 accuracy for our proposed system on YKS when FPPT
= 5. This is a larger relative improvement in topic detection
than that from the recent, state-of-the-art methods.

VI. CONCLUSION

In this paper, we have described a topic detection method
by fusing multiple features into a latent shared graph, leading
to the results surpassing the state-of-the-art methods in web
topic detection. There are significant distinctions between the
proposed LPD and the previous studies in exploiting the multi-
modal cues for topic detection.

1) We demonstrate the effectiveness of the datum-wise fu-
sion for topic detection in exploiting the complementarity
among the multiple modalities.

2) The proposed LPD enjoys both the advantage of the PD
method [28] in achieving the high performances and that
of MVL in exploiting complementary information among
the multiple representations.

3) The datum-wise fusion scheme assumes no prior informa-
tion about features, except the assumption on the sparsity
of the basis similarity, in contrast to the weight method
in (17), which assumes that there is nearly no noise in
each feature representation.

The promising results of this paper motivate a further ex-
amining of the LPD-based topic detection. First, more effec-
tive constraints about the basis similarity, like low-rank, may
bring more interesting merits over the sparsity used here. More-
over, online optimization of LPD scales up well to large-scale
problems [8].
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