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a b s t r a c t

Dictionary in Local Coordinate Coding (LCC) is important to approximate a non-linear function with
linear ones. Optimizing dictionary from predefined coding schemes is a challenge task. This paper
focuses on learning dictionary from two Locality Coding Adaptors (LCAs), i.e., locality Gaussian Adaptor
(GA) and locality Euclidean Adaptor (EA), for large-scale and high-dimension datasets. Online dictionary
learning is formulated as two cycling steps, local coding and dictionary updating. Both stages scale up
gracefully to large-scale datasets with millions of data. The experiments on different applications
demonstrate that our method leads to a faster dictionary learning than the classical ones or the state-of-
the-art methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Local Coordinate Coding (LCC) [1] is a general framework that
uses linear functions to approximate any non-linear Lipschitz
smooth one. LCC generally consists of two key components: (1)
the coding schemes that define the local coordinates [2]; and (2) a
dictionary (data points) which consists of the local coordinates.
LCC has been successfully applied to many challenging problems,
e.g., approximating non-linear kernels [3], feature learning in
multi-class classification [4].

The problem to learn dictionary for LCC, especially for high-
dimension visual data, is that time complexity grows quadratically
with both the dictionary size and the dimension of data. Because

sparse coding [5,6] is usually used to lean dictionary [1]. For a
large-scale dataset with millions of samples, the time cost of this
sparse coding-based approach [1] becomes unacceptable. For
instance, on a single-core 2.6 GHz machine, sparse coding takes
about a week to lean 1000 items of a dictionary from about one
million samples via feature-sign search [7].

To avoid the sparse coding during learning dictionary for LCC,
Locality Coding Adaptors (LCAs) [4,2] are proposed to replace the
locality error in LCC. The dictionary size in real applications see-
mingly increases explosively for high-dimension data, as items in a
dictionary should be “local enough” to encode a sample. For LCAs,
however, one of the recent results [2] discovers that both locality
Gaussian Adaptor (GA) [4] and locality Euclidean Adaptor (EA)
[2,8] have no relation with the dimension of data. Therefore, the
motivation behind this paper is to fast and accurately learn
dictionary for LCC with LCAs.

The key notation of our solution is that dictionary can be fast
computed with both surrogate function [9] and warm restart techni-
que [10]. Rather than adopting Stochastic Gradient Descent (SGD)
(which requires to tune a learning speed), we instead use the
surrogate method [9,11] which aggregates the past information
computed during the previous steps with warm restart. The advantage
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of warm restart is that a good initialization is supplied when
dictionary is learned with the block-wise coordinate descent [12]. This
learning scheme is not only significantly faster than the batch
alternatives, but also hopes to avoid tuning hyper-parameters in
SGD, e.g., learning speed.

The core contributions of this paper can be summarized as
follows: technically, we introduce an online dictionary learning
method for LCC with LCAs. Our learning approach achieves
approximate 100 times faster than the batch one [8] on large-
scale datasets. Besides, the theoretical justification on the conver-
gence of the proposed algorithm is presented.

In the next section, related work is briefly summarized. Section 3
introduces problem of learning dictionary for LLC with LCAs. Section 4
first outlines the dictionary learning algorithm and details two cycling
steps. After that are the experiment and conclusion sections.

2. Related work

The seemingly most similar work to LCC may be dictionary
learning in sparse coding [13,14]: adding different constraints into
the reconstruction losses. However, the goal of sparse coding is to
represent a signal approximately as the globally linear combination of
a small number of the overcomplete dictionary. Given data xi (xiARD)
and dictionary V¼ ½v1; v2;…; vM � (VARD�M), sparse coding seeks a
linear reconstruction of the given data xi as xi ¼ γi1v1þγi2v2þ⋯
þγiMvM . The reconstruction coefficients γi ¼ ½γi1;…; γiM �T (γiARM) are
sparsity, requiring only a small fraction of entries in γi are nonzeros.
Denoting Jγ J0 as the number of nonzero entries of the vector γ, sparse
coding can be formulated as follows:

min
γi

Jγi J0

s:t: : xi ¼Vγi: ð1Þ
However, the minimization of ℓ0 norm is an NP-hard problem. Recent
research usually formulates the sparse coding problem as the mini-
mization of ℓ1 norm of the reconstruction coefficients. The objective of
sparse coding can be reformulated as follows [7,15]:

min
γi ;V

Jxi�Vγi J
2þλJγi J1; ð2Þ

The first term in (2) is the reconstruction loss, and the second term is
used to control the sparsity. λ is the tradeoff parameter used to balance
the sparsity and the reconstruction error.

While the locality of LCC tends to bring sparsity into local
coding, as only the items in a dictionary closing to the test input
would be given more weights. The objective of LCC is formulated
as follows [1]:

f ðxiÞ�
X
m

γimf ðvmÞ
�����

�����rα xi�Vγi
�� ��2þβ

X
m

j γim j vm�Vγi
�� ��1þp

; ð3Þ

where a nonlinear function f ðxiÞ is approximated by a set of linear
ones f ðvmÞ, V¼ ½v1; v2;…; vM � (VARD�M) is the dictionary, γim are
the local coding of data xi based on the point vm, and α and β are
the tradeoff factors to balance between the reconstruction error
xi�Vγi
�� ��2 and the locality one j γi j vm�Vγi

�� ��1þp. Eq. (3) indicates
that LCC locally encodes each sample to obtain the non-linear
approximation ability. In contrast, the dictionary in sparse coding
(2) does not favor this choice. Therefore, the motivation between
sparse coding and LCC is totally different.

Learning dictionary for LCC in (3) has to face the non-smooth
optimization j γi j vm�Vγi

�� ��1þp and the choice of hyper-parameter
p. To avoid these difficulties, LCAs are proposed to replace the
locality error as follows:

f ðxiÞ�
X
m

γimf ðvmÞ
�����

�����rα xi�Vγi
�� ��2þβJpi � γi J

2; ð4Þ

where the operation � represents the element-wise multiplication,
and pi (piARM) are LCAs. The second term in (4) enforces local coding
γim to have a similar locality of LCAs [2]. Therefore, instead of learning
dictionary for LCC, learning dictionary for LCC with LCAs has several
advantages: (1) the smooth objective function in LCC with LCAs avoids
the non-smooth optimization in LCC; (2) the dictionary size of LCC
with LCAs has no relation with the dimension of data [2]. Concretely,
LCC with LCAs avoids the sparse coding problem in LCC with the
complexity OðDMsþDs2Þ, where s is the number of the nonzero
coefficients, if a Cholesky-based implementation of LASSO/LARS
problem [5] is adopted. Moreover, LCC with LCAs turns LCC (3) into
convex objective functions when one of the parameters fγi;Vg is fixed
(see Section 4.4 for the detailed analysis).

Dictionary learning in LCC with LCAs is in most cases consid-
ered as vector quantization (VQ). However, a large part of the
classical approaches in VQ barely handle a predefined locality. For
example, [3] uses k-means to participate the data space with
Euclidean distance (which can be considered as a special case of
EA [2]). Other methods define a special locality according to the
adopted VQ, e.g., [16] uses LASSO to solve a coding scheme with
inverse Euclidean distance. These, however, lose flexibility to
optimize dictionary for different LCAs.

Dictionary learning in LCC with LCAs alternates between two steps:
local coding and dictionary updating. The local coding is sequentially
learned for every sample, only requiring a limited computational cost.
Dictionary updating by a batch training algorithm [8] has to process all
samples in each iteration. Recently, [4] relaxes the objective function
by ignoring LCAs, and learns dictionary by minimizing the reconstruc-
tion loss. However, the relaxed the objective function makes the
learned dictionary obtain a suboptimal performance.

Inspired by the success of warm restart [10] in online sparse coding
[11], our proposed method also applies this technique to update
dictionary. Dictionary updating in online sparse coding minimizes the
convex reconstruction loss in (2), while our approach optimizes both
the reconstruction loss and the locality loss (4). On the other side,
recently there has been a trend of introducing surrogate function into
different tasks, and thus the optimization problem is viewed as finding
a more approximate yet simple objective function [17,18,11]. To the
best of our knowledge, this paper is first to apply the surrogated-based
method to dictionary learning in LCC with LCAs.

3. Problem formulation

3.1. Dictionary learning with Locality Coding Adaptors

LCC is formulated as a constrained reconstruction problem, as
the quality of the non-linear approximation ability is bounded by
both the reconstruction and the locality (3). For a matrix
X¼ ½x1;…; xN�T with N data, the dictionary matrix V¼ ½v1;…; vM �,
LCC with LCAs can be formulated as the following problem [4]:

LðX;VÞ ¼min
γi ;v

1
2

XN
i ¼ 1

Jxi�Vγi J
2þλJpi � γi J

2 ð5Þ

s:t: γTi 1¼ 1; i¼ 1;…;N; ð6Þ
where the vector 1 denotes the identity vector ½1;…;1�T , and the
operation � represents the element-wise multiplication, and
pi ¼ ½pi1; pi2;…; piM�T (piARM) are LCAs. pim can be either GA [4]
or EA [8,2]:

1. Gaussian adaptor (GA) presumes the relation among samples
and dictionary as

pim ¼ exp
Jvm�xi J2

σ2

 !
ð7Þ
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where the hyper-parameter σ controls the weight decay ability
for the locality adaptor.

2. Euclidean adaptor (EA) uses an inverse Student t-distribution
with one degree of freedom

pim ¼ σ2þ Jvm�xi J2; ð8Þ
where σ is also used for adjusting the weight decay speed for
the locality adaptor.

Both GA (7) and EA (8) enforce different locality decay schemes
between the sample xi and the point vm [2]. The theoretical results [2]
indicate that GA tends to work well than EA, but requires more
number of dictionary than EA; besides, the empirical results also
validate that GA works well than EA adaptor, if the dictionary size is
sufficiently large [8]. The constraint (6) makes dictionary shift invar-
iant. Eq. (5) is convex over the dictionary V with the fixed local coding
γi and vice versa. Thus the coordinate descent method can be used to
alternatively optimize the local coding γi and the dictionary V.

4. Online dictionary learning

4.1. Algorithm outline

Algorithm 1. Online dictionary learning.

1 require: xARD (random variable and an algorithm to
draw i.i.d samples), λAR (regularization parameter),

V0ARD�M(initial dictionary), T (number of iterations);

2 initialization: A0’0, B0’0(reset history information);
3 for t¼1 to T do
4
5

6
7
8

Randomly draw xi from X;
Local coding : Compute the local coding γi for sample

����
xi by ð12Þ : γi ¼ arg min

γ

1
2 j jxi�Vt�1γj j 2þλJpi �

γ J2:At’At�1þγiγ
T
i þ4λ

σ2
Λi;B

t’Bt�1þxiγ
T
i þ4λ

σ2
xiΣi;

Dictionary updating :

Updates dictionary using Algorithm 2; such that

Vt ¼min
V

Xt
i ¼ 1

1
2
Jxi�Vγi J

2þλJpi � γi J
2: ð9Þ:

9 end

10 Return dictionary VT (dictionary learned after T
iterations.);

Algorithm 2. Dictionary updating procedure.

1 input: Vt ¼ vt1;…; vtM
� �

ARD�M (dictionary learned at t
iteration),
At ¼ at1;…;atM

� �
ARM�M (past information at t iteration),

Bt ¼ bt
1;…;bt

M

h i
ARD�M (past information at t iteration);

2 while not convergence do
3
4

5

for m¼ 1 to M do
Update the m�th point to optimize for ð9Þ :

vtþ1
m ’vt

m� 1
amm

Vtatm�bt
m

� �
;

vtþ1
m ’

1
maxðJvtþ1

m J2;1Þ
vtþ1
m :

�����������
end

����������������
6 end

7 Return dictionary Vt(dictionary learned at the t-th
iteration.);

Our optimization procedure is summarized in Algorithm 1.
Assuming the training set composed of i.i.d. samples, our algo-
rithm draws one data xi at a time, and alternatively optimizes
between the local coding γi and the dictionary Vt�1 at the t�1�th
iteration. After the new local coding γi is computed, dictionary is
learned by minimizing the following surrogate function:

~LtðVtÞ ¼
Xt
i ¼ 1

1
2
Jxi�Vtγi J

2þλJpi � γi J
2: ð10Þ

The motivation behind our approach is that the past information
computed during the previous steps upperbounds the empirical
cost (5).

4.2. Local coding

The local coding is a constrained linear least-square problem
when dictionary is fixed. To determine the optimal local coding γi,
the constrained problem can be solved with the Lagrangian
function Lðγi; vÞ:
Lðγi; vÞ ¼ 1

2 Jxi�Vγi J
2þλJpi � γi J

2þvð1�γTi 1Þ
¼ 1

2 γ
T
i ΦγiþλγTi diagðp2

i Þγiþvð1�γTi 1Þ ð11Þ

where the matrix Φ is ðxi1
T �VÞT ðxi1

T �VÞ, v is the Lagrangian
multiplier, and the operation diagðAÞ reshapes the vector A into the
diagonal matrix.

Let ∂Lðγi; vÞ=∂γi ¼ 0, the optimal local coding γi satisfies that

~γ i ¼ Φþ2λ diagðp2
i Þ

� 	�1
1;

γi ¼ ~γ i=ð~γTi 1Þ: ð12Þ
It should be noted that the matrix Φ is symmetric and semi-
positive. If the matrix Φ is singular or nearly singular, the matrix
Φþ2λ diagðp2

i Þ is still conditioned, as 2λ diagðp2
i Þ penalizes large

distance that exploits correlation beyond some level of precision
between data points.

4.3. Dictionary updating

Dictionary updating uses the block-coordinate descent with warm
restart, and one of its main advantages is that it does not require any
learning rate tuning. Warm restart therefore is especially suitable for
the block-coordinate descent. If GA is adopted,1 the gradient of the
surrogate function ~LtðVtÞ with respect to the m-th point vtm:

∂ ~LtðVtÞ
∂vtm

¼
Xt
i ¼ 1

�γimðxi�VtγiÞþ2λ
XM
m ¼ 1

∂pim
∂vt

m
γ2impim

 !
ð13Þ

where the ∂pim=∂vtm ¼ 2pimðvtm�xiÞ=σ2, if GA (7) is used in pim.
Substituting this partial derivative into (13) gives the partial derivative
of vtm:

∂ ~LtðVtÞ
∂vtm

¼
Xt
i ¼ 1

�γimðxi�VtγiÞþ4λ
XM
m ¼ 1

p2imγ
2
imðvtm�xiÞ
σ2

 !
: ð14Þ

According to the derivative of a scalar functionwith respect to a matrix
of independent variable [19], the partial derivative ∂ ~LðVtÞ=∂Vt is
computed as

∂ ~LtðVtÞ
∂Vt ¼ ∂ ~LtðVtÞ

∂vt1
;…;

∂ ~LtðVtÞ
∂vt

m
;…;

∂ ~LtðVtÞ
∂vt

M

" #

¼Vt
Xt
i ¼ 1

γiγ
T
i þ

4λ
σ2

Λi


 �
�
Xt
i ¼ 1

xiγ
T
i þ

4λ
σ2

xiΣi


 �
; ð15Þ

1 The solution for EA is presented in Appendix.
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where the matrix Λi is the diagonal matrix with ðpimγimÞ2 as the elem-
ents, and the Σi is the vector ðpi1γi1Þ2;…; ðpiMγiMÞ2

h i
.

The past information in (15) is further stored into two matrices,
At ¼ Pt

i ¼ 1 γiγ
T
i þð4λ=σ2ÞΛi (A

tARM�M), and Bt ¼ Pt
i ¼ 1 xiγ

T
i þð4λ=

σ2ÞxiΣi (B
tARD�M). It should be noted that two M �M and D�M

size matrices are sufficient to store all the past infor-
mation during iterations, due to the following equations:

Atþ1 ¼Atþγiγ
T
i þ

4λ
σ2

Λi; ð16Þ

Btþ1 ¼ Btþxiγ
T
i þ

4λ
σ2

xiΣi: ð17Þ

The limited storage requirement makes Algorithm 1 efficiently
deal with large-scale and high-dimension datasets.

Let atm and bt
m denote the m-th columns of matrices At and Bt

individually, let atmm denote the (m,m)-th element of At , the m-th
vtm is updated as

vtþ1
m ’vtm� 1

amm
Vtatm�bt

m

� �
; ð18Þ

where Vt is the dictionary at the t-th iteration. To make dictionary
bounded, the point vtþ1

m is projected onto unit ball:

vtþ1
m ’

1
maxðJvtþ1

m J2;1Þ
vtþ1
m ð19Þ

4.4. Convergence analysis

The non-convexity objective function (5) and the stochastic
approximation assumption make the proof of the convergence of
the proposed algorithm to a stationary point somewhat involved.
In the following, the convergence of the surrogated objective
function (10) with warm restart is proved.

Proposition 1. If γi are fixed, the surrogate function ~LtðVtÞ in (10) are
strictly convex with lower-bounded Hessians.

Proof. The function ~LtðVtÞ is twice continuously differentiable,
and the second-order derivative of ~LtðVtÞ with dictionary Vt is

∂2 ~LtðVtÞ
∂Vt2

¼ 1
t
At :

If every point xi at least has a nonzero local coding γi, the matrix
At ¼ Pt

i ¼ 1 γiγ
T
i þð4λ=σ2ÞΛi for GA (At ¼ Pt

i ¼ 1 γiγ
T
i þ4λΛi for EA) is

the positive and semi-definite matrix. This condition also equals to
require that the smallest eigenvalue of the positive semi-definite
matrix ð1=tÞAt is greater than or equal to some value k140.
Consequently, ~LðVtÞ are strictly convex with lower-bounded Hes-
sians ð1=tÞAt . □

Proposition 2. The quadratic objective function Lðγi; vÞ (11) is
strictly convex and has lower-bounded Hessians.

Proof. The objective function Lðγi; vÞ is twice continuously differenti-
able, and the second-order derivative of Lðγi; vÞ with local coding γi is

∂2Lðγi; vÞ
∂γ2i

¼ 1
2
Φþλ diagðp2

i Þ:

If the pi is not equal to zero, 2λ diagðp2
i Þ always makes the 1

2Φþ
λ diagðp2

i Þ conditioned. Therefore, the Hessian matrices 1
2Φþλ diag

ðp2
i Þ are always positive semi-definite. This condition is also equal to

require that the minimum eigenvalue of Hessian matrix be at least
larger than a positive value k240. □

Given Proportions 1 and 2, we justify that our algorithm
converges to a stationary point of the objective function by
proving that LðVtÞ� ~LðVtÞ converges almost surely to 0, where
LðVÞ is the expected objective function over samples, LðVÞ ¼ Exi

LðX;VÞ½ �.

Proposition 3. Let ~LðVtÞ denote the surrogate function, then,

1. ~LðVtÞ converges almost surely;
2. LðVtÞ� ~LðVtÞ converges almost surely to 0;
3. LðVtÞ converges almost surely.

Proof. Most part of this proof is very similar to Proposition 3 in [20].
Following Proposition 3 in [20] and applying Propositions 1 and 2, we
can prove all claims. Here we only present the proof sketch.

First, the positive sequence ut ¼ ~LtðVtÞZ0 is a quasi-matingale by
showing that the expectation E E½utþ1�ut jPt �þ

� �
is upper-bounded,

where Pt denotes the past information at iteration t and ½��þ denotes
the positive part of a number. During this step, we should apply
Proportions 1 and 2 to prove that Vtþ1�Vt ¼Oð1=tÞ almost surely.
Second, we can prove that

P1
i ¼ 1ðð ~LtðVtÞ�LtðVÞtÞ =ðtþ1Þ is bounded,

and the functions ~LtðVtÞ and LtðVtÞ are also bounded and Lipschitz.
After that, we can further obtain that almost surely, ~LtðVtÞ�
LtðVtÞ -t-1

0, and LtðVtÞ converges almost surely. □

4.5. Analysis of time complexity

Table 1 compares the time complexity among locality Sensitive
Coding (LSC) (a batch training method) [8], locally linear coding
(LLC) (a SGD based method) [4], and our approach. Note that LSC,
LLC and our approach all use the same objective function (5).

LLC [4], LSC [8] and our approach all use the block-wise coordinate
descent, and divide the optimization procedure into local coding and
dictionary updating. LLC uses SGD to optimize the approximated loss,
our method adopts the surrogate function with warm restart; LLC and
ourmethod thus can scale up to millions of samples. In contrast, LSC in
each iteration uses the analytical solution which would make LSC
efficient for a small size of datasets.

5. Experiments

In this section, we report results based on several widely used
datasets: PASCAL VOC 2007 [21] for image classification, ORL
database for face recognition [22] and handwritten digit recogni-
tion [23] by locally linear classification [3]. To fairly compare our
algorithm to other state-of-the-art methods, we follow the same
setting (features, sampling rate, classification methods, etc.) to
demonstrate the efficiency of our approach. The dictionary learn-
ing algorithm is implemented in Cþþ and runs on a single-CPU,
single-core 2.6 GHz machine.

Table 1
A comparison among optimizing algorithms with our method for dictionary learning.

Method Local coding Dictionary updating Comments

LLC [4] OðK2þM log ðKÞÞ Tllc �OðM � ðDMþDÞÞ In local coding, LLC performs the K-nearest search where K5M; dictionary updating ignores the locality

constraints λJpi � γi J
2 in (5).

LSC [8] OðM2Þ Tlsc �OðNðM2þDMÞþM2þDMÞ The number of iteration Tlsc is usually smaller than Tllc or Tour. Because LSC is a typical batch training method.

Ours OðM2Þ Tour �OðM � ðM2þDMþDÞÞ In dictionary learning, we require that the dictionary size M is smaller than the number of data N, i.e.,M5N.

J. Pang et al. / Neurocomputing 157 (2015) 61–6964



5.1. Training time comparison among LLC, LSC, SGD and our method

In dictionary updating step, a comparison is done among LLC,
LSC, SGD and our method. To generate a large-scale training set,
we have densely selected approximately 1 million SIFT features
with 16�16, 24�24 and 32�32 size image patches from PASCAL
VOC 2007, which consists of 9963 images from 20 classes. We
normalize these SIFT descriptors by ℓ2 norm, and the trade-off
parameter λis set to 0.5, and the hyper-parameter σ in GA (7) is set
to 0.6 in this experiment. The mini-batch scheme with 256
samples has been applied in dictionary updating [11]. To measure
and compare the performances with the state-of-the-art methods,
the values of the objective functions on the test set as the function
of the corresponding training times are plotted.

5.1.1. Online learning and batch training
Fig. 1 compares the batch LSC [8] and our method. As discussed in

Table 1, objective function (5) outputted by our method decreases
faster than the batch one, and as a result the speed of online learning
achieves approximately 100 time faster than the batch method. Also
noticed that the training times of the batch algorithm in this
experiment are just the results on 10% and 20% samples.

Meanwhile, when different dictionary sizes are learned, both
Fig. 1(a) and (b) indicates that the training times of our method
increase linearly with respect to the dictionary size. In addition,
there are two interesting observations:

1. For large-scale datasets, although the decrease of the objective
function at each iteration is larger than that of our method, our
online approach costs a few training time than that of the batch

approach. It validates the advantage of the expectation loss (10)
– one should not spend too much effort on accurately mini-
mizing the empirical loss.

2. Two approaches achieve a similar performance if both algo-
rithms are sufficiently learned. The expectation loss (10) is
convex when either local coding or dictionary is fixed, and an
unique local minimal solution is guaranteed by Proportions 1
and 2. Therefore, the proposed online algorithm well balances
between training speed and accuracy for LCC with LCAs.

5.1.2. Comparison with stochastic gradient descent
Our experiments have shown that SGD should carefully choose

the learning speed. To give a fair comparison, we have selected a
range of learning speed ρ in the projected SGD,

Vtþ1’P Vt�ρ

t
∂LðVÞ
∂V

� 

;

where P½A� projects vector A onto an unit ball. Two different sizes
of the mini-batch are used in each iteration: 1 example and 256
ones. One example for each iteration is adopted in the classical
SGD optimization [24].

Fig. 2 compares our method and SGD with the different learning
speed ρ. We observe that the larger the values of speed ρ in SGD are,
the smaller the values of the objective functions are after many
iterations. If the learning speed in SGD is well tuned, SGD and our
method generally have similar speed to reach local minimums. In
addition, if different mini-batch sizes are adopted, the optimal learning
speed of SGD also changes. In contrast, our method consistently
achieves a similar performance without tuning learning speeds.
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Fig. 1. Comparison between batch training and our method for various dictionary
sizes: (a) 512 dictionary and (b) 1024 dictionary.
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Fig. 2. Comparison between projected SGD and our method with different number
of samples in the mini-batch optimization scheme: (a) 1 sample and (b) 256
samples.
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5.1.3. Comparison with approximated loss
We compare the proposed dictionary updating in Algorithm 2

with LLC [4] which approximates the loss (5) by ignoring the term
λJpi � γi J

2. LLC uses SGD to optimized dictionary. It should be noted
that the SGD has to face the selection of the learning speed problem.
To give a fair comparisonwith the approximated loss, the learning rate
is selected as

ffiffiffiffiffiffiffiffi
1=t

p
which is also the value assigned in LLC [4].

Fig. 3 shows that although our method has similar training
speed to LLC, the objective function outputted by our method is
lower than LLC, because two different loss functions are separately
used at local coding and dictionary updating steps in LLC. The
inconsistent loss functions in LLC make the learned dictionary
slightly away from a local minima.

5.2. Application to different tasks

In this subsection, we report results based on three applications
of dictionary learning: the reconstruction based classification [8],
locality-constrained linear coding for feature learning [4], and
locally linear classification [3].

Our intent here is of course not to evaluate our learning algorithm
in the reconstruction based classification, the feature learning tasks
and locally linear classification, which would require thorough com-
parisons with the state-of-the-art methods on individual task. We
here instead wish to demonstrate that it can indeed be comparable to
these baselines [8,4] on realistic, non-trivial image classification tasks.

5.2.1. Reconstruction based classification for ORL face recognition
The experiments follow [8] and demonstrate that our online

learning technique can be used for a small size datasets. Let V¼
½V1;V2;…;VJ �, where Vj is the dictionary learned for class j, a test
sample yARD, the reconstruction-based method classifies y by its
local coding γ which is computed over the entire dictionaries set:

min
γ

Jy�Vγ J2þλJp � γ J2:

Once the local coding γ is computed, γ is partitioned into ½γ1; γ2;…; γJ �
where γj is the local coding for class j. Then y is classified as class ~j by
minimizing the class-wise reconstruction error:

~j ¼ arg min
j

Jy�Vjγ
j J2:

This reconstruction based classification [8] is very similar to the
sparse representation-based classification [25].

The ORL database contains 400 face images of size 112�92 pixels
from 40 people. The challenges of this dataset include different light
conditions, face expression and facial details. To give a fair comparison
with other algorithms, we follow the same setting in [8]: randomly
and equally split the data into training set and test set, and set the

dimension of the eigenface as 100. We perform 10 random trials, and
report the average recognition rates of various methods.

It should be noted that our online learning algorithm requires that
the size of a dataset should be infinite. To handle the limited size of
datasets, the same point is used several times with random replace-
ment. It is very common in online algorithms to simulate an i.i.d.
sample by sampling over a randomly permuted datasets: once every
sample is already used, we first randomly permute the dataset and
stochastically draw the samples again. Fig. 4(a) illustrates the training
speed of different methods when the dictionary size per class is 5, and
the mini-batch size is 10 samples. Interestingly, the proposed online
dictionary learning still outperforms LSC in terms of training speed
(see Fig. 4(a)). It clearly indicates that our online approach also works
wells on a small size dataset.

The sparse representation based classification (SRC) [25], LLC
[4], LSC with GA (LSC-GA) and with ℓ2 adaptor (LSC-EA) (by
assigning σ to 0 in EA (8)) [8] are compared with our method in
Fig. 4(b). Following the parameters setting in LSC [8], λ¼ 0:001;
σ ¼ 0:3 are used in GA, and λ¼ 0:1; σ ¼ 0 are used in EA. Our
proposed online method with GA achieves the best results for all
the dictionary sizes. This may be the random sampling that tends
to empirically improve the generalization ability [24]. Although
ORL database is relative simple, experiments presented here are
used to show the effectiveness of our online learning algorithm on
small size datasets.

5.2.2. Locality-constrained linear coding for PASCAL VOC 2007
PASCAL VOC 2007 is an extremely challenging dataset because

all the images are daily photos where the size, viewing angle,
illumination occlusion, and appearances of objects vary signifi-
cantly. Spatial Pyramid Matching (SPM) is combined with local
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coding to code the discriminative feature [26]. In every SPM layer,
for each spatial sub-region, the max pooling is adopted [27,4]:

f i ¼maxfj γ1i j ; j γ2i j ;…; j γMi j g;

where fi is the feature coding for the i-th SIFT xi, γim is the local
coding for the i-th sample. The max pooling is empirically justified
by many algorithms in image categorization. The classification
performances are evaluated by the Average Precision (AP) mea-
sure, and the higher the score is, the better the performance is.

Since a recognition system involves many aspects, such as
tuning parameters in classifiers, we have implemented LLC by
ourself to repeat the reported results as possibly as we can for a
meaningful comparison. Table 2 shows that our method can
consistently improve the results of LLCour:, and even obtains the
best performance on several object classes (chair, cow and sofa).
The improved results indicate that the approximated loss damages
the performance of the LLC-based feature.

5.2.3. Locally linear classification for handwritten recognition
Locally linear classification is based on LCC framework. Let

fxi; yigNi ¼ 1 be a training set, where xiARD denotes the i-th sample,
yiAfþ1; �1g denotes the binary label for a given object category,
and N is the number of samples. Locally linear support vector
machine (LLSVM) [3] combines a set of linear ones f mðxÞ:

FðxÞ ¼
XM
m ¼ 1

γmw
T
mxþ

XM
m ¼ 1

γmbm

¼ γTWxþγTb;

where γm is a local coding for the linear classifier f mðxÞ ¼wT
mxþbm,

the transformation WARM�D can be considered as a finite kernel
transformation which turns a D-dimension problem into a M D-
dimension one [3]. If a dictionary produces a lower weighted
errors consisting of the reconstruction error and the locality one,
LLSVM would have a better non-linear classification ability.

MNIST and USPS, two widely used digit datasets, are evaluated
in LLSVM. MNIST contains 40,000 training and 10,000 test 28�28
gray-scale images, which are reshaped directly into the 784
dimension vectors. The label of each image is one of the 10 digits
from “0”–“9”. USPS [23] consists of 7291 training examples and
2007 gray-scale 16�16 ones for test. Each label corresponds to
“0”–“9” digits. During the experiments, the means of raw images
are first removed, and then we normalize images with ℓ2 norm.

Table 3 compares the accuracies among different learning methods
with different dictionary size. As analyzed in [2], LCC with GA usually
achieves better performances than LLC with EA. Our method with
both GA and EA consistently outperforms both the batch one [8] and
the approximated one [4]. It means that online learning approach
consistently produces the high quality dictionary.

6. Conclusion

In this paper, we present an online dictionary leaning method
based on surrogate function with warm restart, leading to results
matching or surpassing the state-of-the-art methods in LCC-based
applications. There is a significant distinction between the pro-
posed approach and the previous studies: the surrogate function
with warm restart for LLC with LCAs enjoys the advantage of
simple implementation and a faster training speed than others [8].
We apply online dictionary learning to three tasks: the reconstruc-
tion based classification, feature learning for image classification,
and locally linear classification. Experimental results show that the
dictionary learned by our approach achieves good performances
on these LCC-based applications.

The promising results of this paper motive a further examina-
tion of our approach with other locality adaptors. Beyond GA and
EA, we plan to use the proposed learning framework in Laplacian
constraint [28] which is computational cost. Another indication
from our work is that the surrogate function with warm restart
serves as an efficient method for both supervised dictionary
learning [20,29].

Table 2
Image classification results on PASCAL VOC 2007 dataset.

Aero Bicyc Bird Boat Bottle Bus Car Cat Chair Cow

Best'07 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.3 42.6
LLCrep: 74.8 65.2 50.7 70.9 28.7 68.8 78.8 61.7 54.3 48.6

LLCour: 73.2 63.4 48.7 69.5 28.2 66.3 76.8 59.6 53.7 49.2
Ours 75.4 64.7 51.2 70.6 29.3 68.4 78.1 61.5 54.7 50.3

Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv Average

Best'07 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2 59.4
LLCrep: 51.8 44.1 76.6 66.9 83.5 30.8 44.6 53.4 78.2 53.2 59.3

LLCour: 50.2 42.7 74.2 64.6 82.7 29.5 42.1 51.8 77.5 52.7 57.8
Ours 51.4 44.7 76.3 65.7 83.6 30.4 44.2 53.7 78.5 53.2 59.3

LLCrep: means the reported results in [4], and LLCour: means the results implemented by ourself.

Table 3
Classification error rate (%) on USPS and MNIST with different number of items in dictionary.

Methods USPS (number of items) MNIST (number of items)

40 80 120 160 40 80 120 160

LSC-exp [8] 2.42 2.33 2.21 2.17 2.96 2.36 1.98 1.74
LSC-L2 [8] 3.41 3.28 3.15 2.82 4.81 4.13 3.83 3.51

LLC [4] 2.63 2.42 2.37 2.32 3.02 2.52 2.17 1.83

Our (GA) 2.42 2.21 2.18 2.06 2.85 2.12 1.78 1.71
Our (EA) 3.38 3.28 3.08 2.64 4.62 4.10 3.64 3.22

J. Pang et al. / Neurocomputing 157 (2015) 61–69 67



Acknowledgment

This work was supported in part by National Basic Research
Program of China (973 Program): 2012CB316400, in part by Natural
Science Foundation of China: 61332016, 61202234, 61202322, 61
303154, 61133003, 61390510 and 61472387, by Beijing Natural Science
Foundation: 4132010 and KZ201310005006, and by Funding Project
for Academic Human Resources Development in Institutions of Higher
Learning Under the Jurisdiction of Beijing Municipality (PHR).

Appendix

If EA (8) is adopted, the partial gradient of (5) with respect to
vm is

∂ ~LðVtÞ
∂vtm

¼
Xt
i ¼ 1

�γimðxi�VtγiÞþ2λ
XM
m ¼ 1

∂pim
∂vt

m
γ2impim

 !
; ð20Þ

where ∂pim=∂vtm ¼ 2ðvt
m�xiÞ. Substituting this partial derivative

into (20) gives the partial derivative of vt
m:

∂ ~LðVtÞ
∂vtm

¼
Xt
i ¼ 1

�γimðxi�VtγiÞþ4λ
XM
m ¼ 1

pimγ
2
imðvtm�xiÞ

 !
: ð21Þ

The partial derivative of ∂LðVtÞ=∂Vt is computed as

∂ ~LðVtÞ
∂Vt ¼ ∂ ~LðVtÞ

∂vt
1

;…;
∂ ~LðVtÞ
∂vtm

;…;
∂ ~LðVtÞ
∂vtM

" #

¼Vt
Xt
i ¼ 1

γiγ
T
i þ4λΛi

� 	�Xt
i ¼ 1

xiγ
T
i þ4λxiΣi

� 	
; ð22Þ

where the matrix Λi is the diag matrix with pimγ
2
im as the elements,

and the Σi is the vector pi1γ
2
i1;…; pimγ

2
im

� �
. Therefore, the past

information in (22) is also further stored as

At ¼
Xt
i ¼ 1

γiγ
T
i þ4λΛi; ð23Þ

Bt ¼
Xt
i ¼ 1

xiγ
T
i þ4λxiΣi: ð24Þ
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