
An Automatic and Practical Flow for Clock Tree
Construction in Physical Design

Meng Liu, Wenqin Sun, Wuqi Wang, Zhiwei Zhang, Donglin Wang

Institute of Automation, Chinese Academy of Sciences
University of Chinese Academy of Sciences

Beijing, 100190, China
liwneng20 13@ia.ac.cn

Abstract-High performance chip design is always a hot topic in

integrated circuit (IC) field. Clock design plays a critical role in

improving chip performance. In this paper, we propose an

automatic and practical flow for clock tree design, which is a

popular clock structure. Based on deferred-merge embedding

(DME) algorithm, we integrate buffer insertion and obstacle

processing into the layout design. The clock skew is guaranteed to

be small in the presence of correlated process variations. Our

work also combines the algorithm results and SPICE-driven

simulation results into a practical flow.

Keywords-clock design; buffer insertion; obstacle processing

I. INTRODUCTION

As the technology of semiconductor process is scaling
down to lOnm and below, it is possible to assemble systems
with high performance processors that can theoretically
provide computational power of up to tens of PLOPS [1]. In
processor design flow, physical design plays an important role
in controlling power and improving its frequency, although the
processor architecture may determine the scale of performance.
And clock distribution network (CDN) contributes more than
40% of processor power, mainly due to the constant switching
and large capacitance loads from clock divers or buffers [2].
CDN design always aims at fmding the trade-off of low power
and high performance. Apparently, this is a green computing
topic in EDA (Electronic Design Automation) area. As a
physical design part in EDA flow, CDN design has several
structure styles to choose, including clock tree, clock mesh,
clock spine and etc.

Clock tree design is the most common CDN structure for
the following advantages. Firstly, it is easy to design and
analyze by using tree-based distributions (single path between
source and sinks). Secondly, the power of tree style is much
less that non-tree style because of the less wire spending. Clock
tree design in VLSI (Very Large Scale Integration) is also
called clock tree synthesis, which is used to dynamically insert
clock drivers between the clock source pin and multiple
receiver pins, physically placing the drivers in the optimized
locations, and routing the clock nets [3], as shown in Fig. l.

Several previous works have contributed to clock tree
design. The most influential algorithm is called DME
(Deferred Merge Embedding) which aims at the minimum wire
length and zero clock skew [4]. Several related papers extend

978-1-4673-9904-3/16/$31.00 ©2016 IEEE

671

DME algorithm to some situations which engineers will
encounter in real design. In [5], obstacles are considered in the
Ex-DME algorithm when there are obstacles in the routing
plane. In [6], buffer insertion is added into the original DME
algorithm for minimizing clock phase delay and wire length.
However, they did not use the simulation method to get
accurate results.

s ''' "

Clock source Buffer level Receivers

Figure 1 Example of a clock tree.

In commercial EDA tools, clock tree synthesis is integrated
into the design flow, users only need and have to use the major
commands to design. However, by ignoring too many details,
the result cannot guarantee the critical timing requirement and
will bring a lot of superfluous buffers which improve power,
especially for lOnm and below. So developing a custom design
flow of clock tree is a trend and can also make hybrid CDN
structure like clock mesh and clock spine implement easily.

II. DESIGN FLOW AND SPECIFICA nON

A. Problem Formulation

The sinks represent the registers in the layout design. Skew
is because the difference of the clock arriving time from sinks.
Let r be the root, N be the number of clock pins, and Ii be a leaf.
Clock skew is defined as

Skew= max I d(r,l)-d(r,l) I
15.I,j'5.N

(1)

A set of obstacles are given. The constraints are the timing
constraint and no overlap with obstacles. We choose
appropriate clock buffers in 65nm TSMC library. Our objective
is to minimize the worst skew and the total clock wire length.
The information in netlist, timing constraint file, DEF (Design
Exchange Format), logic library and physical library have been
parsed into necessary files. We map this clock tree construction

into a commercial place and route tool to help us tape-out. The
design flow is as in Fig. 2. The detail approaches will be
discussed in following parts.

DME-based algorithm

/

Figure 2 Algorithmic flow

B. Deferred-Merge Embedding(DME} Algorithm

The deferred-merge embedding (DME) algorithm defers
the choice of merging points for sub-trees of the clock tree. The
algorithm framework includes two phases: the fIrst phase of
DME is bottom-up, and determines all possible locations of
internal nodes of topology that are consistent with a minimum­
cost zero-skew tree. A TRR (Tilted Rectangular Region) is a
collection of points within a fIxed distance of a Manhattan arc.
The merging segment of a node v in the topology is denoted by
ms(v}. The output of this phase is sets of line segments, with
each line segment being the locus of possible placements of an
internal node (Fig. 3).

Figure 3 Construct merging segments for sinks.

In the next phase is called top-down phase or embedding
phase, exact locations of internal nodes in topology are
determined. Any point on the root merging segment from the
bottom-up phase is consistent with a minimum-cost tree. This
phase is illustrated in Fig.4.

DME requires an input topology. Several works have
studied topology constructions that lead to low-cost routing

672

solutions and the most successful is the Greedy-DME method
[4]. Greedy-DME iteratively fInds the pair of nearest neighbors
among the merging segments. We have integrated this
algorithm into our flow.

Figure 4 Embedding phase.

C. Buffered Clock Tree Modeling

In clock tree design, we usually insert buffers to control
delay and slew. Our buffer insertion is implemented in DME
phase. We design two modes of buffer insertion. Based on the
constructed tree topology, buffers can be straightforwardly
placed according to tree roots. This is called root mode.
Otherwise, designers can set buffers according to clustering
trees which can save a lot of buffers. This is called level mode.
Because our clock tree is a binary tree structure, buffer
insertion will not influence skew by using the same buffer type.
The timing delay of buffer can be computed by using Elmore
delay model and the wiring parasitics are modeled using
distributed RC model (Fig.S). Buffers of different sizes have
different parameters, so we build a buffer library to choose the
suitable one. Before buffer insertion, the capacitance under tree
node v is C, which equals the total capacitance of its sub-tree
rooted by v. After buffer insertion, C reduces to c. Capacitance
c is usually much less than C, therefore clock tree latency can
be reduced. The delay through the buffer is rc+d. Given the
driver resistance R and the load C of the wire segment, the path
delay can also be computed according to n-type RC model.
This analytical approach during DME flow can save much time
compared to simulation method [6]. However, clock slew
parameter cannot be avoided in real design.

Buffer

Figure 5 A clock buffer model.

In our buffer insertion flow, we fust choose level mode. If
the result can satisfy timing requirement, the program will go
on for IC Compiler (a commercial place and route tool) stage.
Level mode will use much less buffers than root mode.

However, root mode can guarantee better timing result. After
analytical computing, Monte-Carlo SPICE simulation can help
verify the final result. Monte-Carlo SPICE simulation is
necessary to achieve relatively accurate buffer's output slew.
The design flow is as followings in Fig.6. Our clock tree
construction with buffers is shown in Fig.7.

mode 1

N

Based on IC Compiler
timing report

Figure 6 Buffer insertion flow.

Figure 7 Clock tree construction with buffers.

D. Obstacle-avoiding Clock Routing

In our design flow, we regard blockages and UPF (Unified
Powered Format) regions as obstacles. Apparently, obstacles
are common met in real design. We integrated this process
into the DME algorithm. After generating the clock tree
topology and merging segments, the intersections can be
computed based on obstacles and merging regions. SDR
(Shortest Distance Region) is the set of points that have
minimum sum of Manhattan distances. If SDR does overlap
with obstacles, select the embedding point in merging lines
according to DME rule. Otherwise, we need to compute the

673

shortest paths from p to merging segments, and choose the
suitable point with the least cost to be the embedding point.
The specific algorithm part is as followings.

Algorithm Top-down Embedding with obstacles
consideration

Input: clock topology G, merging segment lines
Output: the embedding location of v

Let C be the possible embedding points of v
for each merging segment msv E ms_set(v) do

if SDR(p, msv) () obsts = 0 then
Select the embedding point Iv by DME rule

C f- C U Iv

else
Find the shortest paths from p to msv
Select the target point It with minimum cost

C f- CUlt
Choose the point nearest to p in C

III. EXPERIMENTAL RESULTS

We implement our algorithm in C++ on a PC workstation
of Intel Core i7-3537U cpu. We have ran experiments on
benchmark circuits rl-r5 [7]. The parameter of metal layer is
0.0030hmlnm and 0.02fF/nm. The output resistance of clock
buffer we use is 10011, the capacitance is 50 fF, and the buffer
delay is 100 ps. The results are shown in TABLE I. All
experiments are under SOps of skew bound. Simulation graph is
shown in Fig.8. We also use TSMC 65nm technology to fmish
the physical design of benchmark circuit s1196 in ISCAS89.
The layout result is shown in Fig.9.

Circuits

r1

r2

r3

r4

r5

TABLE I RESULTS FOR BENCHMARK CIRCUITS

Sink Wirelength
number (nm)

267 969439.23

598 1918564.36

862 2405578.43

1903 4946409.70

3101 7267365.01

," J

Delay without Delay with
buffers (ps) buffers (ps)

4702.14 4809.33

10444.91 10545.11

13384.10 13490.84

34161.80 34264.05

54993.40 55097.33

Figure 8 Simulation with obstacles consideration.

Figure 9 A clock tree of s il96 benchmark circuit.

IV. CONCLUTION

We have presented an automatic and practical flow for
Clock Tree Construction in physical design with buffer
insertion and obstacles avoiding features. By using our flow, it
is easy to synthesize the circuit with low skew requirement. In
future, we plan to apply the flow into clock mesh and clock
spine design. This method provides the possibility of designing
the local clock trees in hybrid clock structure.

674

REFERENCES

[i] D. Wang, X. Du, L. Yin, C. Lin, H. Ma, W. Ren, et aI., "MaPU: A novel
mathematical computing architecture," in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016,
pp. 457-468.

[2] U. R. Tida, V. Mittapalli, C. Zhuo, and Y. Shi, "Opportunistic through­
silicon-via inductor utilization in LC resonant clocks: concept and
algorithms," in Proceedings of the 2014 IEEE/ACM International
Conference on Computer-Aided Design, 2014, pp. 750-757.

[3] M. C. Chi and S.-H. Huang, "A reliable clock tree design methodology
for ASIC designs," in Quality Electronic Design, 2000. ISQED 2000.
Proceedings. IEEE 2000 First international Symposium on, 2000, pp.
269-274.

[4] 1. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, "Bounded-skew
clock and Steiner routing," ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 3, pp. 341-388, 1998.

[5] A. B. Kahng and c.-W. A. Tsao, "More practical bounded-skew clock
routing," in Proceedings of the 34th annual Design Automation
Conference, 1997, pp. 594-599.

[6] Y. Chen and D. Wong, "An algorithm for zero-skew clock tree routing
with buffer insertion," in European Design and Test Conference, 1996.
ED&TC 96. Proceedings, 1996, pp. 230-236.

