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Abstract-High performance chip design is always a hot topic in 

integrated circuit (IC) field. Clock design plays a critical role in 

improving chip performance. In this paper, we propose an 

automatic and practical flow for clock tree design, which is a 

popular clock structure. Based on deferred-merge embedding 

(DME) algorithm, we integrate buffer insertion and obstacle 

processing into the layout design. The clock skew is guaranteed to 

be small in the presence of correlated process variations. Our 

work also combines the algorithm results and SPICE-driven 

simulation results into a practical flow. 
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I. INTRODUCTION 

As the technology of semiconductor process is scaling 
down to lOnm and below, it is possible to assemble systems 
with high performance processors that can theoretically 
provide computational power of up to tens of PLOPS [1]. In 
processor design flow, physical design plays an important role 
in controlling power and improving its frequency, although the 
processor architecture may determine the scale of performance. 
And clock distribution network (CDN) contributes more than 
40% of processor power, mainly due to the constant switching 
and large capacitance loads from clock divers or buffers [2]. 
CDN design always aims at fmding the trade-off of low power 
and high performance. Apparently, this is a green computing 
topic in EDA (Electronic Design Automation) area. As a 
physical design part in EDA flow, CDN design has several 
structure styles to choose, including clock tree, clock mesh, 
clock spine and etc. 

Clock tree design is the most common CDN structure for 
the following advantages. Firstly, it is easy to design and 
analyze by using tree-based distributions (single path between 
source and sinks). Secondly, the power of tree style is much 
less that non-tree style because of the less wire spending. Clock 
tree design in VLSI (Very Large Scale Integration) is also 
called clock tree synthesis, which is used to dynamically insert 
clock drivers between the clock source pin and multiple 
receiver pins, physically placing the drivers in the optimized 
locations, and routing the clock nets [3], as shown in Fig. l. 

Several previous works have contributed to clock tree 
design. The most influential algorithm is called DME 
(Deferred Merge Embedding) which aims at the minimum wire 
length and zero clock skew [4]. Several related papers extend 
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DME algorithm to some situations which engineers will 
encounter in real design. In [5], obstacles are considered in the 
Ex-DME algorithm when there are obstacles in the routing 
plane. In [6], buffer insertion is added into the original DME 
algorithm for minimizing clock phase delay and wire length. 
However, they did not use the simulation method to get 
accurate results. 

s ''' " 

Clock source Buffer level Receivers 

Figure 1 Example of a clock tree. 

In commercial EDA tools, clock tree synthesis is integrated 
into the design flow, users only need and have to use the major 
commands to design. However, by ignoring too many details, 
the result cannot guarantee the critical timing requirement and 
will bring a lot of superfluous buffers which improve power, 
especially for lOnm and below. So developing a custom design 
flow of clock tree is a trend and can also make hybrid CDN 
structure like clock mesh and clock spine implement easily. 

II. DESIGN FLOW AND SPECIFICA nON 

A. Problem Formulation 

The sinks represent the registers in the layout design. Skew 
is because the difference of the clock arriving time from sinks. 
Let r be the root, N be the number of clock pins, and Ii be a leaf. 
Clock skew is defined as 

Skew= max I d(r,l)-d(r,l) I 
15.I,j'5.N 

(1) 

A set of obstacles are given. The constraints are the timing 
constraint and no overlap with obstacles. We choose 
appropriate clock buffers in 65nm TSMC library. Our objective 
is to minimize the worst skew and the total clock wire length. 
The information in netlist, timing constraint file, DEF (Design 
Exchange Format), logic library and physical library have been 
parsed into necessary files. We map this clock tree construction 



into a commercial place and route tool to help us tape-out. The 
design flow is as in Fig. 2. The detail approaches will be 
discussed in following parts. 

DME-based algorithm 

/ 

Figure 2 Algorithmic flow 

B. Deferred-Merge Embedding(DME} Algorithm 

The deferred-merge embedding (DME) algorithm defers 
the choice of merging points for sub-trees of the clock tree. The 
algorithm framework includes two phases: the fIrst phase of 
DME is bottom-up, and determines all possible locations of 
internal nodes of topology that are consistent with a minimum­
cost zero-skew tree. A TRR (Tilted Rectangular Region) is a 
collection of points within a fIxed distance of a Manhattan arc. 
The merging segment of a node v in the topology is denoted by 
ms(v}. The output of this phase is sets of line segments, with 
each line segment being the locus of possible placements of an 
internal node (Fig. 3). 

Figure 3 Construct merging segments for sinks. 

In the next phase is called top-down phase or embedding 
phase, exact locations of internal nodes in topology are 
determined. Any point on the root merging segment from the 
bottom-up phase is consistent with a minimum-cost tree. This 
phase is illustrated in Fig.4. 

DME requires an input topology. Several works have 
studied topology constructions that lead to low-cost routing 
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solutions and the most successful is the Greedy-DME method 
[4]. Greedy-DME iteratively fInds the pair of nearest neighbors 
among the merging segments. We have integrated this 
algorithm into our flow. 

Figure 4 Embedding phase. 

C. Buffered Clock Tree Modeling 

In clock tree design, we usually insert buffers to control 
delay and slew. Our buffer insertion is implemented in DME 
phase. We design two modes of buffer insertion. Based on the 
constructed tree topology, buffers can be straightforwardly 
placed according to tree roots. This is called root mode. 
Otherwise, designers can set buffers according to clustering 
trees which can save a lot of buffers. This is called level mode. 
Because our clock tree is a binary tree structure, buffer 
insertion will not influence skew by using the same buffer type. 
The timing delay of buffer can be computed by using Elmore 
delay model and the wiring parasitics are modeled using 
distributed RC model (Fig.S). Buffers of different sizes have 
different parameters, so we build a buffer library to choose the 
suitable one. Before buffer insertion, the capacitance under tree 
node v is C, which equals the total capacitance of its sub-tree 
rooted by v. After buffer insertion, C reduces to c. Capacitance 
c is usually much less than C, therefore clock tree latency can 
be reduced. The delay through the buffer is rc+d. Given the 
driver resistance R and the load C of the wire segment, the path 
delay can also be computed according to n-type RC model. 
This analytical approach during DME flow can save much time 
compared to simulation method [6]. However, clock slew 
parameter cannot be avoided in real design. 

Buffer 

Figure 5 A clock buffer model. 

In our buffer insertion flow, we fust choose level mode. If 
the result can satisfy timing requirement, the program will go 
on for IC Compiler (a commercial place and route tool) stage. 
Level mode will use much less buffers than root mode. 



However, root mode can guarantee better timing result. After 
analytical computing, Monte-Carlo SPICE simulation can help 
verify the final result. Monte-Carlo SPICE simulation is 
necessary to achieve relatively accurate buffer's output slew. 
The design flow is as followings in Fig.6. Our clock tree 
construction with buffers is shown in Fig.7. 

mode 1 

N 

Based on IC Compiler 
timing report 

Figure 6 Buffer insertion flow. 

Figure 7 Clock tree construction with buffers. 

D. Obstacle-avoiding Clock Routing 

In our design flow, we regard blockages and UPF (Unified 
Powered Format) regions as obstacles. Apparently, obstacles 
are common met in real design. We integrated this process 
into the DME algorithm. After generating the clock tree 
topology and merging segments, the intersections can be 
computed based on obstacles and merging regions. SDR 
(Shortest Distance Region) is the set of points that have 
minimum sum of Manhattan distances. If SDR does overlap 
with obstacles, select the embedding point in merging lines 
according to DME rule. Otherwise, we need to compute the 
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shortest paths from p to merging segments, and choose the 
suitable point with the least cost to be the embedding point. 
The specific algorithm part is as followings. 

Algorithm Top-down Embedding with obstacles 
consideration 

Input: clock topology G, merging segment lines 
Output: the embedding location of v 

Let C be the possible embedding points of v 
for each merging segment msv E ms_set(v) do 

if SDR(p, msv) () obsts = 0 then 
Select the embedding point Iv by DME rule 

C f- C U Iv 

else 
Find the shortest paths from p to msv 
Select the target point It with minimum cost 

C f- CUlt 
Choose the point nearest to p in C 

III. EXPERIMENTAL RESULTS 

We implement our algorithm in C++ on a PC workstation 
of Intel Core i7-3537U cpu. We have ran experiments on 
benchmark circuits rl-r5 [7]. The parameter of metal layer is 
0.0030hmlnm and 0.02fF/nm. The output resistance of clock 
buffer we use is 10011, the capacitance is 50 fF, and the buffer 
delay is 100 ps. The results are shown in TABLE I. All 
experiments are under SOps of skew bound. Simulation graph is 
shown in Fig.8. We also use TSMC 65nm technology to fmish 
the physical design of benchmark circuit s1196 in ISCAS89. 
The layout result is shown in Fig.9. 

Circuits 

r1 

r2 

r3 

r4 

r5 

TABLE I RESULTS FOR BENCHMARK CIRCUITS 

Sink Wirelength 
number (nm) 

267 969439.23 

598 1918564.36 

862 2405578.43 

1903 4946409.70 

3101 7267365.01 

," J 

Delay without Delay with 
buffers (ps) buffers (ps) 

4702.14 4809.33 

10444.91 10545.11 

13384.10 13490.84 

34161.80 34264.05 

54993.40 55097.33 

Figure 8 Simulation with obstacles consideration. 



Figure 9 A clock tree of s il96 benchmark circuit. 

IV. CONCLUTION 

We have presented an automatic and practical flow for 
Clock Tree Construction in physical design with buffer 
insertion and obstacles avoiding features. By using our flow, it 
is easy to synthesize the circuit with low skew requirement. In 
future, we plan to apply the flow into clock mesh and clock 
spine design. This method provides the possibility of designing 
the local clock trees in hybrid clock structure. 
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