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Camera Compensation Using a Feature Projection
Matrix for Person Reidentification
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Abstract— Matching individuals within a group of spatially
nonoverlapping surveillance cameras, also known as person
reidentification, has recently attracted a lot of research inter-
est. Current methods mainly focus on feature representation
or distance measure, which directly compare person images
captured by different cameras. However, it is still a problem
because of various surveillance conditions; for example, view
switching, lighting variations, and image scaling. Although the
brightness transfer function was proposed to address the problem
of illumination variation, it could not handle view and scale
changes among various cameras. In this paper, we propose a
new approach to compensate for the inconsistency of feature
distributions of person images captured by different cameras.
More precisely, a feature projection matrix (FPM) is learned to
project image features of one camera to the feature space of
another camera, from which the latent device difference can
be effectively eliminated for the person reidentification task.
In particular, we formulate the FPM learning as a smooth
unconstrained convex optimization problem and use a simple gra-
dient descent algorithm with stochastic samples to accelerate the
solving process. Extensive comparative experiments conducted
on three standard datasets have shown the promising prospect
of the proposed method.

Index Terms— Feature projection matrix, nonoverlapping
camera tracking, person reidentification.

I. INTRODUCTION

RECENTLY, more and more nonoverlapping camera net-
works have been set up for monitoring pedestrian activ-

ities over a large public area, such as the airport, metro
station and parking lot. To acquire individuals’ complete
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Fig. 1. Examples of appearance changes caused by different views, lighting,
and scales from public datasets, VIPeR [11] and 3DPeS [12]. Each column
shows two images of the same person taken from two different cameras.

motion trajectories, matching persons across nonoverlap-
ping cameras in a surveillance camera network, also known
as person reidentification, is increasingly becoming a hot
research topic in the computer vision community [1]–[6].
Because traditional biometrics, such as face and gait, are
unreliable or even infeasible in uncontrolled surveillance
environment [7], body appearance is exploited for person
reidentification [1], [7]–[10] in recent years. However, per-
son reidentification remains an unsolved problem owing to
the challenges caused by view change, scale zooming, and
illumination variation (see Fig. 1), making different persons
appear more alike than the same person in various cameras [3].

Generally, person reidentification can be regarded as an
image retrieval problem [4], that is, given a query person
image taken from one camera, the algorithm is expected to
search images of the same person captured by other cameras,
and generate a final ranking list where top results are more
likely of the same person to the query image. The paradigm
usually consists of two stages: feature extraction and distance
measure. Early research efforts aim to seek a discriminative
and robust feature representation which can easily separate
different persons in various cameras [8], [13]–[19]. However,
designing a set of features that are both distinctive and stable
is extremely difficult in itself, let alone under conditions
where view changes usually cause significant appearance
variations [7].

Recently, more and more researchers change their atten-
tions to the second stage where a proper distance measure
is seeked to reflect the identity consistency among persons
[1], [2], [4], [7], [9], [20]–[22]. Among various methods,
supervised metric learning algorithms demonstrate an obvious
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Fig. 2. Explanation of the proposed method compared to metric learning-based method. (a) Metric learning methods transform original features of images
captured by different cameras into a new feature space using the same projection matrix. (b) However, the proposed method compensates the difference
between different cameras by projecting feature space from one camera to the other with a FPM.

Fig. 3. Comparison of compensating cameras difference. Each point represents a 2-D feature vector of image, where “o” (+) represents samples from camera
Ca (Cb); different colors represent different persons. (a) Original feature distributions of images taken from two cameras are inconsistent. (b) LMNN [23]
transforms original feature vectors into a new feature space where feature vectors of different cameras are cluttered together. (c) FPM projects the feature
vectors from Ca to Cb and keep the feature vector of Cb unchanged, where feature points of Ca are projected to the space nearby the points belonging to
the same person and apart from the points of different persons.

advantage in learning a discriminative distance function based
on the given training samples. Specifically, given two person
image feature xa and xb, their distance can be defined as a
Mahalanobis distance D(xa, xb) = (xa − xb)

�M(xa − xb),
where M is a positive semidefinite matrix for the validity
of metric. Performing eigenvalue decomposition on M with
M = L�L, the above distance can be rewritten as D(xa, xb) =
‖L · (xa − xb)‖2 = ‖L · xa − L · xb‖2. With this definition, it
is easy to see that the essence of the metric-based method
is to seek a projection matrix that transforms original image
features into a new feature space, where feature distance of
the same person is smaller than that of different persons.
Moreover, for metric learning-based methods, it is noteworthy
that the same feature transformation is applied to features
of images from different cameras, for example, xa and xb

[see Fig. 2(a)]. Although the differences between different
cameras can be partially suppressed by applying the same
transformation to different cameras, it is hardly eliminated.

To conquer the above weakness, we propose a feature pro-
jection matrix (FPM) method to directly project feature vectors
from one camera to the feature space of the other camera
[see Fig. 2(b)], which equals to apply different transformations
to features of images from different cameras. Therefore, the
difference of feature distributions between two cameras can be
more effectively eliminated. The example in Fig. 3 shows the
superiority of the proposed approach compared with metric
learning-based method, taking the classic large margin nearest
neighbors (LMNN) algorithm [23] as an example, where the
distribution of five pairs of images of different persons from

two cameras is shown for different methods. The proposed
approach accurately compensates the differences between dif-
ferent cameras and holds the discriminative ability, which
clearly outperforms LMNN.

For learning the FPM, we propose a supervised learning
method in which the objective function consists of two terms,
that is, consistent term and discriminative term (see Fig. 4).
The first acts to project images of the same person close to
each other, while the second acts to take images of different
persons apart. With the proposed objective function, the FPM
learning can be formulated as a smooth unconstrained convex
optimization problem, where a simple batch gradient descent
algorithm is used on randomly selected samples to efficiently
solve the problem without loss of accuracy.

Extensive comparative experiment results have shown the
promising prospect of the proposed method by directly com-
pensating the device difference for the person reidentification
task.

A similar idea of the transfer function has also been
investigated using some early person reidentification methods
[24]–[26]. In [24], brightness transfer function (BTF), fab,
was used to compensate different illumination conditions of
different cameras. It assumed that the percentage of pixels
in an observation xa with the brightness value less than Ba is
equal to the percentage of image points seen in xb of brightness
no more than Bb. More specifically, denoting a person image
as I , the count of brightness value B in I as I (B), and the
cumulative histogram as H (I ) = ∑

I (B), their assumption
can be formulated as Ha(Ba) = Hb(Bb). Thereafter, fab can
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Fig. 4. Illustration of the proposed two terms on learning the FPM. (a) Consistent term aims to project images close to images of the same person.
(b) Discriminative term aims to project images further apart to images of different persons.

be computed by mapping an observed color value in camera
Ca to the corresponding observation in camera Cb as

fab = H −1
b (Ha(Ba)) (1)

where H −1(·) is the inverted cumulative histogram. In addition
to BTF, some extension methods were proposed, such as
cumulating multiimages brightness distribution before trans-
formation [25], extending the brightness space to RGB
color space [27], and combining multi BTFs with different
weight [26].

Compared with BTF and its derivatives [25], [26], the
proposed method has three obvious advantages: 1) the BTF
is a vector which indicates illumination mapping between
cameras, whereas the FPM is a matrix which could handle
more complex appearance variation; 2) the BTF is computed
under a brightness distribution assumption, which makes BTF
to only address the problem caused by illumination changes.
On the contrary, the proposed method does not have imprac-
tical assumption and hence able to handle various camera
differences in principle; and 3) although both methods use
the label information, only positive samples corresponding to
image pairs of the same person are exploited in computing
BTF. In contrast, the learning of FPM not only considers
image pairs from the same person, but also those from different
persons, making the result more accurate.

The contribution of this paper can be summarized as
follows.

1) We propose an FPM method for compensating the
camera difference in the person reidentification problem.
Compared with BTF, the FPM method compares two
images in a common feature space, and hence can handle
more complex appearance differences in an implicit way.

2) We formulate the FPM learning problem as a smooth
unconstrained convex optimization problem, in which
the objective function consists of both consistent
term and discriminative term. Moreover, motivated
by the idea of stochastic gradient descent (SGD)
algorithm [28], we use a simple gradient descent algo-
rithm with a group of randomly selected samples to opti-
mize the objective function, achieving flexible balance
between computation cost and accuracy.

The rest of this paper is organized as follows. In Section II,
a brief review of related work for person reidentification
is given. Then, we detail the proposed FPM method with the

objective function and optimization algorithm in Section III.
Section IV shows experimental results on three representative
datasets and Section V concludes this paper.

II. RELATED WORK

In this section we give a brief review of the related work
on person reidentification. Readers who are interested in more
detailed reviews are suggested to refer [29] and [30].

Current person reidentification research can be generally
categorized into two classes: 1) feature- and 2) distance
learning-based methods [7]. The former aims to seek a
discriminative and robust feature representation which can
easily separate different persons in various cameras. A lot of
feature representation methods consisting of low-level visual
features, such as color, texture, shape, local features, and their
combination, have been developed for person reidentification
[8], [13]–[19], [31]. Gheissari et al. [13] used a spatial-
temporal segmentation algorithm to generate salient edges and
obtained an invariant identity signature by combining normal-
ized color and salient edge histograms. In Wang et al. [14]
studied an appearance model using a co-occurrence matrix
to capture the spatial distribution of the appearance relative
to each of the object parts. Farenzena et al. [8] divided the
image of person into five regions by exploiting symmetry and
asymmetry perceptual principles, and then combined multiple
color, texture, and local features to represent the appearance of
people, called symmetry-driven accumulation of local feature
(SDALF). Cheng et al. [18] adopt custom pictorial structure
(CPS) to localize the body parts, and extracted and matched
descriptors on different parts. Ma et al. [19] developed a
representation rely on the combination of biologically inspired
features and covariance descriptors (BiCov). Rui et al. [5]
applied adjacency constrained patch matching to build dense
correspondence between image pairs. For each patch, they
assign salience to it in an unsupervised manner. All these
methods focused on designing a robust and distinctive feature
representation which is extremely hard if not implausible [3].

To increase the discriminative power of feature
representation, feature selection technique is also adopted
in the person reidentification research [9], [20], [32].
Gray and Tao [32] transformed the problem into a
classification problem, and used an ensemble of the
localized features (ELFs) through AdaBoost algorithm.
Prosser et al. [9] treated person reidentification problem as
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TABLE I

COMPARATIVE RESULTS WITH STATE-OF-THE-ART PERSON REIDENTIFICATION METHODS ON TOP RANKED MATCHING RATE(%)

a ranking problem and used ensemble RankSVM to learn
a subspace where images of the same person should appear
in higher positions in the rank list. Schwartz and Davis [20]
weighted features according to their discriminative power for
each different appearance using a powerful statistical tool
called partial least squares (PLS). These methods increase the
discriminative power by assigning a higher weight to more
discriminative features with a weight vector.

In recent years, a lot of metric learning methods are
provided for person reidentification. LMNN [23], which
is designed for k-nearest neighbor classification problem,
is a popular metric learning method. It introduces two
terms. One pulls the same labeled examples closer together,
the other pushes examples with different labels further
apart. Hirzer et al. [22] utilized LMNN metric learning
to learning the optimal metric for person reidentification.
Dikmen et al. [21] improved the LMNN algorithm for person
reidentification by exploiting a fixed bound for neighbors.
Zheng et al. [7] learned a Mahalanobis distance metric with
a probabilistic relative distance comparison (PRDC) method.
Kostinger et al. [1] used Gauss distribution to fit pairwise
samples and got a simpler metric function without iterative
procedures. As analog to the keep it simple and straightforward
(KISS) principle, we named our method KISS metric
(KISSME). But, given a small-size training set, the estimation
of the covariance matrix is not accurate and result in a poor
performance. Li et al. [4] presented a regularized smoothing
KISS metric learning (RS-KISS) by seamlessly integrating
smoothing and regularization techniques for robustly estimat-
ing the covariance matrices. Mignon and Jurie [2] introduced
a pairwise constrained component analysis (PCCA) to learn
distance metric from sparse pairwise similarity or dissimilarity
constraints in high-dimensional input space. Sateesh et al. [6]
exploited a local fisher discriminant analysis, which focuses
on local samples, with a regularization term. According to
the discussion in the above section, these methods use the
same projection matrix to the different cameras.

In addition, an early idea of this paper appeared in [33]. The
main improvements of this journal paper include: 1) a new
term, consistent term, is introduced to effectively improve the
performance of the original FPM model. Relevant evidences

can be found in Fig. 9 and Table I; 2) we give more detailed
discussion and experimental evaluation on several key para-
meters of algorithm, including the balance coefficient, μ, the
smooth parameter, β, and efficiency of the optimization algo-
rithm (see Section IV-E); and 3) more extensive experiments
are conducted on a new dataset, CUHK [34], which is a larger
dataset and hence more challenge than those previously used.

III. APPROACH

This section presents our approach. We begin with
a brief formulation of the metric learning-based person
reidentification problem. Then, the FPM is introduced
followed by defining a new feature distance function.
Finally, a new objective function consists of consistent and
discriminative terms is raised, and meanwhile, a stochastic
sampling-based solution method is designed to accelerate the
optimization process.

A. Person Reidentification Problem

For the convenience of following discussion, we consider a
pair of cameras Ca and Cb with nonoverlapping field of views,
and a set of persons O = {o1, o2, . . . , on} crossing the two
cameras. Then, we denote the representing image of person
oi captured by Ca (or Cb) as xi

a (or xi
b), and further let Xa =

{x1
a , x2

a , . . . , xn
a } and Xb = {x1

b , x2
b , . . . , xn

b } represent two sets
of person images captured by Ca and Cb , respectively. The
person reidentification task is that for each instance xi

a in Xa ,
the algorithm finds image of the same person, xi

b, from Xb.
This problem is commonly addressed as visual retrieval

problem and consists of two key stages: feature extraction and
distance measure [1]. Feature extraction step acts to represent
images of persons as feature vectors, whereas distance measure
stage acts to define a distance function, such as Euclidean
distance, to measure the distance between images. Usually, the
instance, xi is represented by a d-dimensional feature vector,
xi ∈ Rd , then the Euclidean distance can be formulated as

D
(
xi

a, x j
b

) = (
xi

a − x j
b

)�(
xi

a − x j
b

) = ∥
∥xi

a − x j
b

∥
∥2 (2)

where (·)� is the transpose of a vector or matrix.
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Given a query person image xi
a , after computing distance

between it and each instance in gallery set, a ranked list can
be achieved, and the algorithm which ranks the correct match
on the more top gets better performance.

On this basis, metric learning methods generally
learn a Mahalanobis-like distance, that is, D(xi

a, x j
b) =

(xi
a − x j

b)�M(xi
a − x j

b), where M is a positive semidefinite
matrix for validity of metric definition. Performing eigenvalue
decomposition on M with M = L�L, the above distance can
be rewritten as

D(xi
a, x j

b) = (
xi

a − x j
b

)�M
(
xi

a − x j
b

)
(3)

= (
xi

a − x j
b

)�L�L
(
xi

a − x j
b

)
(4)

= [
L · (

xi
a − x j

b

)]�[
L · (

xi
a − x j

b

)]
(5)

= ∥
∥L · (xi

a − x j
b

)∥
∥2 (6)

= ∥
∥L · xi

a − L · x j
b

∥
∥2

. (7)

As can be seen from the above derivation, the essence
of metric learning is to seek an optimal M (or L) under
the supervised information generally containing two pairwise
constraints, that is, similar constraint and dissimilar constraint,
which are denoted, respectively, by

S = {(xi , x j )|xi and x j belong to the same identity}
D = {(xi , x j )|xi and x j belong to different identities}.

B. Distance Measure After Compensating With FPM

As shown in (7), metric learning generally applies the same
feature transformation L to the feature vectors (or space) of
different cameras, with which the device difference, caused
by poses variation, scale zooming, and illumination change
between two cameras, can be partially weakened, but hardly
eliminated.

To solve the above problem, an FPM, which maps persons
from one camera to the other, is introduced to compensate the
discrepancy of the surveillance environment. More especially,
assume that Ta,b is the FPM from Ca to Cb , then (xi

a)b =
Ta,b · xi

a is the feature presentation of xi
a transferred from

Ca to Cb, where Ta,b is a d × d matrix.
Then the new distance between xi

a and x j
b can be defined

as

DTa,b

(
xi

a, x j
b

) = ∥
∥
(
xi

a

)
b − x j

b

∥
∥2 = ∥

∥Ta,b · xi
a − x j

b

∥
∥2

. (8)

Compared with (7), where the same projection transformation
is applied to both features of images from two cameras,
the proposed FPM-based method applies feature projection
transformation to only one camera rather than two cameras,
which equals to using different transformations to different
cameras, and hence is able to eliminate differences in the
principle of the device.

C. Objective Function for FPM Learning

Motivated by [23], we formulate the FPM, Ta,b, as a
smooth unconstrained convex optimization problem, where
the objective function consists of two terms. The first term
acts to project xi

a to the nearby space of xi
b [see Fig. 4(a)],

Fig. 5. Explanation for that the logistic loss gives a soft approximation to
hinge loss, where the β is larger, the logistic loss is more near to hinge loss.

through which the inconsistency of two cameras is effectively
eliminated. We call it consistent term. The second term acts
to project xi

a to the space apart from x j
b , where i �= j

[see Fig. 4(b)], which holds the discriminative ability of the
transformed feature space under the FPM, and hence we refer
to it as discriminative term.

Specifically, the consistent term can be defined by the sum
of feature distance of all similar pairs

ECON(Ta,b) =
n∑

i=1

DTa,b

(
xi

a, xi
b

)
. (9)

Intuitively, this term in the objective function penalizes a large
distance between images of the same people.

Before defining the discriminative term, we first introduce a
triple sample (xi

a, xi
b, x j

b), where xi
a comes from Ca whereas

xi
b and x j

b from Cb, and xi
a and xi

b represent the same i th
person, whereas xi

a and x j
b denote different individuals, when

i �= j . With this definition, we denote the triple sample set as
S = {(xi

a, xi
b, x j

b)k |k = 1, . . . , s}, where s is the size of the
set. For each triple sample, the following inequality needs to
be satisfied under the FPM:

DTa,b

(
xi

a, xi
b

)
< DTa,b

(
xi

a, x j
b

)
. (10)

Therefore, we define a error function for one triple sample
(xi

a, xi
b, x j

b) as

e
(
xi

a, xi
b, x j

b

) = DTa,b

(
xi

a, xi
b

) − DTa,b

(
xi

a, x j
b

)
. (11)

With this error function, the formulation of the discriminative
term can be defined as

EDIS(Ta,b) =
s∑

k=1

�β

(
e
(
xi

a, xi
b, x j

b

)
k

)
(12)

where �β(z) = (1/β) log(1 + eβz) is the generalized logistic
loss function. It is easy to see that this term in objective
function penalizes triple samples invading the inequality (10).

Different from [23] where the hinge loss function h(z) =
max(0, z) is exploited to guarantee the inequality (10), two
reasons are considered for selecting logistic loss function:
1) the hinge loss is not differentiable at zero (see Fig. 5),
whereas logistic loss function has derivatives everywhere
which makes the solution simpler and 2) the logistic loss
gives a soft approximation to hinge loss and more flexible
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than it. The parameter of logistic loss β is the approximation
parameter. As larger as the β is, the logistic is more near
to hinge loss, that is, limβ→∞ �β(z) = h(z) (see Fig. 5). The
experiments results show that the proposed algorithm achieves
better performance under a more suitable β (see Fig. 11).

Finally, we combine ECON(Ta,b) and EDIS(Ta,b) terms with
a single objective function for learning FPM1

E(Ta,b) = (1 − μ)ECON(Ta,b) + μEDIS(Ta,b) (13)

where μ is a balancing factor that can be determined via cross
validation.

D. Stochastic Sampling-Based Optimization Algorithm

With the above objective function, that is, (13), the optimal
FPM can be learned by solving the following optimization
problem:

T∗
a,b = arg min

Ta,b
E(Ta,b). (14)

It is easy to see that the consistent term is convex. As the
logistic loss function is convex, the discriminative term is
also convex. Consequently, (14) is a convex optimization
problem with respect to Ta,b, and can be solved using a simple
gradient-descent method.

However, it is time consuming with massive training
samples. In particular, the triple sample, that is, (xi

a, xi
b, x j

b),
is used in the discriminative term. For easy to discuss, we call
the xi

b positive instance, and x j
b negative instance. Assume

there are n persons across two cameras Ca and Cb, for each
xi

a in Ca , there are one positive instance and n − 1 negative
instances in Cb, and hence the size of the total triple samples
is O(n2 − n), which is computationally expensive. In [23], a
active set strategy was exploited to improve the efficiency. The
active set, which consists of the imposter samples invading a
inequality similar to (10), is relatively little. Even so, it is time
consuming for using the k closest within-class samples [4] and
for recomputing the imposter samples.

Motivated by SGD algorithm [28], we exploit a simple batch
gradient descent algorithm with randomly selected samples to
accelerate the iteration speed and meanwhile keep the opti-
mization accuracy. Specifically, for each positive examples,
we randomly select m 	 n negative samples, with which the
size of training set reduces to O(mn) from O(n2 − n).

With the stochastic sampling strategy, a simple gradient-
descent method can be exploited to learn the FPM Ta,b. The
gradient of the objective function is given as

∂ EBOTH(Ta,b)

∂Ta,b
= ∂ ECON(Ta,b)

∂Ta,b
+ ∂ EDIS(Ta,b)

∂Ta,b
(15)

1A similar objective function appeared in LMNN [23]. The difference
between the proposed method and LMNN is threefold: 1) LMNN uses the
hinge loss function, while we exploit the logistic loss function, making the
objective function of our method a smooth convex optimization problem and
hence easy to be solved with a gradient descent algorithm; 2) LMNN uses
a subgradient descent algorithm to solve the optimization problem, while we
use a simple gradient descent algorithm with randomly selected samples to
increase speed while maintaining performance; and 3) the last but not the least,
LMNN, belonging a classic metric learning method, applies the same feature
transformation to both feature vectors coming from different devices, which
can hardly eliminate the device difference. In contrast, the FPM is applied to
only one camera, aiming to eliminate the device difference in principle.

Algorithm 1 Learning the FPM
Input: The training set data: Positive samples with pair form

SP = {(xi
a, xi

b)}, Negative Samples with triple form SN =
{(xi

a, xi
b, x j

b)′m}
1: Initialize L0 as identical matrix;
2: for i = 1 to Max I ter do
3: Compute ∇EBOTH(Ta,b) = ∂EBOTH(Ta,b)

∂Ta,b
as(15)-(17)

4: Choose a proper step λ as [35]
5: Compute Ti+1

a,b = Ti
a,b − λ∇E(Ti

a,b) as(18)
6: if converge then
7: break;
8: end if
9: end for

Output: The optimal matrix T∗
a,b

where

∂ ECON(Ta,b)

∂Ta,b
= 2

n∑

i=1

(
Ta,bxi

a − xi
b

)(
xi

a

)�
(16)

∂ EDIS(Ta,b)

∂Ta,b
= 2

s∑

k=1

g(e(Sk))
(
x j

b − xi
b

)
k

(
xi

a

)�
k (17)

where g(x) = (1 + e−βx )−1 is the derivative of the logistic
loss function �β(x).

With the gradient, an iterative optimization algorithm can
be used to learn the FPM. Starting from an initial identical
matrix, which means no projection to instance, the FPM is
optimized iteratively with the gradient as

Ti+1
a,b = Ti

a,b − λ · ∂ E
(
Ti

a,b

)

∂Ti
a,b

(18)

where λ > 0 is a step length automatically determined at
each gradient update step using a similar strategy in [35]. The
iteration of the algorithm is terminated when the update times
are greater than the maximum iterative times (1000 in this
paper) or the following criterion is met:

| Ei+1 − Ei |< ε (19)

where ε is a small positive value, 10−9, in this paper. The
complete algorithm flow is showed in Algorithm 1.

IV. EXPERIMENTS

In this section, the proposed approach is validated by
comparing with several state-of-the-art person reidentifica-
tion methods on three publicly available datasets: the VIPeR
dataset [11], the CUHK person reidentification dataset [34] and
the PRID 2011 dataset (single shot version) [36]. The reasons
of selecting these datasets are as follows: 1) these datasets
cover a wide range of problems faced in the real world person
reidentification applications, for example, viewpoint, pose, and
lighting changes and 2) they provide two labeled image sets of
persons captured by two cameras with nonoverlapping fields
of views, in which images of the same person have the same
label, while images of the different persons have different
labels.
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Fig. 6. Some typical samples of three public datasets. Each column shows two images of the same person from two different cameras with significant
changes on view point and illumination condition. (a) VIPeR dataset contains significant difference between different views. (b) CUHK is similar to VIPeR,
but more challenge as it contains more person pairs. (c) PRID dataset has significant and consistent lighting changes.

A. Datasets

The widely used VIPeR dataset is collected by
Gray and Tao [11] and contains 1264 outdoor images
obtained from two views of 632 persons. Some example
images are shown in Fig. 6(a). Each person has a pair of
images taken using two different cameras, under different
viewpoints, pose and light conditions, respectively. All images
are normalized to 128 × 48 pixels. View changes are the
most significant cause of appearance change with most of the
matched image pairs containing a viewpoint change of 90°.
Other variations are also considered, such as illumination
conditions and the image qualities.

CUHK person reidentification dataset is a larger dataset
recently proposed in [34] and contains 971 identities from
two disjoint camera views. Some example images are shown
in Fig. 6(b). Each identity has two samples per camera view.
Therefore, there are 3884 images in all. All images are
normalized to 160 × 60. Similar to VIPeR, view changes are
the most significant cause of appearance change with most
of the matched image pairs containing one front or back view
and one side-view. As a single representative image per camera
view for each person is considered in this paper, we randomly
selected one image from two samples per camera views for
each people as the really used dataset.

The PRID 2011 dataset [36] consists of person images
from two different static surveillance cameras. Camera A
contains 385 persons, and camera B contains 749 persons,
with 200 of them appearing in both cameras. All images
are normalized to 128 × 48 pixels. Different to VIPeR
dataset and CUHK dataset, this dataset has significant and
consistent lighting changes [Fig. 6(c)]. With this dataset, we
mainly evaluate the effectiveness of the proposed approach
for different illumination conditions by comparing BTF and
CBTF. The 200 image pairs are selected for training and
testing.

B. Image Representation

A combination feature descriptor consisting of color and
texture features is used to represent images of individuals.
Specifically, for each image, the RGB and HSV color his-
tograms and LBP descriptor are extracted from overlapping
blocks of size 16×16 (16×12 for CUHK) and stride of 8×8

(8 × 6 for CUHK), that is, 50% overlap in both directions.
RGB and HSV histograms encode the different color distrib-
ution information in the RGB and HSV color space, respec-
tively. The uniform rotation-invariant LBP descriptors [37],
encoding the texture feature, are extracted in gray-scale
images. The bin numbers of RGB and HSV histograms are
24, and the bin number for LBP descriptor is 59. All of the
features are then put together to concatenated to a vector. To
accelerate the learning process and reduce noise, we conducted
principle component analysis (PCA) to obtain a low-dimension
representation as [1], that is, 100 in this paper unless otherwise
specified. It is worth noting that, the background subtrac-
tion technology, such as used SDALF [8], can improve the
performance of the algorithm. However, in our experiments,
we do not use any background separation technology for a
fair comparison, because most of the state-of-the art methods
[1], [2], [7], [9], [32], also do not use background modeling
technology.

C. Baselines and Settings

To evaluate the effectiveness of the proposed FPM, we
compare with methods based on transfer function, including
BTF [24] and its extension cumulative brightness transfer
function (CBTF) [25], and metric learning methods, containing
Mahalanobis metric (Mahal) [1], LMNN [23] and information
theoretical metric learning (ITML) [38], and several repre-
sentative person reidentification methods, such as ELF [32],
RankSVM [9], SDALF [8], PRDC [7], KISSME [1], and
PCCA [2]. In addition, Euclidean distance (L2) is used as
a baseline in most experiments. As LMNN and ITML are not
designed for person reidentification, we use codes of these
methods provided by their authors and report their results
under the optimal parameter configurations.

Moreover, we evaluate our approach with different terms.
In particular, FPM_CON only uses the consistent term,
FPM_DIS only uses the discriminative term, and FPM_BOTH,
abbreviated as FPM without confusion, is the combination of
above two terms which is the final version of this paper.

Similar to [7], our experiments were designed as follows.
Assume that there are two nonoverlapping cameras Ca and
Cb and N image pairs S = {(xi

a, xi
b)n|n = 1, 2, . . . , N}, in

which xi
a and xi

b are the images of same person captured
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Fig. 7. Comparative results with BTF [24] and CBTF [25] algorithms on (a) VIPeR and (b) PRID datasets.

Fig. 8. Comparative results with metric learning algorithms on (a) VIPeR and (b) CUHK datasets.

by Ca and Cb, respectively. First, p (e.g., 316 in VIPeR)
image pairs were randomly selected as training set and the rest
as testing set. Second, for each training image pair (xi

a, xi
b),

q different labeled images were selected randomly from Cb

to form the triple training sample (xi
a, xi

b, x j
b ). Therefore, the

count of training samples is p × q . Third, the test set was
divided into a probe set consisting of images taken from Ca ,
and a gallery set made up of images captured by Cb. Finally,
each image in the probe set was matched with all images in
the gallery set, and the rank of the real match was recorded.
For each subexperiment in this paper, the above procedure was
repeated 20 times, and the average of the cumulative matching
characteristic (CMC) curve, which is suggested in [14], was
reported.

The CMC curve is exploited by most papers on the person
reidentification problem [1], [2], [4], [7]–[9]. The value of
CMC@l indicates the percentage of the real match ranked in
the top k. More formally, let P = {p1, . . . , p|P|} be a probe
set, where |P| is the size of P , and G = {g1, . . . , gn} be a
gallery set. For each probe image pi ∈ P , all gallery images

g j ∈ G are ranked based on a defined distance function. The
correct match is denoted as gpi , of which the rank index is
denoted as r(gpi ). The CMC@l is defined as

CMCl =

|P|∑

i=1
1(r(gpi ) ≤ l)

|P| (20)

where 1(·) is the indicator function.

D. Comparing the State-of-the-Art Methods

We first evaluate the performance of our methods by com-
paring BTF and CBTF, metric learning methods, and the-state-
of-the-art person reidentification methods.

1) Comparing BTF and CBTF: We firstly evaluate the
effectiveness of the proposed method by comparing with two
representative transfer function, BTF and its extension CBTF,
on VIPeR dataset and PRID dataset, where the size of training
set are 316 and 100, respectively. For BTF and CBTF, the
images were first transferred from Camera A to B, then the
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same feature descriptor (see Section IV-B) was exploited.
As shown in Fig. 7, it is obvious that the proposed method
leads to a very large performance gain over BTF and CBTF
on both datasets. On VIPeR dataset, BTF and CBTF do not
improve and even are worse than the Euclidean distance. The
reason may be that pose changes are the most significant
cause of appearance change, while only a few image pairs
have an distinct light changes. On PRID dataset, BTF and
CBTF perform almost and better than the Euclidean distance.
The results show that FPM still outperforms BTF and CBTF
when the appearance changed caused by different illumination
conditions. The main reason may be that our approach does
not need the assumption of brightness which is not accurate
in the practical surveillance condition.

2) Comparing Metric Learning Methods: We also com-
pared FPM with three popular metric learning methods,
including Mahal, LMNN, and ITML, on VIPeR dataset and
CUHK dataset, where the size of training set are 316 and
485, respectively. Because the public codes of these methods
were exploited to learn a optimal distance metric function, we
conducted the comparing experiments using the same feature
descriptor in Section IV-B, and the same training and testing
samples for all methods. The results are shown in Fig. 8.
There are two discoveries: a) metric learning-based methods
significantly improve the performance for person reidentifi-
cation, comparing with the widely used standard Euclidean
distance. That mainly due to the surprised training samples
with which the learned distance function better reflects the
characteristics of the data and b) our model outperforms metric
learning-based methods on both two datasets. Compensation
of the difference of the different cameras with the FPM is
the main reason. Thus, our method and metric learning-based
methods are not alternative but supplementary. Our method
acts to compensate the difference, whereas metric learning acts
to seek a distance function.

3) Comparing the-State-of-the-Art Person Reidentification
Methods: Table I summarizes the comparing results with the-
state-of-the-art person reidentification methods on widely used
VIPeR dataset with different sizes of training set, that is,
316, 200, and 100. For a fair comparison, the results for
these methods are directly taken from the original public
papers. As discussion in Section II, SDALF is of feature-
based methods, whereas all other methods exploit a supervised
learning. Especially, PRDC, KISSME, and PCCA are of metric
learning-based methods. The results clearly show that metric
learning methods yield better performance, which is consistent
to the discussion in Section I. Our approach gives the best
performance in most cases, especially, when training set is
small and testing set is large at the same time, for example,
when 100 persons are used for training and 532 persons for
testing, the improvements of the matching rate for FPM on
CMC@1, CMC@5, CMC@10, and CMC@20 are more than
3.4%, 7.4%, 7.6%, and 8.7%, respectively.

E. Evaluating Parameters of the Proposed Method

In this section, we validate the proposed approach under
different parameters, including exploiting different terms,

using different balance weight μ and smooth approximation
parameter β.

1) Different Terms: We evaluate the effectiveness of the two
terms on VIPeR dataset and CUHK dataset. As can be seen
in Fig. 9 and Table I, FPM_DIS has better performance
than FPM_CON, whereas the combination of these two terms
achieves the best performance. Especially, the combination
improves more significant when the training size is small
(see Table I). Given 100 training sample pairs, the combination
achieves more than double performance comparing the early
version [33] at CMC@1.

2) Influence of μ: We also conduct experiments under
different μ values for further evaluating the effectiveness of
two terms. When μ = 1, it is equal to only using the
discriminative term; inversely, it only uses the consistent term
for μ = 0. Hence, we change μ from 0.05 to 0.95, the
comparing results are shown in Fig. 10. It is obvious that 0.5
is a good choice for μ on both VIPeR and CUHK datasets.
As can be seen in the figure, the performance is optimal
and relevant stable when μ between 0.3 and 0.6. Besides,
when μ increasing to 1 (or decreasing to 0), the performance
descends. So, the combination of two terms outperforms both
cases with single term and fixing μ = 0.5, which used in
others experiments, is a good choice on both VIPeR dataset
and CUHK dataset.

3) Influence of β: Moreover, we use logistic loss function
rather than hinge loss function and claim that logistic loss
gives a soft approximation to hinge loss and more flexible
than it. We change β from 0.001 to 10, the comparing
results are shown in Fig. 11. It is obvious that the optimal
value of β is about 0.01 for both VIPeR dataset and CUHK
dataset. When β > 0.1, the performance is stable, that is
because the logistic loss is equal to hinge loss function.
The experiment results are consistent to the discussion on
Section III-C, that the algorithm achieves better performance
under a suitable β.

F. Evaluating the Efficiency of the Optimization Algorithm

We further validate the claim that the designed optimiza-
tion algorithm can greatly reduces computation cost and
maintains effectiveness at the same time. Under the pro-
cedure in Section IV-C, we vary the randomly sam-
pling number and record average CMC and elapsed
time. When the random number reach the max value,
that is, selecting all samples, the designed optimization
algorithm degenerates into the original gradient descent
algorithm.

1) Effectiveness of Randomly Sampling: Firstly, we evaluate
the effect of the number of stochastic sampling negative
sample. The randomly sampling number is changed from 1 to
50, and the average results of 20 times are reported in Fig. 12.
We can find that a relatively small value, 10 on VIPeR dataset
and 30 on CUHK dataset, has achieved a stable and good
effectiveness.

2) Efficiency of Randomly Sampling: Table II summarizes
the average and variance of computation times of 20 random
experiments with varying numbers of negative samples from
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Fig. 9. Comparative results of different constrains on (a) VIPeR and (b) CUHK datasets. FPM_CON only uses the consistent term, FPM_DIS only uses
the discriminative term which is the early version of this paper appeared in [33], and FPM_BOTH is the combination of above two terms which is the final
version of this paper.

Fig. 10. Comparative results of different μs on (a) VIPeR and (b) CUHK datasets.

Fig. 11. Comparative results of different βs on (a) VIPeR and (b) CUHK datasets.

5 to 45 on VIPeR dataset. From the table, we can observe that
the compute time decreases rapidly with the decrease in the
randomly sampling number.

With Fig. 12 and Table II, we can see that a relatively small
value, such as 10, is good enough for both effectiveness and
efficiency, which outperforms LMNN and ITML and is faster
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Fig. 12. Comparative results of different negative number on (a) VIPeR and (b) CUHK datasets.

TABLE II

COMPARATIVE RESULTS OF COMPUTING TIME WITH VARYING NUMBERS OF NEGATIVE SAMPLES ON VIPER DATASET

than them simultaneously, although LMNN exploits a active
set technology the ITML uses only one negative sample.

V. CONCLUSION

In this paper, we propose an FPM method to address the
person reidentification. To matching the person images taken
from two nonoverlapping cameras, an optimal FPM, which is
used to transfer the person images from one camera to the
other, is learned by solving a smooth unconstrained convex
optimization problem whose objective function consist two
terms, consistent term and discriminative term. The first term
acts to project images of the same person close together, while
the second term acts to make images of different individuals
widely separated. Extensive comparative experimental results
described in Section IV show that our method is both effective
and robust compared with BTF, CBTF, some popular metric
learning methods, such as, LMNN and ITML, and several
the-state-of-the-art person reidentification methods on three
challenging public datasets, VIPeR, CUHK, and PRID.

Although FPM can be used to compensate cameras differ-
ence, there are some constrains of using this concept in the
real application. First, the FPM is learned by a supervised
learning method, which needs a large amount of manual
labels, and hence it is usually labor-intensive in the city-
level camera network. Therefore, some novel learning tech-
nologies collaborating both labeled and unlabeled samples,
such as semisupervised or unsupervised learning methods,
can be considered. Second, the cameras’ difference varies
dynamically. Therefore, how to adaptively update the FPM to
deal with the dynamical changing environment is an important
problem. Motivated by the popularity of transfer learning,
an adaptive updating scheme based on a basic FPM would
be a promising research direction. Third, in the practical
surveillance application, training data is usually obtained in

a sequential manner rather than a batch mode, making the
online learning of FPM of great importance.
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