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Abstract.  In this paper, a novel strategy of Secure Steganograpy based on 

Generative Adversarial Networks is proposed to generate suitable and secure 

covers for steganography. The proposed architecture has one generative net-

work, and two discriminative networks. The generative network mainly evalu-

ates the visual quality of the generated images for steganography, and the dis-

criminative networks are utilized to assess their suitableness for information 

hiding. Different from the existing work which adopts Deep Convolutional 

Generative Adversarial Networks, we utilize another form of generative adver-

sarial networks. By using this new form of generative adversarial networks, 

significant improvements are made on the convergence speed, the training sta-

bility and the image quality. Furthermore, a sophisticated steganalysis network 

is reconstructed for the discriminative network, and the network can better 

evaluate the performance of the generated images. Numerous experiments are 

conducted on the publicly available datasets to demonstrate the effectiveness 

and robustness of the proposed method. 

Keywords:  Steganography  ·  Steganalysis  ·  Generative adversarial  networks 

1 Introduction 

Steganography is the task of concealing a message within a medium such that the 

presence of the hidden message cannot be detected. It is one of the hot topics in in-

formation security and has drawn lots of attention in recent years. Steganography is 

often used in secret communications. Especially in the fast-growing social networks, 

there are an abundance of images and videos, which provide more opportunities and 

challenges for steganography. Therefore, the design of a secure steganography 

scheme is of critical importance. 

How to design a secure steganography method is the problem that researchers have 

always been concerned about. Existing steganographic schemes usually require the 

prior of probability distribution on cover objects which is difficult to obtain in prac-

tice. Conventionally, the steganography method is designed in a heuristic way which 

does not take the steganalysis into account fully and automatically. For the sake of the 

steganography safety, we consider the steganalysis into the design of steganography. 



At present, the image-based steganography algorithm is mainly divided into two 

categories. The one is based on the spatial domain, the other is based on the DCT 

domain. In our work, we focus on the spatial domain steganography. 

Least Significant Bit (LSB) [11] is one of the most popular embedding methods in 

spatial domain steganography. If LSB is adopted as the steganography method, the 

statistical features of the image are destroyed. And it is easy to detect by the ste-

ganalyzer. For convenience and simple implementation, the LSB algorithm hides the 

secret to the least significant bits in the given image’s channel of each pixel. Mostly, 

the modification of the LSB algorithm is called ±1-embedding [2]. It randomly adds 

or subtracts 1 from the channel pixel, so the last bits would match the ones needed. So 

we consider the ±1-embedding algorithm in this paper. 

Besides the LSB algorithm, some sophisticated steganographic schemes use a dis-

tortion function which is used for selecting the embedding localization of the image. 

We called them the image content-adaptive steganography. These algorithms are the 

most popular and the most secure image steganography in spatial domain, such as 

HUGO (Highly Undetectable steGO), WOW (Wavelet Obtained Weights), S-

UNIWARD, etc.. 

 HUGO [12] is a steganographic scheme that defines a distortion function domain 

by assigning costs to pixels based on the effect of embedding some information with-

in a pixel. It uses a weighted norm function to represent the feature space. HUGO is 

considered to be one of the most secure steganographic techniques, which we will use 

in this paper to demonstrate our method’s security. WOW (Wavelet Obtained 

Weights) [8] is another content-adaptive steganographic method that embeds infor-

mation into a cover image according to textural complexity of regions. In WOW 

shows that the more complex the image region is, the more pixel values will be modi-

fied in this region. S-UNIWARD [9] introduces a universal distortion function that is 

independent of the embedded domain. Despite the diverse implementation details, the 

ultimate goals are identical, i.e. they are all devoted to minimize this distortion func-

tion, to embed the information into the noise area or complex texture, and to avoid the 

smooth image coverage area. 

So far as we know, when people design steganography algorithm, they usually heu-

ristically consider the steganalysis side. For example, the message should embed into 

the noise and texture region of image which is more secure. In this paper, we propose 

a novel SSGAN algorithm, which implements secure steganography based on the 

generative adversarial networks. We consider it under adversarial learning frame-

work, inspired by the work of Denis and Burnaev [5]. We use WGAN [3] to improve 

the security of steganography by generating more suitable covers. In the proposed 

SSGAN, covers are generated firstly using the generative network. Then we adapt the 

state-of-the-art embedding algorithm, like HUGO, to embed message into the gener-

ated image. Finally, we use the GNCNN [17] to detect on images whether there is a 

steganographic operation.  

The contributions of our work can be concluded as follows: 

Perceptibility. In this paper, we use WGAN instead of DCGAN to generate cover 

images to achieve generative images with higher visual quality and ensure faster 

training process. 



Security. We use a more sophisticated network called GNCNN to assess the suita-

bleness of the generated images instead of the steganalysis network proposed by [5]. 

Diversity. We also use GNCNN to compete against the generative network, which 

can make the generated images more suitable for embedding. 

The rest of the paper is structured as follows: In Section 2, we discuss the related  

work of adversarial learning and elaborate the proposed method. In Section 3, 

experiments are conducted to demonstrate the effectiveness and security of the pro-

posed method. In Section 5, we draw conclusions. 

2 Secure Steganography Based on Generative Adversarial 

Networks 

2.1 Adversarial  Learning 

Adversarial learning using game theory, and is combined with unsupervised way to 

jointly train the model. The independent model is trained to compete with each other, 

iteratively improving the output of each model. In Generative Adversarial Networks, 

the generative model G tries to train the noise to samples, while the discriminative 

model D tries to distinguish between the samples output by G and the real samples. 

Based on fooling the D, the weight of G is updated, and at the same time, the D’s 

weight is updated by distinguishing between the fake and real samples.  

Recent years, GANs have been successfully applied to image generation tasks [14] 

using convolutional neural networks (CNNs) for both G and D. But in traditional 

GANs, they are considered difficult to train. Because there is no obvious relationship 

between the convergence of the loss function and the sample quality. Typically, peo-

ple choose to stop the training by visually checking the generated samples. So, a de-

sign arises recently, WGAN [3], using the Wasserstein distance instead of the Jensen-

Shannon divergence, to make the data set distribution compared with the learning 

distribution from G. Obviously, they show that the sample quality is closely related 

with the network’s convergence and the training rate is really improved. 

Adversarial training has also been applied to steganography. The adversarial train-

ing process can be described as a minimax game: 

    𝐺
𝑚𝑖𝑛     𝐷

𝑚𝑎𝑥  𝐽(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log(𝐷(𝑥)) + 𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧)log(1 − 𝐷(𝐺(𝑧)))   (1) 

where D(x) represents the probability that x is a real image rather than synthetic, and 

G(z) is a synthetic image for input noise z. In this process, there are two networks, the 

G and the D, trained simultaneously: 

 Generative Network, its input is a noise z from the prior distribution 𝑝𝑛𝑜𝑖𝑠𝑒(𝑧), 
and transform it from the data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥), to generate a data sample 

which is similar to 𝑝𝑑𝑎𝑡𝑎(𝑥).  
 Discriminative Network, its input are the real data and the fake data generated 

from the Generative Network, and determine the difference between the real and 

fake data samples. 



To solve the minimax problem, in each iteration of the mini-batch stochastic gradi-

ent optimization, we first perform the gradient ascent step on D and then perform the 

gradient descent step on G. So we let 𝜔𝑁 represents the neural network N, then we 

can see the optimization step: 

 We let the D fixed to update the model G by 𝜔𝐺 ← 𝜔𝐺 − 𝛾𝐺∇𝐺𝐽  
where 

∇𝐺  𝐽 =  
∂

∂𝜔𝐺
𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧)log(1 − 𝐷(𝐺(𝑧, 𝜔𝐺), 𝜔𝐷))                 (2) 

 We let the G fixed to update the model D by 𝜔𝐷 ← 𝜔𝐷 + 𝛾𝐷∇𝐷𝐽  
where 

∇𝐷 𝐽 =  
∂

∂𝜔𝐷
{𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log(𝐷(𝑥, 𝜔𝐷)) + 𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧)log(1 − 𝐷(𝐺(𝑧, 𝜔𝐺), 𝜔𝐷))}

 (3) 

In this paper, we use WGANs to verify the advantages of generating and discrimi-

nating the image using adversarial training process. 

2.2 Model Design 

We introduce a model that we called SSGAN, which contains a generative network, 

and two discriminative networks. The model can be described as Fig. 1: 

 

Fig. 1. The SSGAN model 

Since we want the G to generate realistic images that could be used as secure co-

vers for steganography, we force G to compete against the D and S at the same time. 

We use 𝑆(𝑥) to represent the output of the steganalysis network, then the game can be 

shown as follows: 

    𝐺
𝑚𝑖𝑛     𝐷

𝑚𝑎𝑥     𝑆
𝑚𝑎𝑥  𝐽 = 𝛼 (𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log(𝐷(𝑥)) + 𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧)log (1 − 𝐷(𝐺(𝑧)))) 

                    +(1 − 𝛼)𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧) [log𝑆 (𝑆𝑡𝑒𝑔𝑜(𝐺(𝑧))) + log (1 − 𝑆(𝐺(z)))] 

                                                                 (4) 

To control the trade-off between the realistic of the generated images and the eval-

uation of the steganalysis, we use a convex combination which includes the D and S 



network with parameters α ∈ [0，1]. And we show that when we give α ≤ 0.7, the 

results are closer to the noise. 

2.2.1 Generator G 

    For the generator G, it is used to generate the secure covers. And we use a fully 

connected layer, and four fractionally-strided convolution layers, and then a Hyper-

bolic tangent function layer. This network structure can be described as Fig. 2: 

 

Fig. 2. The generative network structure 

2.2.2 Discriminator D 

    For the discriminator D, it is used to evaluate the visual quality of the generated 

images. And we use four convolutional layers, and then a fully connected layer. This 

network structure can be described as Fig. 3: 

 

Fig. 3. The discriminative network structure 

2.2.3 Discriminator S 

For the S network, it is used to assess the suitableness of the generated images. And 

we first use a predefined high-pass filter to make a filtering operation, which is main-

ly for steganalysis. And then four convolutional layers. Finally we use a classification 

layer, which includes several fully connected layers. This network structure can be 

described as Fig. 4. 



 

Fig. 4. The steganalysis network structure 

2.2.4 Update Rules 

And we can show that the SGD update rules: 

 For the generator G: 𝜔𝐺 ← 𝜔𝐺 − 𝛾𝐺∇𝐺𝐽   it is calculated by   

∇𝐺  𝐽 =  
∂

∂𝜔𝐺
𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧)[log(1 − 𝐷(𝐺(𝑧, 𝜔𝐺), 𝜔𝐷))] + 

∂

∂𝜔𝐺
(1 − 𝛼)𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧) [log (𝑆(𝑆𝑡𝑒𝑔𝑜(𝐺(𝑧, 𝜔𝐺), 𝜔𝑆)))] + 

                   
∂

∂𝜔𝐺
(1 − 𝛼)𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧)[log(1 − 𝑆(𝐺(𝑧, 𝜔𝐺), 𝜔𝑆))]                                  

(5) 

 For the discriminator D:  𝜔𝐷 ← 𝜔𝐷 + 𝛾𝐷∇𝐺𝐽  it is calculated by 

∇𝐺  𝐽 =  
∂

∂𝜔𝐷
{𝐸𝑧~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥, 𝜔𝐷)] + 𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧)[log(1 − 𝐷(𝐺(𝑧, 𝜔𝐺), 𝜔𝐷))]} 

(6) 

 For the discriminator S: 𝜔𝑆 ← 𝜔𝑆 + 𝛾𝑆∇𝑆𝐽 it is calculated by 

∇𝑆 𝐽 =  
∂

∂𝜔𝑆
𝐸𝑧~𝑝𝑛𝑜𝑖𝑠𝑒(𝑧)[log𝑆(𝑆𝑡𝑒𝑔𝑜(𝐺(𝑧, 𝜔𝐺)), 𝜔𝑆) + log (1 − 𝑆(𝐺(𝑧, 𝜔𝐺), 𝜔𝑆))] (7) 

We update G to not only maximize the errors of D, but the normalization errors of 

D and S. 

3 Experiments 

3.1 Data preparation 

All experiments are performed in TensorFlow [1], on a workstation with a Titan X 

GPU. In our experiments, we use the CelebA dataset which contains more than 

200,000 images. 

We pre-process the image, and all images are cropped to 64 × 64 pixels. 

For the purpose of the steganalysis, we use 90% of the data to construct a training 

set, and regard the rest as testing set. The training set is denoted by TRAIN, and the 

testing set is denoted by TEST. We use Stego(x) to represent the steganographic algo-

rithm used to hide information. Two datasets are involved in the experiments. One is 

TRAIN + Stego(TRAIN), where Stego(TRAIN) is the training set embedded in some 



secret information, and the other is TEST + Stego(TEST). Finally, we got 380,000 

images for steganography training, 20,000 for testing. In order to train the model, we 

use 200,000 cropped images to generate images. After seven epochs, the images gen-

erated by our generative model and the model proposed in [5], denoted by SGAN, are 

shown in the Fig. 5. 

Meanwhile, we use the LSB Matching algorithm which is ±1-embedding algo-

rithm with a payload size to 0.4 bits per pixel to embed information, which we use a 

text from casual articles. 

The experimental results are as follows, the visual quality of images generated by 

our SSGAN model are higher than its counterpart. 

  

Fig. 5. Examples of images, generated by SSGAN and SGAN after training for 7 epochs on the 

CelebA dataset, the left is generated by SSGAN, the right is generated by SGAN. 

Experimental results show that through the use of WGAN, the convergence speed 

is faster than DCGAN, and the effect is more obvious, as is shown in Table 1. 

Table 1. The contrast of two methods’ time for running for seven epochs 

Method Time(mins) 

SSGAN 227.5 

SGAN 240.3 

 

3.2 Experimental Setup 

The generative network G is designed with one fully connected layer, four 

Fractionally − Strided 𝐶𝑜𝑛𝑣2𝐷 → 𝐵𝑎𝑡𝑐ℎ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 → 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 layers, 

and one Hyperbolic tangent function layer. The discriminative network D comprises 

four 𝐶𝑜𝑛𝑣2𝐷 → 𝐵𝑎𝑡𝑐ℎ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 → 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 layers, one fully connected 

layer. As for the steganalyser network S, we use a predefined high-pass filter to make 

a filtering operation, which is kept fixed while training, and four convolutional layers 



corresponding to three kinds of operations, i.e. convolution, non-linearity, and pool-

ing, followed by a fully connected layer and a softmax layer for classification.  

We train the model using RMSProp optimization algorithm with the learning rate 

2 × 10−4 and update parameters 𝛽1 = 0.5 and 𝛽2 = 0.99. We update the weights of 

D and S once, while update weights of G twice in each mini-batch. In steganalysis, 

we call S the Steganalyser. In addition to the S network, we also use an independent 

network which is called S* [17]. To make the network S effective, we also use the 

filter in [17], which defines as follows: 

𝐹(0) =

(

 
 

−1 2 −2 2 −1
2 −6 8 −6 2
−2 8 −12 8 −2
2 −6 8 −6 2
−1 2 −2 2 −1)

 
 

 

We also train the S* network using RMSProp optimization algorithm with the 

learning rate 5 × 10−6 and update parameters 𝛽1 = 0.9  and  𝛽2 = 0.99. And we use 

the format of binary cross-entropy to calculate the loss. 

We conduct experiments on real images and generative images respectively, and 

the results are as follows:  

In our first experiment, we compare the security of the generated images with that 

of real images. We embed secret message into real images and use the steganalysis 

network on real images first, then we embed secret message into generative images 

and use the steganalysis network on generative images. 

We train the S network on real images and from the results we conclude that even 

if the usual WGAN can generate a synthetic image, it can be easily detected by a ste-

ganalyser. And our method increase the results of the classification error rates, which 

means the images generated by our model is more secure to be the carrier of the ste-

ganography images. 

Table 2. Accuracy of the steganalyser trained on real images 

Type of Images SSGANs SGANs 

Real images 0.87 0.92 

Generated images 0.72 0.90 

We also use HUGO steganography scheme on real images and generative images. 

In our second experiment, we investigate the security of generated images under 

different seed values. We conduct the experiment on generative images generated by 

different setups. 

In this group of experiments, we use Qian’s network [17] which is called ste-

ganalyser S* on generated images generated by SSGAN. The input is the prior noise 

distribution 𝑝𝑛𝑜𝑖𝑠𝑒(𝑧) for some fixed seed value. We test the S* on images. The ex-

perimental setups are as follows: 

S1. We use same seed value; 

S2. We use some randomly selected seed value. 



S3. We use the same seed value, as in S2, and we additionally tune the WGAN 

model for several epochs. 

Table 3. Trained on generated images according to experimental conditions S1-S3 

Experimental Conditions Accurcy 

S1 0.87 

S2 0.72 

S3 0.71 

As is shown in Table 3, we can see that through using different seed values when 

generating images, can make it easier to deceive the steganalysis network. 

3.3 Discussion 

As demonstrated in the experiments, the method proposed in [5] has some limitations, 

the experiments show that the steganography is not secure enough. The experiments 

show that the steganalysis network in Denis’s article is suitable for embedding with 

the same key, but when using the random key, their network is not so useful. So we 

use GNCNN [17]. And we have confirmed that the steganalysis network they used 

was not so useful. Our results show that on the one hand, the generated images are 

more difficult to detect, indicating that the security performance is higher. On the 

other hand, the generated images’ visual quality is better and more realistic. 

4 Conclusion And Future Work 

In this paper, we introduce generative adversarial networks for steganography to gen-

erate more suitable and secure covers for steganography. Based on the WGANs, we 

have proposed a model called SSGAN for steganography. The proposed model is 

efficient to generate images, which have higher visual quality. And our model is suit-

able for embedding with the random key. Mostly, it can generate more secure covers 

for steganography. We have evaluated the performance of our model using CelebA 

datasets. Results show the effectiveness of the SSGAN model through the classifica-

tion accuracy, and we think it could be used for adaptive steganographic algorithm for 

social network in the future. We believe that, by exploring more steganography prop-

erties, better performance can be achieved.  
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