
A GPU-based Parallel Slicer for 3D Printing

Xipeng Zhang1, Gang Xiong2, Zhen Shen3, Member IEEE, Yiyao Zhao4, Chao Guo5, Xisong Dong6

Abstract— Mesh slicing is one of the most common operations
in additive manufacturing (AM). However, the computing
burden for such an application is usually very heavy, espe-
cially when dealing with large models. Nowadays the graphics
processing units (GPU) have abundant resources and it is
reasonable to utilize the computing power of GPU for mesh
slicing. In the paper, we propose a parallel implementation of
the slicing algorithm using GPU. We test the GPU-accelerated
slicer on several models and obtain a speedup factor of about
30 when dealing with large models, compared with the CPU
implementation. Results show the power of GPU on the mesh
slicing problem. In the future, we will extend our work and
standardize the slicing process.

I. INTRODUCTION

Driven by the growing tendency of democratized manu-
facturing, three-dimensional (3D) printing has drawn much
attention in the past few years. It has emerged as an important
technology for manufacturing and found use in a wide range
of fields. Examples of these include biomedical engineering
[1], aerospace [2], medicine [3], military [4], automobile
[5] and architecture [6]. Compared with traditional factory
production, 3D printing has the advantage of less energy
consuming and more economic benefits. The futurologist
Jeremy Rifkin claims that the 3D printing will succeed the
tradition production line assembly manufacturing mode and
open a door to the third industrial revolution [7].

3D printing, also known as additive manufacturing (AM),
refers to processes of building solid objects by adding ma-
terial layer by layer. Every 3D print starts from a 3D design
file, a digital representation for a physical object. Though
until now lots of 3D printing technologies, such as fused
deposition modeling (FDM), selective laser sintering (SLS),
and large area maskless photopolymerization (LAMP), have
been developed, slicing the design file into thin layers is an
essential step in all AM processes. The accuracy of slicing
results has a direct impact on the final surface quality. Since

1Xipeng Zhang is with the School of Computer and Control Engineer-
ing, University of Chinese Academy of Sciences, Beijing 100049, China.
zhangxipeng2015@ia.ac.cn

2Gang Xiong is with Cloud Computing Center, Chinese Academy of
Sciences, Dongguan 523808, China. gang.xiong@ia.ac.cn

3Zhen Shen is the correspondence author. He is affiliated with the
Beijing Engineering Research Center of Intelligent Systems and Technology,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China. zhen.shen@ia.ac.cn

4Yiyao Zhao with School of the Electronic and Information
Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
zhaoyiyao506@stu.xjtu.edu.cn

5Chao Guo with the State Key Laboratory of Management and Con-
trol for Complex Systems, Institute of Automation, Chinese Academy of
Sciences, Beijing 100190, China. guochao2014@ia.ac.cn

6Xisong Dong with the Qingdao Academy of Intelligent Industries,
Qingdao, Shandong 266109, China. xisong.dong@ia.ac.cn

the slicing process depends on 3D files, we would like to
introduce volumetric representations firstly.

Volumetric representations provide foundations for a wide
range of fields including computational geometry, computer-
aided design (CAD), visualization, and virtual reality. In
computer graphics, 3D objects are viewed as a collection
of surfaces, where polygons play a dominant role in approx-
imating arbitrary surfaces by meshes [8].

Slicing a 3D object refers to processes used to calculate
the intersection of slice plane and these polygons and obtain
layered machining paths in 3D printing [9]. It not only
provides visual layered image representation of the volume
data, but also enables advanced imaging algorithms for
further analysis. As a typical application of reducing three-
dimensional models to 2.5 dimensional layers, it has been
integrated in many commercial software packages, such as
SolidWorks [10], Autodesk 123D [11], Materialise Magics
[12], MeshLab [13], etc. The volumetric representations and
slicing process are illustrated in Figure 1.

(a) (b) (c)

Fig. 1. Volumetric representations and slicing process: (a) a CAD model,
(b) a tessellated model, (c) mesh slicing and contour generation

Mesh slicing is a well studied problem in the literature
and various slicing algorithms have been proposed to op-
timize this engineering issue from the perspective of time
complexity, memory usage, or model quality [14]. However,
even the most time-efficient algorithm is far from satisfactory
when dealing with large or high-precision models. Further-
more, the slicing process involves lots of independent and
computation-intensive operations and intrinsically fits into
parallel implementation. Employing parallel implementation
and multi-core device can help to greatly speedup the pro-
cess, especially for real-time system.

Compared with computer cluster, graphics processing unit
(GPU) is an efficient and cost effective option for parallel
computing. And it has become an integral part of today’s
common computer. In recent years, GPU technology has
gone through a revolution and its application is far beyond
graphics rendering. The integration of General-Proposed

2017 13th IEEE Conference on Automation Science and Engineering (CASE)
Xi'an, China, August 20-23, 2017

978-1-5090-6780-0/17/$31.00 ©2017 IEEE 55

GPU (GPGPU), heterogeneous computing and software de-
velopment kits (SDKs) enables GPU to find wide use in sci-
entific computing. Examples of these include fluid dynamic
simulation [15], traffic engineering [16], bioinformatics [17]
and geophysics [18]. A detailed introduction about GPU and
its framework can be found in Section II.

In the paper, we propose a parallel mesh slicing implemen-
tation and develop a fast 3D slicer with the help of GPU. Our
aim here is to study the potential and possible drawbacks of
GPU in the application.

The rest of the paper is organized as follows. Section II
gives a review on mesh slicing algorithm and GPU. A brief
explanation of asymptotically optimal mesh slicing algorithm
is presented in Section III. Section IV deals with the parallel
implementation as well as two key techniques. Section V
represents experimental results and the paper is ended in
Section VI with conclusion and future work.

II. REVIEW

A. Mesh Slicing Algorithm

There are two variants of the slicing problem used in
additive manufacturing. One is adaptive slicing which allows
slices of variable thickness. The main interest of adaptive
slicing is to make use of related information about the model
to adjust the layer thickness. (See [19] for a review). The
other assumes constant thickness in most cases. Research on
this variant focuses on generating object contour for each
slice as efficiently as possible [20]. In the paper, we deal
with uniform thickness slicing problem.

Slicing tremendous meshes could cause heavy computing
burden and large memory overhead, especially for complex
models. Most slicing strategies in the literature concern with
one optimization index at the expense the other. Vatani et al.
proposed a slicing algorithm to optimize memory usage by
only storing facets that intersect with current cutting plane
[21]. Choi et al. proposed a tolerant slicing algorithm, which
can effectively repair resultant inconsistent contours. They
used the strategy of extracting one facet for slicing at a time
to minimize memory usage [22]. These techniques are ideal
for a small memory system but increase extra CPU overhead
or time cost.

Instead of performing independent slice calculation, Mc-
Mains et al. exploited coherence between consecutive slices
and designed a coherent sweep plane slicer. The proposed
topological data structure has an advantage of allocating
memory more efficiently [23]. Huang et al. established a
hash table to store coordinates of slicing planes so that all
slicing planes that intersect with a given facet can be quickly
found [24]. These techniques help to reduce slicing time but
are difficult to parallelize.

Some parallel computing solutions for mesh slicing prob-
lem are found in the literature [14], [20], [25]. Given the
tradeoff between memory usage and time efficiency, we
choose the asymptotically optimal slicing algorithm and
implement it with GPU.

B. NVIDIA GPU and CUDA Framework

As a multi-core device, GPU is specialized for compute-
intensive and highly parallel tasks, which is the major
difference from CPU. The latest NVIDIA GTX 1080 Ti GPU
has up to 3584 cores with a theoretical memory bandwidth of
484GB/s. The cores are called streaming processors (SP) and
several cores (8 or 32 typically) are organized into a stream-
ing multi-processor (SM) [16]. The abundant resources in
GPU make it most suitable for single instruction, multiple
data (SIMD) operations, which bear the most computing
burden in the slicing problem.

In November 2006, NVIDIA company released Compute
Unified Device Architecture, also named CUDA, a general
purpose computing platform and programming model [26].
With CUDA, people can have easy access to raw computing
power in GPU and program GPU with high-level languages
such as C, FORTRAN and OpenACC. A typical CUDA
program consists of two parts. One is CPU (host) codes
that handle sequential work, allocate and free GPU memory,
transfer data between host memory and device memory and
assign tasks to GPU. The other is GPU (device) codes that
do parallel work. Functions with decorators global are so
called “kernels”. These kernels execute on GPU and can be
called from the host.

Once a kernel is launched, multiple threads that run
simultaneously will be activated. In CUDA, these threads
are organized into a two-level hierarchy: block and grid. A
block is made up of a three-dimensional array of threads, and
a grid is made up of a three-dimensional array of blocks. The
threads in the same block enjoy an additional shared memory
and can be synchronized with each other. All threads can
exchange data with the constant memory, texture memory
and global memory of GPU. In addition, constant memory is
a small and cached space for constant variables, and texture
memory is optimized for 2D spatial locality. Global memory
occupies the largest space of the GPU memory but has the
largest latency. The CUDA framework tries to mask the
latency by computing other threads. Fig. 2 illustrates the
CUDA programming model.

GPU
SM

Shared
Memory

Assign data to

threads organized

by Grid and Block

CPU CODES
Serial execution

GPU CODES
Parallel Computing

Grid

Block(0,0) Block(0,1) Block(0,2)

Block(1,0) Block(1,1) Block(1,2)

Constant Memory

Global Memory

Texture Memory

thread(0,0) thread(0,1) thread(0,2)

thread(1,0) thread(1,1) thread(1,2)

SM

...

Shared
Memory

Kernel
Launch

C
P

U
 t

h
re

a
d

Allocate GPU memory

and copy data to GPU

Copy results back to CPU memory

and free GPU memory

.

.

.

.

.

.

Fig. 2. An overview of the CUDA programming model

56

III. ALGORITHM

Before describing the method, we make some restrictions
and give the formulation of the slicing problem.

• Triangles are the most commonly used polygons in
representing 3D object, and the de facto industry format
for storing it is the STL (StereoLithography) file. The
format is a tessellated representation of a solid model,
whose surface is approximated by a number of three
sided planar facets (triangles). Since the STL file format
has been the most popular for additive manufacturing,
we here focus on the STL model slicing problem
[27]. Note that in the new Additive Manufacturing File
Format (AMF) standard, triangles are still used as the
basic elements to define the volume information of a
3D object [28]. So, our method is also applicable to the
next generation AM file format, also known as STL2.

• Rotation sometimes needs to be applied to the model
before slicing and this may lead to different slicing
results compared with the untransformed model. A
model transformed with rotation will be treated as a
new model with the coordinates of its points renewed
by a rotation matrix.

The volumetric model T in a STL file is actually a set of
triangles

T = {ti, i = 1, 2, . . . , n}

ti = {(V0, V1, V2) | V0, V1, V2 ∈ R3}

where ti is a triangle and V0, V1, V2 represent the three
vertices of ti using a three-dimensional Cartesian coordinate
system. By default, the slice plane is perpendicular to z axis.
Assume that zmin and zmax are the minimum and maximum
z coordinates of T and slice thickness is the thickness of
the slices. Thus, the number of slices m can be calculated by

m = dz max− z min

slice thickness
e

where the ceiling function d·e is used to make m a integer.
In [20], Dant proposed the asymptotically optimal mesh

slicing algorithm by three primary algorithms: preprocess-
ing sort algorithm, slice algorithm and contour assembly
algorithm. In the preprocessing sort algorithm, triangles are
grouped into different sets, and then the intersections of
slice planes and these triangles are calculated by the slice
algorithm. The output of the slice algorithm is a collection of
unsorted line segments, and the contour assembly algorithm
creates complete closed contours for each layer. Since the
slice algorithm is necessary for all AM technologies and
consumes the most execution time, we here focus on the
parallel implementation of the slice algorithm. To help you
have a better understanding of our study, we give a brief
explanation of the first two primary algorithms.

A. Preprocessing Sort Algorithm

For a given triangle, the slice planes intersecting with
it can be easily calculated according to its minimum and
maximum z coordinates. The idea behind precessing sort
algorithm is to group together triangles so that all triangles

that intersect with the same plane would be stored in the same
bucket. Algorithm 1 shows the preprocessing sort algorithm.
In most cases, the number of buckets in the bucket list B is
equal to the number of slices m. For n triangles in T, the
time complexity of this approach is O(n) [20]. Note that the
triangles that is parallel to slice plane will be dropped since
Indexhighest is equal to Indexlowest.

Algorithm 1: Preprocessing Sort
Input: Triangles T
Output: Bucket List B

1 B ← Create a list of buckets();
2 foreach triangle t in T do
3 Find min and max z axis coordinate for t;
4 Let Indexlowest be the index of the lowest bucket

intersecting t;
5 Indexlowest=d triangleminz−zmin

slice thickness e;
6 Similarly we have

Indexhigtest=d trianglemaxz−zmin

slice thickness e;
7 for i = Indexlowest to Indexhigtest − 1 do
8 B[i].Add(t);

9 return B;

B. Slice Algorithm

With sorted triangles, slice algorithm uses a nested loop
to calculate such a intersection line for every triangle in
each bucket. The outer loop iterates over every bucket in the
bucket list B and the inner loop iterates over every triangle
in current bucket. Algorithm 2 shows the slice algorithm.
The time complexity of slice algorithm can be simplified as
O(n) [20].

Algorithm 2: Slice
Input: Bucket List B
Output: Line Segments S

1 S ← Create a list of lines();
2 i=0;
3 foreach bucket b in B do
4 foreach triangle t in b do
5 if B.SliceP lane ∩ t 6= ∅ then
6 line=Calculate Intersection();
7 S[i].Add(line);

8 i++;

9 return S;

According to the results of preprocessing algorithm, po-
sition relation between a triangle and a given slice plane
can be covered by any of the five cases, shown in Fig 3.
When only the highest vertex or the highest two vertices of
a triangle are on the slice plane (case 1 or case 2), there is
no intersection line. In other cases, there is a line created
by the intersection of a slice plane and a triangle. In case 3,

57

one point of intersection is viewed as a line segment with
the same end point. The coordinates of these intersections
can be calculated by similar triangles and the process, in
Algorithm 2, is represented by Calculate Intersection()
for simplicity.

Slice plane

Triangle facet

(a) (b)

(c) (d) (e)

Fig. 3. All 5 cases when a slice plane intersects a triangle facet.

IV. IMPLEMENTATION

In this section, we mainly describe the parallel imple-
mentation of the slice algorithm. The basic idea behind
our implementation is that every thread only deals with
the calculation of the intersection of one triangle and one
slice plane. In this way, we can maximize the parallel
implementation of the nested loop in the slice algorithm. In
the following description, two key techniques, data structure
and computing resource allocation, in our implementation
will be discussed.

A. Data Structure

Before slicing, we need to parse the 3D data stored in a
STL file. The STL format specifies ASCII and binary rep-
resentations and both representations contain an unordered
list of triangles. Each triangle is define by the unit normal
and vertices by 12 floating point numbers. By default, the
direction of the normal and the order of vertices follow the
right-hand rule.

Given the memory usage, we design two classes, Vertex
and Facet, to store 3D data in a STL file. Vertex class has
three floating numbers which represent the X/Y/Z coordinate
of a vertex respectively. All different vertices of a STL model
are placed in an array of Vertex and the index of these vertices
depends on the order they appear. Facet class defines three
integer variables to indicate the index of three vertices in a
triangle mesh. Similarly, all triangles in a STL file are placed
in a array of Facet.

Although the size of the bucket list B is unknown during
the execution of preprocessing, we use a data structure of
fixed-size array to implement B. The array size is obtained
by adding up the number of triangles in each bucket. The
triangles in B are represented by their index in the array of
Facet. In this way, we can get access to all necessary data
for slicing with the benefit of less memory usage.

B. Computing Resources Allocation
After preprocessing, large host variables, including bucket

list B and STL model data (array of Vertex and array of
Facet), are copied to the global memory of GPU, while some
small variables, including slice thickness, m, and zmin, are
copied to the constant memory for fast access by each thread.

In our high-level parallel implementation of the slice
algorithm, every triangle in a bucket is assigned to one thread
and all buckets will be executed simultaneously. In order to
set aside enough threads for each bucket, an alternative upper
limit of the total number of threads can be calculated as:

TotalThreadNum = m×MaxBuctetSize

where m is the number of buckets in B and
MaxBucketSize is the maximum bucket size:

MaxBucketSize = max{ |B[i]| }

where |B[i]| represents the size of bucket B[i].
As shown in Fig. 4, a one-dimension block of threads

BlockDim and a two dimensions grid of thread blocks
GridDim are set up to organize these threads in GPU. There
is a limit to the number of threads per block and optimal
BlockDim can be determined by several experiments or
CUDA Occupancy Calculator. CUDA Occupancy calculator
is an Excel spreadsheet that allows you to calculate the
multiprocessor occupancy of a GPU by a given kernel. Note
that the higher CUDA occupancy is, the more effectively you
use the GPU. For more details, please see [29].

Given that MaxBucketSize is usually much greater than
BlockDim, several blocks are need to handle the triangles
in a bucket. This forms the second dimension of GridDim:

GridDim.y = dMaxBucketSize/BlockDime

where GridDim.y represents the size of the second dimen-
sion of GridDim.

Each row of blocks in the grid handles the triangles in one
bucket and the number of rows:

GridDim.x = m

where GridDim.x similarly represents the size of the first
dimension of GridDim.

CPU GPU

layer_thickness

z_min, z_max
Array of Vertex Global Memory Constant Memory

Array B Array of Facet

Grid

(0, 0) (0, 1) (0, 2) (0, y)...

.
..

(i, 0) (i, 1) (i, 2) (i, y)

(x, 0) (x, 1) (x, 2) (x, y)

...

...
.
..

...

...

..
.

Shared Memory

bucket 0 ...

bucket 1 ...

bucket i ...

bucket m ...

...

...
...

...

Fig. 4. Data structure and computing resource allocations

58

V. EXPERIMENT

A. Hardware Setup

The system used in our study contains a hexa-core Intel
Xeon R© E5-2620 at 2.0GHz with 128GB of DDR3 memory
and a NVIDIA TITAN X card. Some key performance
indicators of the GPU are given in Table I. For more technical
data about the GPU, please refer to [30]. The machine runs
a GUN/Linux system with Linux kernel 2.6 and NVIDIA
driver 367.57. We use GCC 4.8.2 and NVIDIA CUDA 8.0
compiler for GPU code.

TABLE I
KEY PERFORMANCE INDICATORS OF NVIDIA TITAN X

Architecture Maxwell

Number of SPs (cores) 3072

Clock Rate (MHz) 1076

Memory Bandwidth (GB/s) 336.5

Video Memory (MB) 12288

We deal with the kernel thread configuration issue at first.
The number of threads per block, BlockDim, should be a
round multiple of the warp size, usually 32 on most current
hardware. Give that the maximum number of threads per
block in TITAN X is 1024, some performance tests are made
to find that the optimal BlockDim, in our case, is 1024. The
grid size GirdDim will be determined at run time using the
equations provided in Part B Section IV.

B. Results

We implement the fast slicer as a console application for
possible extension and further integration. Our aim here is
to obtain slice results as fast as possible, so no graphical
interface is desired.

To evaluate the performance of the fast slicer, we slice
models of various size and measure the time spent on the
parallel slice algorithm. Note that all test models can be
obtained for free form the online community Pinshape [31].
We make a CPU implementation of the slicer as benchmark
in our test. After 20 times independent run, a comparison
of the average execution time for both implementations is
shown in Table II.

Model
of

Vertices

of

Facets
thickness

CPU

Only

(/s)

CPU+

GPU

(/s)

Speedup

Elephant 62k 125k 1

0.5

0.1

0.36

1.62

10.56

0.23

0.30

0.56

1.57

5.40

18.86

TABLE II

TIME CONSUMPTION OF SLICING ON DIFFERENT MODELS

Bracelet_c 121k 244k

Bracelet_d 243k 488k

Yoda 667k 1335k 0.05 29.59 1.35 21.92

0.05 4.37 29.45Turbine engine 1527k 3059k 128.69

Clementine 2318k 4644k 0.05 239.72 7.03 34.10

(a) (b) (c)

(d) (e) (f)

Fig. 5. Test models: (a) Elephant, (b) Bracelet c, (c) Bracelet d, (d) Yoda,
(e) Turbine engine, (f) Clementine

As shown in Table II, the GPU-accelerated slicer gains
decent speedups in all test models. Furthermore, along with
the models become more complicated and the slice thickness
becomes thinner, the computing burden is much heavier than
before and it is time that GPU shows its power in the
meshing slicing problem. We can conclude that parallel slicer
has some advantages over tradition slicer and it can gain a
speedup factor of about 30 when faced with complex models.

We use the CUPTI profiling library provided by CUDA to
analyse the execution time of the parallel slice algorithm and
find that the execution time is composed of two parts: data
processing time and kernel execution time. As illustrated in
Fig. 2, we allocate GPU memory and then transfer data to
GPU before the kernel is launched. In our case, the data is
STL data (array of Vertex and array of Facet), array B and
some small variables. The size of array B makes up over 90%
of the data and the percentage will continue to increase when
the models become more complicated or the slice thickness
becomes thinner. Array B can also affect the execution time
of the kernel since it is closely related to thread configuration
of the kernel. Therefore, we can reduce that array B has a
significant impact on the execution time of the parallel slice
algorithm.

We slice models with different thickness to make a
approximately linear growth of the size of array B. The
execution time for both implementations with two models
is summarized in Table III and Table IV, which is also the
average of 20 times independent run.

Model thickness

CPU

Only

(/s)

CPU+

GPU

(/s)

Speedup

1

0.1

0.01

0.36

3.62

36.16

0.23

0.36

1.46

1.57

10.06

24.77

TABLE III

TIME CONSUMPTION OF SLICING ON ELEPHANT

Size of

Array B

(/MB)

203.0

20.3

Elephant

2029.8

59

Model thickness

CPU

Only

(/s)

CPU+

GPU

(/s)

Speedup

Bracelet_d

1

0.1

0.01

1.06

10.56

104.93

0.27

0.56

3.34

3.92

18.86

31.42

TABLE Ⅵ

TIME CONSUMPTION OF SLICING ON BRACELET_D

Size of

Array B

(MB)

554.7

5547.3

55.5

From Table III and Table IV, it could be realized that
the computation load of the slice algorithm has a nearly
linear increase with the decrease the slice thickness, which is
reflected in the execution time of the CPU implementation.
However, the execution time of the CPU+GPU implementa-
tion grows rather slowly when the slice thickness decreases
linearly and the growth in the speedup is a good indicator to
show the potential of GPU in the slicing issues.

VI. CONCLUSION

In the paper, we propose a parallel implementation for the
asymptotically optimal mesh slicing algorithm. GPU is used
in our implementation and some details about data structure
and computing resources allocation are given. Results show
the great power of GPU on the mesh slicing issues.

The paper is part results of the on-going research project.
Further research on contour assembly and the introduction
of adaptive slicing is needed to fulfill the project. We believe
that the standard procedure for parallel slicing can reasonably
save slicing time, fully utilize current hardware resource and
contribute to the development of 3D printing.

ACKNOWLEDGMENT

The work in this paper is supported by the National
Natural Science Foundation of China under Grants
61233001, 71232006, 61304201, 61533019 and 91520301;
2016 College Students Innovation and Practice Training
Program, Chinese Academy of Sciences; Finnish
TEKES’s Project SoMa2020: Social Manufacturing
(2015-2017, 211560); Chinese Guangdong’s S&T project
(2014B010118001, 2014B090902001, 2014A050503004,
2015B010103001, 2016B090910001).

REFERENCES

[1] F. Rengier, A. Mehndiratta, and H. von Tengg-Kobligk et. al, “3D
printing based on imaging data: review of medical applications,”
International journal of computer assisted radiology and surgery,
vol. 5, no. 4, pp. 335–341, 2010.

[2] D. Bak, “Rapid prototyping or rapid production? 3d printing processes
move industry towards the latter,” Assembly Automation, vol. 23, no. 4,
pp. 340–345, 2003.

[3] S. Chen, Z. Pan, Y. Wu, et. al, “The role of three-dimensional printed
models of skull in anatomy education: a randomized controlled trail,”
Scientific Reports, vol. 7, no. 1, p. 575, 2017.

[4] C. C. Kai, “Three-dimensional rapid prototyping technologies and
key development areas,” Computing & Control Engineering Journal,
vol. 5, no. 4, pp. 200–206, 1994.

[5] N. J. Mankovich, A. M. Cheeseman, and N. G. Stoker, “The display of
three-dimensional anatomy with stereolithographic models,” Journal
of digital imaging, vol. 3, no. 3, pp. 200–203, 1990.

[6] C. X. F. Lam and X. M. Moand and S. H. Teoh, et. al, “Scaffold
development using 3d printing with a starch-based polymer,” Materials
Science and Engineering: C, vol. 20, no. 1, pp. 49–56, 2002.

[7] (2016) Jeremy Rifkin and The Third Industrial Revolution Home Page.
[Online]. Available: http://www.thethirdindustrialrevolution.com/

[8] H. Hsieh, Y. Lai, and W. T. et al., “A flexible 3D slicer for voxelization
using graphics hardware,” in Proceedings of the 3rd International
Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia, Dunedin, New Zealand, 2005, p.
285.

[9] A. Dolenc and I. Mäkelä, “Slicing procedures for layered manufactur-
ing techniques,” Computer-Aided Design, vol. 26, no. 2, pp. 119–126,
1994.

[10] (2014) Solidworks. [Online]. Available:
http://www.solidworks.com.cn/

[11] (2010) Autodesk 123d. [Online]. Available: http://www.123dapp.com/
[12] (2016) Materialise magics. [Online]. Available:

http://www.materialise.com/
[13] (2016) Meshlab. [Online]. Available: http://www.meshlab.net/
[14] C. Kirschman and C. Jara-Almonte, “A parallel slicing algorithm

for solid freeform fabrication processes,” Solid Freeform Fabrication
Proceedings, Austin, TX, pp. 26–33, 1992.

[15] J. Tölke, “Implementation of a lattice boltzann kernel using the
compute unified device architecture developed by nvidia,” Compute
Visual Sci, vol. 13, no. 1, p. 29, 2010.

[16] Z. Shen, K. Wang, and F. Zhu, “Agent-based traffic simulation and
traffic signal optimization with gpu,” in 14th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Washington,
D.C., USA, Oct. 2011, pp. 145–150.

[17] A. Benso and S. Di Carlo and G. Politano et. al, “GPU acceleration for
statistical gene classification,” in 2010 IEEE International Conference
on Automation Quality and Teating Robotics, vol. 2, 2010, pp. 1–6.

[18] R. M. Weiss and J. Shragge, “Solving 3d anisotropic elastic wave
equations on parallel gpu devices,” Geophysics, vol. 78, no. 2, pp.
F7–F15, 2013.

[19] P. M. Pandey, N. V. Reddy, and S. G. Dhande, “Slicing procedures in
layered manufacturing: a review,” Rapid Prototyping Journal, vol. 9,
no. 5, pp. 274–288, 2003.

[20] C. Dant, “Design and implementation of asymptotically optimal mesh
slicing algorithms using parallel precessing,” School of Computing
at Southern Adventist University, Collegedale, Tennessee, Tech. Rep.
DEC-TR-506, Sept. 2015.

[21] M. Vatani, A. Rahimi, and F. Brazandeh, “An enhanced slicing
algorithm using nearest distance analysis for layer manufacturing,”
in Proceeding of World Academy of Science, Engineering and Tech-
nology, vol. 25, 2009, pp. 721–726.

[22] S. Choi and K. Kwok, “A tolerant slicing algorithm for layered
manufacturing,” Rapid Prototyping Journal, no. 3, pp. 161–179, 2002.

[23] S. McMains and C. Séquin, “A coherent sweep plane slicer for layered
manufacturing,” in Proceedings of the fifth ACM symposium on Solid
modeling and applications. Ann Arbor, Michigan, USA: ACM, June
1999, pp. 285–295.

[24] S. Choi and K. Kwok, “A tolerant slicing algorithm for layered
manufacturing,” Rapid Prototyping Journal, vol. 8, no. 3, pp. 161–
179, 2002.

[25] R. M. Gregori, N. Volpato, and R. M. et. al, “Slicing triangle meshes:
An asymptotically optimal algorithm,” in 2014 14th International
Conference on Computational Science and Its Applications (ICCSA),
2014, pp. 252–255.

[26] NVIDIA CUDA. (2016) NVIDIA CUDA C Programming Guide,
Versiion 8.0. [Online]. Available: http://docs.nvidia.com/

[27] N. Gershenfeld, Fab: the coming revolution on your desktop–from
personal computers to personal fabrication. Basic Books, 2008.

[28] A. Standard. (2011, July) Standard specification for additive manufac-
turing file format (amf) version 1.1.

[29] NVIDIA CUDA. (2015) CUDA Occupancy calculator. [Online].
Available: http://developer.download.nvidia.com/compute/cuda/

[30] NVIDIA TITAN X. (2015). [Online]. Available:
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x

[31] Pinshape. (2013) 3d printing community and marketplace. [Online].
Available: http://www.materialise.com/

60

