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Adaptive Graph Matching
Xu Yang and Zhi-Yong Liu, Senior Member, IEEE

Abstract—Establishing correspondence between point sets lays
the foundation for many computer vision and pattern recognition
tasks. It can be well defined and solved by graph matching.
However, outliers may significantly deteriorate its performance,
especially when outliers exist in both point sets and meanwhile the
inlier number is unknown. In this paper, we propose an adaptive
graph matching algorithm to tackle this problem. Specifically,
a novel formulation is proposed to make the graph matching
model adaptively determine the number of inliers and match
them, then by relaxing the discrete domain to its convex hull
the discrete optimization problem is relaxed to be a continuous
one, and finally a graduated projection scheme is used to get a
discrete matching solution. Consequently, the proposed algorithm
could realize inlier number estimation, inlier selection, and inlier
matching in one optimization framework. Experiments on both
synthetic data and real world images witness the effectiveness of
the proposed algorithm.

Index Terms—Graduated projection, graph matching, point
correspondence, regularization method.

I. INTRODUCTION AND PRELIMINARIES

ESTABLISHING correspondence between interest points
across images has been a long-standing problem in com-

puter vision and pattern recognition. It also plays a key role in
many applications including 2-D and 3-D image registration,
object recognition, and video analysis [1]–[3].

Point correspondence could be well defined and effectively
solved by graph matching. Specifically, first a point set G =
{gi}Mi=1 is represented by a graph G. A point gi is represented
by a vertex i, where an appearance descriptor li around gi,
like the SIFT descriptor, is assigned to i as a label. And the
link between gi and gj is represented by an edge ij, where a
real number (vector) wij describing for example the length or
direction of the link, is assigned to ij as an edge weight. In this
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paper, by the term graph we mean such a labeled weighted
graph. Then the correspondence problem between two point
sets G and H = {ha}Na=1 is transformed to vertex matching
between two graphs G and H. Without loss of generality, it is
assumed that M ≤ N.

Different from earlier graph matching algorithms which
did not involve a well-defined objective function [4], mod-
ern ones usually formulate graph matching as a quadratic
binary programming (QBP) problem, which aim at minimizing
the inconsistency between two matched graphs, or equiva-
lently maximizing the similarity between them. By using the
maximization problem, it typically takes the following form:

max F(G,H, X)

s.t. C1(X) � 0

C2(X) = 0

X ∈ {0, 1}M×N (1)

where 0 denotes an all-zero vector. The assignments between
vertices are mathematically represented by an assignment
matrix X = {0, 1}M×N , where Xia = 1 means assigning the
vertex i in G to the vertex a in H. The objective function
F(G,H, X) measures the similarity between graphs G and H
matched by X. The constraint functions C1(X) and C2(X) are
usually affine functions [5], depending on particular matching
assumptions.

In recent years, a most popular formulation of (1) is as
follows [4]–[9]:

max xTAx

s.t. Wx � 1M+N

x ∈ {0, 1}MN (2)

where the linear transformation matrix of the constraint func-
tion is

W =
[

1T
M ⊗ IN

IM ⊗ 1T
N

]
(3)

by denoting the identity matrix as I and denoting the all-one
vector as 1. The notation ⊗ denotes the Kronecker product
between matrices. The translation term 1M+N is usually put on
the right side of �. The non-negative matrix A ∈ R

MN×MN ,
known as the affinity matrix [6], can be defined by1

Aia,jb = A(i−1)N+a,(j−1)N+b

=
⎧⎨
⎩
A(li, la), if i = j, a = b,

A(wij, wab
)
, if edges ij and ab exist

0, otherwise.
(4)

1In (4), the comma in Aia,jb is used to separate the row number and column
number of a matrix, while in other equations it is omitted, e.g., (5).
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The diagonal entry A(li, la) measures the label similarity
between vertices i in G and a in H, and the off-diagonal entry
A(wij, wab) describes the weight consistency between edges
ij in G and ab in H. In accordance to the building way of A
in (4), the assignment matrix X is row-wisely vectorized to
obtain an assignment vector2 x. In (2), the one-to-one match-
ing constraint Wx � 1M+N is a common matching assumption,
which means a vertex in G can be assigned to at most one ver-
tex in H, and vice versa. It is more often shown in the matrix
form by

M∑
i

Xia ≤ 1,

N∑
a

Xia ≤ 1. (5)

Note some papers minimize an objective function based on
the dissimilarity matrix K of the same size with A, which
is equivalent to a maximization problem by some straight-
forward transformations. Including the minimization problem,
the formulation (2) is widely adopted by many graph match-
ing algorithms, especially by the spectral decomposition-based
algorithms [4]–[7].

Though recent papers directly take the form (2), we claim
that they only equivalently solve the following solve the
following Problem 0:

max xTAx

s.t. Wx � 1M+N

xT1MN = min(M, N) = M, x ∈ {0, 1}MN . (6)

With the additional equation xT1MN = M, the constraints in
Problem 0 imply that all the vertices in G should be matched.
For clear understanding they can be rewritten by(

1T
M ⊗ IN

)
x � 1N,

(
IM ⊗ 1T

N

)
x = 1M, x ∈ {0, 1}MN (7)

or in matrix form by

M∑
i

Xia ≤ 1,

N∑
a

Xia = 1, X ∈ {0, 1}M×N, ∀i, a. (8)

The reason for this claim lies in the fact that given the non-
negative A, any additional assignment will increase (or at least
maintain) the objective value, so the maximum objective value
of (2) can always be obtained with the most M assignments. It
means that the optimal solution of (2) can always be found in
the domain of Problem 0. Thus though the constraint xT1MN =
M is not explicitly used in (2), it is implicitly added.

It can be observed in Problem 0 that outliers only exist
in the larger graph H, and it means that the recent algo-
rithms using formulation (2) actually solve the part-in-whole
subgraph matching problem [10] which recognizes G as a
part of H. However, in many practical tasks, especially com-
puter vision tasks, there may be outliers in both graphs [11]
due to geometric transformations, occlusions, etc. For this
situation, it is more reasonable to define the problem as

2In some papers x is a column-wise replica of X, and correspondingly A
should be

Ai+(a−1)M,j+(b−1)M =

⎧⎪⎨
⎪⎩
A(li, la), if i = j, a = b
A(wij, wab

)
, if edges ij and ab exist

0, otherwise.

matching the most similar subgraphs in G and H. Some algo-
rithms [4], [6], [7], [12] may be generalized to this problem
with the help of softened (continuous) assignment vector x.
Specifically, these algorithms first match all the vertices and
then select assignments by removing low-confidence assign-
ments. The algorithms are named by the two-step algorithms
for further references. Such a two-step strategy, however, is not
completely consistent with the problem to match the most sim-
ilar subgraphs [13]. In view of this, we previously proposed a
method to match the most similar subgraphs with a fixed num-
ber of best assignments in two graphs, as will be introduced in
Problem 1. And beyond it in this paper we propose a method
named by adaptive graph matching which could further adap-
tively determine the number of inliers and match them. In
conclusion, the widely used formulation (2) can be consid-
ered as a special case of Problem 1 based on the above claim.
And interestingly, though adopting a similar formulation, the
formulation (2) is actually a special case of the adaptive graph
matching problem introduced by Problem 2.

Specifically, by some transformations, the problem to find
a fixed number of best assignments in [13] and [14] can be
formulated as a maximization problem by by Problem 1:3

max xTAx

s.t. Wx � 1M+N

xT1MN = L, x ∈ {0, 1}MN (9)

where the prespecified constant L determines the size of the
subgraphs in G and H. The domain of this problem is denoted
by DL, which in matrix form is

M∑
i

Xia ≤ 1,

N∑
a

Xia ≤ 1

M∑
i

N∑
a

Xia = L, X ∈ {0, 1}M×N, ∀i, a. (10)

When L = M ≤ N, Problem 1 degenerates to Problem 0.
Since Problem 1 is a QBP problem, approximate algo-

rithms which make certain relaxations to the original problem
are necessary for efficiency reasons. The continuous meth-
ods [5]–[8], [15]–[18] form a quite important group of the
approximate methods in the graph matching community, which
can usually find a local optimum in reasonable time. The
proposed method also belongs to the continuous methods
which typically involve first relaxing the discrete domain to be
a continuous one, and then projecting the continuous solution
to be a discrete one.

For the continuous domain relaxation, there are a number of
ways such as the relaxation by fixing the norm ‖x‖ = 1 [6].
A more reasonable relaxation may be relaxing the discrete
domain to its convex hull, because some matching constraints
could be included in the optimization process [4], [5]. For
instance, the equal-sized graph matching algorithms [16], [19]
relax the set of permutation matrices to its convex hull, the

3The relations between Problems 0–4 are illustrated by a schematic in the
supplementary material.
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well-known doubly stochastic matrices. For another instance,
the algorithms [4], [12], [17] relax the discrete domain of
Problem 0, i.e., (8) in the matrix form, to its convex hull

M∑
i

Xia ≤ 1,

N∑
a

Xia = 1, Xia ∈ [0, 1], ∀i, a. (11)

For Problem 1, the convex hull CL of the discrete domain
DL [13], [14] is

Wx � 1M+N, xT1MN = L, xi ∈ [0, 1], ∀i (12)

which in matrix form is
M∑
i

Xia ≤ 1,

N∑
a

Xia ≤ 1

M∑
i

N∑
a

Xia = L, Xia ∈ [0, 1],∀i, a. (13)

This paper also involves the relaxation of the discrete domain
in Problem 2 to its convex hull. Note in these relaxations,
each extreme point set of the above convex hulls is exactly
the corresponding discrete domain, which property is useful
in the graduated projection introduced below.

For the discrete domain projection, using the direct
projection, e.g., projecting the continuous solution to the
nearest discrete point, may introduce significant additional
error [1], [16], [19]. Some algorithms [4], [7], [12] introduce
updating schemes of the continuous solution before the final
direct projection. Further, originating from [8] and [16], grad-
uated discrete domain projection, which usually automatically
results in a discrete solution without a final projection, has
been observed to greatly improve the matching accuracy.
Particularly, the algorithm [16] gradually adjusts the linear
combination parameter between a convex relaxation and a
concave relaxation of the original objective function, which
guarantees a discrete solution can be obtained following a
path in the continuous domain. It takes advantage of the prop-
erty that the minimum point of a concave function over a
convex set (convex hull) locates exactly in its extreme set (dis-
crete domain). Following this idea, the graduated projection is
applied to the relaxed Problem 0 by algorithms [17] and [18].
Further it is applied to the relaxed Problem 1 in our previous
works [13], [14]. However, one main problem of these algo-
rithms is that the number of assignments, i.e., the number
of inliers representing object, should be prespecified, which
significantly deteriorates the matching performance when the
inlier number cannot be figured out.

The main contribution of this paper is to extend the algo-
rithms [13], [14] to tackle the matching problem with unknown
inlier number, which consists of the following three exten-
sions. First, by regularizing on the assignment number, a
novel formulation (Problem 2) with respect to the redefined
assignment vector (matrix) is introduced to make the graph
matching model adaptively determine the number of inliers
and match them; second, the discrete optimization problem
(Problem 2) is relaxed to be a continuous one (Problem 4),
where the convex hull of the discrete domain is proved; and
third, the graduated projection is generalized to Problem 4, and

a quick solution for a linear programming problem, which is
closely related to the complexity of optimization algorithm,
is provided. Consequently, the proposed algorithm named by
adaptive graph matching could realize inlier number estima-
tion, inlier selection, and inlier matching in one optimization
framework.

The remaining paper is organized as follows. For the sake
of continuity, the adaptive graph matching algorithm is first
proposed in Section II, and then followed by some discussions
on related works from both model and optimization aspects in
Section III. After giving the experimental results in Section IV,
finally Section V concludes this paper.

II. ADAPTIVE GRAPH MATCHING MODEL

In this section, the adaptive graph matching problem is first
formulated as a regularized QBP problem, and then approx-
imated by a continuous problem by relaxing the discrete
domain to its convex hull. The graduated projection-based
optimization method is applied to the continuous problem,
which automatically terminates at a discrete solution. Finally,
some implementation details are discussed.

A. Formulation

To make the inlier number adaptively determined according
to the problem, the proposed method imposes a regulariza-
tion on the assignment number L, with the following with the
following Problem 2:

max xTAx− ρxT1MN

s.t. Wx � 1M+N

x ∈ {0, 1}MN . (14)

The affinity matrix A and the linear transformation matrix
W are the same with (2). Different from Problems 1 and 2
drops the constraint xT1MN = L and instead incorporates
−xT1MN into the objective as a regularization term control-
ling the assignment number, with ρ as a positive regularization
parameter. The domain of Problem 2 is denoted by D, which
is a union of the domain DL of Problem 1 by

D =
M⋃

L=0

DL. (15)

An (idealized or say simulative) illustration of D and its
relation with DL are given in Fig. 1. On the lowest level,
DL=0 is represented by an origin point O because the only
vector x ∈ D0 is an all-zero vector. On the highest level,
DL=M is visually represented by the vertex set of a regular
hexagon, and its convex hull CL=M is accordingly represented
by the regular hexagon. Analogically, DL,∀0 < L < M
is, respectively, represented by the vertex set of a regu-
lar polygon, and its convex hull CL is represented by that
regular polygon. Note in Fig. 1 DM−1 is deliberately repre-
sented by an octagon, with more vertices than the hexagon
for DM , which is because that given M and N the number
of vertices #L = (M!N!)/(L!(M − L)!(N − L)!) does not
monotonically increase with respect to L as shown in Fig. 2.
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Fig. 1. Illustration of relations between D, C, DL, and CL. The point x is a
convex combination of points x1 ∈ C1 and x2 ∈ C2. Though L = xT 1 = 1.3
is not an integer, implying that x 	∈ CL, ∀L, there is x ∈ C.

Fig. 2. Point number of DL with respect to L, where log(#) denotes the
natural logarithm of point number.

Intuitively, D is the combination of vertices of all the polygons
(including O).

When ρ = 0, Problem 2 takes the same formulation
with (2), and as claimed in Section I, its optimal solution
could always be found in DM because any additional assign-
ment would increase (or at least maintain) the objective value
given the non-negative A. When ρ > 0, the regularization term
takes effect, and as ρ increases, it demands that less vertices
should be matched. The objective function (14) then becomes
a tradeoff between the matching affinity and the assignment
number. For an intuitive description, the influence of ρ can
be shown through Fig. 1 that as ρ increases, the solution
x ∈ D is pushed toward the origin point O. And thus the
physical meaning is that less vertex assignments are preferred
while maintaining a reasonable matching affinity. It makes
sense because removing outlier assignments will cause little
affinity measure decrease while bring considerable increase in
the regularization term −xT1MN . So if properly regularized,
the outlier assignments could be automatically removed by
Problem 2.

Note though in this paper we focus on the maximization
formulation Problem 2, it can be equivalently reformulated
as the minimization of the dissimilarity between G and H.
Since the minimization formulation is also widely used in
graph matching, including our previous works [13], [14], the
minimization form of Problem 2 is briefly discussed below,

given by Problem 3:

min xTKx− ρxT 1MN

s.t. x ∈ D. (16)

The non-negative dissimilarity matrix [12], [14] K ∈ R
MN×MN

is of the same size with A, which can be obtained by the oper-
ation K = F(−A) with an entry-wise non-negative monotone
increasing function4 F(·). When ρ = 0, the lowest matching
cost is obtained when there are no assignments, i.e., x = 0MN .
Incorporating the regularization term when ρ > 0, implies that
more vertex assignments are preferred while preserving a low
matching cost.

Since Problem 2 is a typical QBP problem, to make it com-
putationally tractable, next a continuous method is introduced
to approximately solve it. It first relaxes the discrete domain
to the convex hull to get a continuous optimization problem
(Problem 4), and then utilizes a graduated projection scheme
to push the continuous solution gradually back to the discrete
domain.

B. Continuous Relaxation to Convex Hull

As introduced in Section I, relaxing the discrete domain to
its convex hull is an important way for the continuous relax-
ation, and the property that the discrete domain is exactly the
extreme point set of its convex hull is essential to some grad-
uated projection algorithms [8], [16]–[19]. To get the convex
hull of the discrete domain D, two lemmas are first introduced.
The first Lemma 1 is also known as Minkowski theorem [20].

Lemma 1: Any compact convex set is the convex hull of
its extreme points.

And the second Lemma 2 [13] is as follows.
Lemma 2: The convex hull of DL is CL, and DL is the

extreme point set of CL, where DL and CL in matrix form are,
respectively, defined by (10) and (13).

Based on these two lemmas, the convex hull of D can be
obtained by the following theorem.

Theorem 1: The convex hull of D is C, and D is the extreme
point set of C, where D is the domain of Problem 2 and C is
defined as follows:

Wx � 1M+N x 
 0. (17)

Proof Sketch: For representation convenience, we equiva-
lently utilize the matrix forms of D and C by

DM :=
{

X

∣∣∣∣∣
M∑

i=1

Xia ≤ 1,

N∑
a=1

Xab ≤ 1, Xia ∈ [0, 1]

}
(18)

CM :=
{

X

∣∣∣∣∣
M∑

i=1

Xia ≤ 1,

N∑
a=1

Xab ≤ 1, X ∈ {0, 1}M×N

}
.

(19)

The basic idea is to prove that DM is exactly the same with the
extreme point set of the convex set CM, and from Lemma 1 it
can be derived that CM is the convex hull of DM. The proof
includes the following six steps, i.e., 1–6, which is organized
in a structural way [21]. Particularly, when the substep number

4Some explanations on the entry-wise non-negative monotone increasing
function are given in the supplementary material.
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is too long, it is simplified by putting the number of its first
several digits in the bracket. For instance, the substep number
4.2.5.5.1 is abbreviated by [4].1., which could be understood
through the context.

Proof:
1. Prove that CM is a convex set.

Assume: X′, X′′ ∈ CM, θ ∈ [0, 1].
Prove: X ∈ CM, where X = θX′ + (1− θ)X′′.
1.1. Prove

∑M
i=1 Xia ≤ 1.

1.1.1.
∑M

i=1 X′ia ≤ 1,
∑M

i=1 X′ia ≤ 1, and θ ∈ [0, 1]
(by the assumption).

1.1.2.
∑M

i=1 Xia =∑M
i=1(θX′ia + (1− θ)X′′ia) =

θ
∑M

i=1 X′ia + (1− θ)
∑M

i=1 X′′ia ≤ 1.
1.1.3. Q.E.D.
1.2. Prove

∑N
a=1 Xia ≤ 1.

The proof is similar to 1.1.
1.3. Prove Xia ∈ [0, 1].
1.3.1. X′ia ∈ [0, 1], X′ia ∈ [0, 1], and θ ∈ [0, 1]

(by the assumption).
1.3.2. Xia = θX′ia + (1− θ)X′′ia ≤ 1.
1.3.3. Q.E.D.

1.4. Q.E.D.
2. Prove that DM ⊆ CM.

It is straightforward that DM ⊆ CM and the proof is
omitted.

3. Prove that DM ⊆ ext(CM), where ext(CM) denotes the
extreme point set of CM.

Proof Sketch: Given the definition [20] of an extreme point
in a convex set, it only needs to prove that any matrix X ∈
DM, which also belongs to CM by 2, cannot be represented
by the convex combination of other matrices in CM.

Assume:
a) X ∈ DM, Xt ∈ CM, Xt 	= X, t ∈ {1, . . . , T}.
b) wt ∈ (0, 1),

∑T
t=1 wt = 1.

c) X =∑T
t=1 wtXt.

Prove: False.
3.1. Since X 	= Xt, for any Xt, there exists Xia 	= Xt

ia.
3.2. Case: Xia = 1.

3.2.1. Xt
ia < 1 (by step 3.1).

3.2.2. Xia =∑T
t=1 Xt

ia ≤ (1− wt)1+ wtXt
ia < 1.

3.2.3. A contradiction between steps 3.2. and 3.2.2.
3.3. Case: Xia = 0.

3.3.1. Xt
ia > 0 (by step 3.1).

3.3.2. Xia =∑T
t=1 Xt

ia ≥ (1− wt)0+ wtXt
ia ≥ 0.

3.3.3. A contradiction between steps 3.3. and 3.3.2.
3.4. Q.E.D. (both cases are contradictions).

4. Prove that for any X ∈ CM\DM, there is X /∈ ext(CM),
where CM\DM denotes the relative complement of DM
in CM.
Proof Sketch: For any X ∈ CM\DM, if it can be repre-
sented by the convex combination of other matrices, then
there must be X /∈ ext(CM).
Assume: X ∈ CM\DM.
Prove: There exist X′, X′′ ∈ CM, X′ 	= X, X′′ 	= X, so
that X = 0.5X′ + 0.5X′′.
4.1. Case: L ∈ N , where L = ∑M

i=1
∑N

a=1 Xia and N
denotes the set of non-negative integers.

4.1.1. X ∈ CL (by the definition of CL).
4.1.2. There exist such X′, X′′ (based on Lemma 2).

4.1.3. Q.E.D.
4.2. Case: L ∈ R+\N , where R+ denotes the set of

non-negative reals.
4.2.1. There exists Xia ∈ (0, 1).
4.2.2. There exists i ∈ {1, . . . , M} so that

∑
a Xia ∈ (0, 1)

(by step 4.2).
4.2.3. There exists a ∈ {1, . . . , N} so that

∑
i Xia ∈ (0, 1)

(by step 4.2).
4.2.4. Case: There exists at least one entry Xia ∈ (0, 1),

so that
∑

a Xia ∈ (0, 1), and
∑

i Xia ∈ (0, 1).
[3].1. Let X′ia = Xia − ν where ν is a small positive

constant.
[3].2. Let X′′ia = Xia + ν.
[3].3. X = 0.5X′ + 0.5X′′.
[3].4. Q.E.D.

4.2.5. Case: For all Xia ∈ (0, 1), there are
∑

a Xia = 1
or
∑

i Xia = 1
.

[3].1. Let R = {r1, . . . , rm} denotes the collection of
row numbers, where

∑
a Xia ∈ (0, 1),∀i ∈ R (by

step 4.2.2).
[3].2. For any Xia, i ∈ R, there is

∑
i Xia = 1 (by step

4.2.5).
[3].3. Let C = {c1, . . . , cn} denotes the collection of

column numbers, where
∑

i Xia ∈ (0, 1),∀a ∈ C
(by step 4.2.3).

[3].4. For any Xia, a ∈ C, there is
∑

a Xia = 1 (by step
4.2.5).

[3].5. Locate an entry sequence X = {Xi1a1, . . . ,

XiSaS}, Xisas ∈ (0, 1) by searching row and col-
umn alternately.

[4].1. Locate any Xi1a1 ∈ (0, 1), where i1 ∈ R.
[4].2. Locate any Xi2a2 ∈ (0, 1), where a2 = a1

(by step 4.2.5.2).
[4].3. Locate any Xi3a3 ∈ (0, 1), where i3 = i2 (by

step 4.2.5.4).
...

[4].S. Locate XiSaS ∈ (0, 1) and terminate when iS ∈
R or aS ∈ C.

[3].6 Case: iS ∈ R (i.e., S is an even number).
[4].1. Let X′ be

X′i1a1
= Xi1a1 − ν

X′i2a2
= Xi2a2 + ν

. . .

X′iS−1aS−1
= XiS−1aS−1 − ν

X′iSaS
= XiSaS + ν.

[4].2. Let X′′ be

X′′i1a1
= Xi1a1 + ν

X′′i2a2
= Xi2a2 − ν

. . .

X′′iS−1aS−1
= XiS−1aS−1 + ν

X′′iSaS
= XiSaS − ν.

[4].3. X = 0.5X′ + 0.5X′′.
[4].4. Q.E.D.

[3].7 Case: aS ∈ C (i.e., S is an odd number).
[4].1. Let X′ be

X′i1a1
= Xi1a1 − ν
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X′i2a2
= Xi2a2 + ν

. . .

X′iS−1aS−1
= XiS−1aS−1 + ν

X′iSaS
= XiSaS − ν.

[4].2. Let X′′ be

X′′i1a1
= Xi1a1 + ν

X′′i2a2
= Xi2a2 − ν

. . .

X′′iS−1aS−1
= XiS−1aS−1 − ν

X′′iSaS
= XiSaS + ν.

[4].3. X = 0.5X′ + 0.5X′′.
[4].4. Q.E.D.

5. Prove DM = ext(CM) (based on steps 3 and 4).
6. Q.E.D. (based on step 5 and Lemma 1).

In C, L = xT1 is a real ranging from 0 to M rather than an
integer. Different from the relation between D and DL by (15),
the union of CL is only a proper subset of C, that is

C ⊃
M⋃

L=0

CL. (20)

An (idealized or say simulative) illustration of C and its rela-
tion with CL are also shown in Fig. 1. Besides all the regular
polygons representing CL, C also contains the space between
these polygons.

By relaxing the domain from D to C, the Problem 2 is
approximated by the following Problem 4:

max xTAx− ρxT1MN

s.t. x ∈ C. (21)

If A is positive definite, Problem 4 is a convex optimiza-
tion problem for which effective optimization algorithms exist,
such as the interior point method [22]. However, in realistic
tasks A is usually neither positive definite nor negative definite,
resulting in a more complex optimization problem. Besides,
though we use Problem 4 to approximate Problem 2, a dis-
crete solution rather than the continuous solution for Problem 4
is necessary. Next we show how to tackle these issues by the
graduated projection scheme.

C. Optimization

When the objective function (21) is nonconvex and non-
concave, an intuitive method for Problem 4 is to first get the
convex relaxation of (21) and then solve the relaxed problem
by convex optimization techniques. Since the continuous solu-
tion locates in C rather than D, to finally get the matching
result, it needs to project the continuous solution back to
D. Though the projection can be efficiently realized by for
example the Hungarian algorithm, it may introduce significant
additional error because such a direct projection is independent
of the objective function [16].

Below a graduated projection scheme is applied to
Problem 4, which generalizes the graduated nonconvexity and
concavity procedure (GNCCP). The GNCCP originates from

the path following algorithms [16], [18], [19] which by grad-
ually adjusting the linear combination parameter between a
convex relaxation and a concave relaxation of the objective
function, push the continuous solution to be a discrete one
following a path. A major advantage of the GNCCP over the
previous path following algorithms is that it implicitly realizes
the linear combination in a simple formulation without need-
ing to figure out the specific forms of the convex relaxation
and the concave relaxation. Therefore, it is convenient to be
extended.

Specifically, for adaptive graph matching the GNCCP can
take the following form:

max Fζ (X) =

⎧⎪⎪⎨
⎪⎪⎩

(1+ ζ )F(x)+ ζ
(
xTx− xT1MN

)
if ζmin ≤ ζ ≤ 0

(1− ζ )F(x)+ ζ
(
xTx− xT1MN

)
if 0 < ζ ≤ ζmax

s.t. x ∈ C (22)

where F(x) = xTAx− ρxT1MN is the original objective func-
tion (21). The initialization of the upper and lower thresholds
ζmax ∈ [0, 1] and ζmin ∈ [−1, 0] is discussed in Section II-D1.
Briefly speaking, when ζ ≤ ζmin, Fζ (x) is concave, and when
ζ ≥ ζmax, Fζ (x) becomes convex. By gradually increasing ζ

from ζmin to ζmax, maximizing Fζ (x) is gradually transformed
from a convex optimization problem to be a concave optimiza-
tion problem, and correspondingly the continuous solution
x ∈ C is pushed into D which is the extreme point set of C,
as shown by Theorem 1.

For each specific ζ , Fζ (x) is maximized by the Frank–Wolfe
algorithm [23], [24], an effective nonlinear optimization algo-
rithm. In each iteration, it needs to compute the ascent
direction y − xold and step size α. In the computation of the
ascent direction, y is obtained by solving the linear program-
ming problem y = arg max∇Fζ (xold)

Ty, s.t. y ∈ C, for which
a quick solution is provided in Section II-D2. The gradient
∇Fζ (xold) given by

∇Fζ (x) =

⎧⎪⎪⎨
⎪⎪⎩

(1+ ζ )∇F(x)+ ζ(2x− 1MN)

if ζmin ≤ ζ ≤ 0
(1− ζ )∇F(x)+ ζ (2x− 1MN)

if 0 < ζ ≤ ζmax

(23)

where

∇F(x) = (A+ AT)x− ρ1MN . (24)

For undirected graph matching, there is ∇F(x) = 2Ax−ρ1MN

because A is symmetric. The step size α can be obtained by
inexact line search, e.g., the backtracking method [22].

The optimization method for adaptive graph matching is
summarized in Algorithm 1.

D. Some Implementation Details and Discussion

1) Initialization of ζmin, ζmax, and x0: Any values mak-
ing Fζ (x), ζ ≤ ζmin concave and Fζ (x), ζ ≥ ζmax convex,
can be used to initialize ζmin and ζmax. The most convenient
initialization is to set ζmin = −1 and ζmax = 1 as in [17].
However, for efficiency reasons, it is better to set ζmin = ζmin

sup
and ζmax = ζmax

inf , where ζmin
sup is the supremum of ζmin and

ζmax
inf is the infimum of ζmax. The calculation of ζmin

sup and
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Algorithm 1 Adaptive Graph Matching
Given: the affinity matrix A

1: Initialize ζmin, ζmax, and x0
2: xold = x0, ζ = ζmin

3: repeat
4: repeat
5: y = arg max∇Fζ (xold)

Ty, s.t. y ∈ C
6: α = arg max Fζ (xold + α(y− xold)), s.t. 0 ≤ α ≤ 1
7: xnew = xold + α(y− xold)

8: xold = xnew
9: until ∇Fζ (x)T (y − xnew) < ε|Fζ (xnew) −

∇Fζ (xnew)T(y − xnew)|, where ε is a small
positive constant

10: ζ = ζ + dζ , where dζ is the step size
11: until (ζ > ζmax) ∨ (xnew ∈ D), where ∨ denotes the OR

operation
Output: xnew

ζmax
inf is related to the concavity and convexity of Fζ (x), whose

Hessian matrix is

Hζ =
{

(1+ ζ )H+ ζ I, if ζmin ≤ ζ ≤ 0
(1− ζ )H+ ζ I, if 0 < ζ ≤ ζmax (25)

where H denotes the Hessian matrix of F(x). To make Hζ =
(1+ ζ )H+ ζ I, ζ ≤ ζmin negative definite, there must be

ζ ≤ −λmax

λmax + 1
(26)

where λmax denotes the largest eigenvalue of H [17].
Therefore, there is

ζmin
sup = min

{
0,
−λmax

λmax + 1

}
(27)

where ζmin
sup = 0 only when F(x) itself is a concave function.

Similarly, there is

ζmax
inf = max

{
0,

λmin

λmin − 1

}
(28)

where λmin denotes the smallest eigenvalue of H, and ζmax
inf = 0

only when F(x) itself is a convex function. Thanks to the
quadratic form of F(x), it is easy to get H = AT + A, and
then ζmin

inf and ζmin
sup can be efficiently obtained by the Arnoldi

iteration [25].
x0 can be simply initialized by x0 = 1MN/N or x0 = 0MN ,

especially when ζmin is initialized by ζmin = −1. When ζmin

is initialized by ζmin = ζmin
sup , x can be initialized by solving

a constrained convex quadratic optimization problem by for
instance the Newton algorithm, which could well accelerate
the optimization process [16].

2) Complexity and Quick Solution: The previous algo-
rithms [4]–[7], [9], [12] based on the affinity matrix A
usually involve a max(O(pq),O(N3)) computational complex-
ity, where p and q are the edge numbers of the two graphs.
O(pq) is generally determined by the computation over A,
such as Ax, which may be even as large as O(N4) on fully
connected graphs. O(N3) is generally determined by solving
the linear programming problem such as y = arg max∇F(x)Ty
or y = arg max xTy by for instance the Hungarian algorithm.

When L < min(M, N), the situation becomes more com-
plex because the Hungarian algorithm or other efficient linear
assignment algorithms [26] are inapplicable, while the general
linear programming methods like interior point method usu-
ally involve an O(N6) computational complexity. Beyond the
approximate quick solution in [14], we propose an exact quick
solution for the linear programming problem, which maintains
the computational complexity of the proposed adaptive graph
matching algorithm as max(O(pq),O(N3)).

The quick solution comes from the observation that for the
linear programming problem

y = arg max ∇Fζ (x)Ty

s.t. y ∈ C (29)

its solution y must belong to the D, which corresponds to
an optimal combination of only positive values in ∇Fζ (x).
Specifically, the quick solution takes the following steps.

1) Perform ∇P = E1(∇Fζ (x)), where ∇P ∈ 1MN is of
the same size with ∇Fζ (x), and E1(·) is an entry-wise
operator taking the following form:

(∇P)i =
{(∇Fζ

)
i, if

(∇(Fζ

)
i > 0

0, if
(∇Fζ

)
i ≤ 0.

(30)

2) Get a partial permutation matrix y ∈ DM by solving the
linear assignment problem

y = arg max∇T
P y1

s.t. y ∈ CM. (31)

3) Perform y = E2(y,∇P), where E2(·) is an entry-wise
operator taking the following form:

yi =
{

yi, if
(
yi = 1

) ∧ ((∇P)i > 0)

0, otherwise
(32)

where ∧ denotes the AND operation.
The final solution of (29) is y. Solving the linear assignment

problem in the second step involves the highest complexity
which is O(N3) in the worst case.5

3) Selection of Parameter ρ: Recall that the objective func-
tion (14) is a tradeoff between the two terms xTAx and xT1.
Therefore, the value of ρ can be estimated by balancing the
two terms when the number of assignments varies. Consider
the case when an extra assignment is added in x by setting the
ith entry to be 1, i.e., xi = 0→ xi = 1,∀i. It is straightforward
that the decrement D2 of the second term xT1 is

D2 = xi = 1. (33)

And the increment I1 of the first term xTAx is

I1 = xiAi:x+ xTA:ixi − xiAiixi (34)

=
MN∑
j=1

xj=1

Aij +
MN∑
j=1

xj=1

Aji − Aii (35)

where Ai: and A:i, respectively, denote the ith row and ith
column of A.

5A toy example for the quick solution is presented in the supplementary
material.
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Given the mean value A:: of the matrix A as follows:

A:: =

MN∑
i=1

MN∑
j=1

Aij

(MN)2
(36)

the increment (38) can be approximated by

I1 ≈ 2(xT1)A:: − A::. (37)

Since after setting xi = 1, xT1 varies from 1 to M, it is
approximated by the mean value (1+M/2). Then there is

I1 ≈ MA::. (38)

To balance of the increment (38) and decrement (33), there
should be

I1 ≈ ρD2. (39)

Then we get a selection guideline for ρ by

ρ ← MA::. (40)

In practice it is better to set ρ to be a bit larger than MA::,
such as 2MA::.

In (40), the selection of ρ is directly related to the mean
value A:: with respect to all the entries in A. An interesting
deduction based on this observation is that the selection of ρ is
also closely related to the edge density, given that the sparsity
of the affinity matrix A is determined by the edge density.
The explanation is as follows. In (36), the numerator can be
rewritten as the sum of nonzero entries in A, and there is

A:: =

MN∑
i=1

MN∑
j=1

Aij 	=0

Aij

(MN)2
= Anz

MN∑
i=1

MN∑
j=1

Aij 	=0

1

(MN)2
(41)

where Anz denotes the mean value with respect to the nonzero
entries in A, that is

Anz =

MN∑
i=1

MN∑
j=1

Aij 	=0

Aij

MN∑
i=1

MN∑
j=1

Aij 	=0

1

. (42)

Note that the number of nonzero entries is exactly

MN∑
i=1

MN∑
j=1

Aij 	=0

1 = pq+MN (43)

where pq is number of off-diagonal nonzero entries encod-
ing edge similarities in A, and MN is the number of diagonal
entries encoding vertex similarities. Since for any connected
graph the edge number (p or q) involves at least a linear
increase, usually a high order increase, with respect the vertex
number (i.e., M or N), ignoring the number of diagonal entries
MN there is

A:: = Anz
p

M2

q

N2
. (44)

Fig. 3. Optimization process of a matching example with M = N = 20 and
L = 12. The fine curves denote the updating of xi, corresponding to the left
y-axis, and the thick curve denotes the updating of xT 1, corresponding to the
right y-axis.

By defining the edge density of a graph G as the ratio between
the edge number and the number of possible edges

E(G) = 2p

M(M − 1)
(45)

it can be derived from (40) and (44) that the selection of ρ is
positively related to the edge densities of the two input graphs
G and H, that is

ρ ∝ E(G)E(H). (46)

4) Other Discussion: Different from [17], in (22) we utilize
the term xTx− xT1MN rather than xTx (i.e., tr(XTX) in [17])
to guarantee Fζ (x) and F(x) own the same maximum points
in D.

The optimization process is illustrated in Fig. 3. As ζ

increases, xi is gradually pushed to 0 or 1, which is similar
to the previous path following algorithms (see [18, Fig. 6(c)]
for comparison). On the other hand, L = xT1 varies in
the optimization process and finally reaches an integer, 12
in this example, while in previous path following algo-
rithms [16], [18], [19] it is always a constant.

III. RELATED WORKS

From the model aspect, the graduated assignment algo-
rithm [12], [27] uses a dissimilarity matrix K-based model,
which can be equivalently transformed to an affinity matrix-
based model, and the model is optimized by a deterministic
annealing method. Some spectral algorithms [6], [7] also use
the affinity matrix, and relax the discrete problem to be a con-
tinuous spectral decomposition problem and optimize it by the
standard or improved power iteration. An important improve-
ment of the spectral algorithm [6] is to introduce the integer
projection scheme [8] by the same authors. The reweighted
random walk matching algorithm [4] interprets and solves
the graph matching problem from the random walk perspec-
tive, which can be treated as a generalization of the spectral
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algorithm [6]. The same authors also introduced the max-
pooling scheme [28] in the power iteration. The factorized
graph matching algorithm [18] factorizes the affinity matrix
for the sake of storage efficiency, and generalizes the path fol-
lowing algorithms [16], [19] to optimize the problem. Further
the same authors improved the factorized graph matching algo-
rithm by estimating the affine transformation parameters in the
optimization process, which is named by deformable graph
matching [29]. Since the above algorithms use or implicitly
use the model (2), to some extent their graph matching mod-
els can be considered as special cases of the adaptive graph
matching model (14).

An early robust point matching algorithm [30] uses a sim-
ilar additional term as xT1 in their model. Different from
the proposed method aiming at unknown inlier number, the
additional term in [30] is only used to guard against null
assignments, which results in M assignments, i.e., x ∈ DM .
The dual decomposition-based algorithm incorporates an addi-
tional term controlling the assignment number in its model,
which is then optimized by the dual decomposition technique.
Different from the proposed method simultaneously estimating
the inlier number and matching the inliers, this method belongs
to the two-step algorithms, in which the final assignments
are selected by ranking the assignment confidence. Another
thing about this method is that the local exhaust search or the
branch-and-bound search used in its optimization usually lead
to a significant lower running speed, as observed in [7].

From the optimization aspect, the adaptive graph
matching problem is optimized by generalizing the
GNCCP [13], [14], [17], which originates from the path
following algorithms [16], [18], [19], [29], as introduced
in Section I. This group of algorithms are related to above
mentioned integer projected fixed point method [8], [9] which
also involves the graduated projection in the optimization
process.

IV. EXPERIMENTAL RESULTS

In this section, the proposed method is comparatively eval-
uated on both synthetic data and real world images. On the
synthetic data, the performance of the proposed method is first
evaluated with respect to noise level, problem size, outlier
number, and edge density, which is followed by the test of
selection guidelines of ρ, and the running time comparison.
Besides, an experimental case study on the subgraph match-
ing problem, in which outliers exist in only one graph, is also
performed on the synthetic data. On the real world images,
three datasets are utilized, which are, respectively, the famous
House sequence, the widely used Car and Motorbike matching
dataset, and a handwritten Chinese character dataset.

The proposed algorithm denoted by ADM is mainly
compared with the two-step algorithms including SM [6],
GA [12], RRWM [4], and PGM [7]. Besides, some graduated
projection-based algorithms, including IPFP [8], FGM [18],
and SGM [14], [17], are compared in the case study on the
subgraph matching problem, given that the other graduated
projection-based algorithms except ADM are inapplicable to
the general Problem 4. Among all these algorithms, GA, PGM,

and SGM are implemented by us, and SM, RRWM,6 IPFP, and
FGM7 are implemented by public codes.

Since the estimated inlier number may be unequal to the
ground truth one, two comparison criteria, recall rate or accu-
racy, are adopted [31], [32]. The recall rate measures how
many assignments are correctly recalled from the ground truth
assignments, that is

recall rate = # correct assignments

# ground truth assignments
(47)

and accuracy refers to the ratio between the number of the
correct assignments and that of the selected assignments,
that is

accuracy = # correct assignments

# selected assignments
. (48)

Since the assignment number of the two-step algorithms
cannot be adaptively determined, the number of selected
assignments in their accuracies is set to be equal to ADM.

In the experiments, the similarity measures A(li, la) and
A(wij, wab) in (4) are defined by

A(li, la) = exp

(−‖li − la‖2
σl

)
(49)

A(wij, wab
) = exp

(
−
∥∥wij − wab

∥∥2

σw

)
(50)

where σl and σw are kernel width parameters and are empiri-
cally set to be σl = 0.15 and σw = 0.15.

A. Synthetic Points

The first experiment is performed on the synthetic points,
which are generated in a similar way as in [14]. First, two
point sets G = {gi}Mi=1 and H = {hi}Nj=1 on a 2-D-plane are
randomly generated by uniform sampling. Second, an assign-
ment vector Xgt ∈ DL with L ground truth assignments is
randomly generated. Finally, the first point set G is updated
by permutating H with Xgt as follows:

gi = hj + η, η ∼ N
(

0, σ 2
)
, if Xgt

ij = 1 (51)

where η denotes the additive gaussian noise. The sparse graph
structure is constructed by adjusting the edge density, and it
is also disturbed by the noise η following the way in [16].
That is (1/2)σp edges are randomly added to and removed
from each sparse graph, where p denotes the edge number.
The normalized length is utilized as the edge weight.

The comparisons are performed with respect to noise
level (σ ), problem size (N), outlier number (# outliers), and
edge density (E(G)). Specifically, in the first comparison σ is
increased from 0 to 0.2 by a step size of 0.02, with the other
variables fixed by N = 30, # outliers = 5, and E(G) = 0.1.
In the second comparison N is increased from 20 to 40 by a
step size of 2, with σ = 0.1, # outliers = 5, and E(G) = 0.1.
In the third comparison # outliers is increased from 0 to 10
by a step size of 1, with σ = 0.1, N = 30, and E(G) = 0.1.

6Codes for SM and RRWM are available at http://cv.snu.ac.kr/
research/∼RRWM/.

7Codes for IPFP and FGM are available at http://www.f-zhou.com/gm.html.

http://cv.snu.ac.kr/research/~RRWM/
http://cv.snu.ac.kr/ research/~RRWM/
http://www.f-zhou.com/gm.html
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Fig. 4. Quantitative comparison results on synthetic points. The comparisons
with respect to noise level, problem size, outlier number, and edge density
are, respectively, shown in the four rows. The criteria accuracy and recall rate
are, respectively, used in the left and right columns.

In the fourth comparison E(G) is increased from 0.1 to 1 by
a step size of 0.1, with σ = 0.1, N = 30, and # outliers = 5.
In all these comparisons, it is set that M = N−# outliers and
L = N−2# outliers. The parameter ρ is set by (40), i.e., MA::.

The quantitative comparison results are shown in Fig. 4.
Two interesting observations are from the second comparison
and the fourth comparison. For the second one, the accuracies
increase as the problem size increases, which may be because
that by our settings the ratio of the outliers decreases at the
same time. For the fourth one, the accuracies first increase and
then decrease as the edge density increases. The reason is that
when the graphs are too sparse the structural information may
be insufficient, and when the graphs are too dense the exces-
sive noise is introduced. From the four comparisons, it can be
observed generally ADM outperforms the other algorithms on
both accuracy and recall rate. And by comparing its accuracy
and recall rate, it can be observed in general the accuracy is
slightly smaller than the recall rate, which means statistically
the number of selected assignments is larger than the number

Fig. 5. Comparison on selection guidelines of ρ. (a) Compares the estimated
inlier numbers by different selection guidelines of ρ with respect to the edge
density. (b) Illustrates the values of ρ by different selection guidelines with
respect to A::.

of the ground truth assignments. It implies that the selection of
ρ in these comparisons, i.e., MA::, should be increased a bit.

Using the same setting with the fourth comparison above,
an additional experiment is performed to assess the selection
of ρ. Besides the selection guideline (40) rewritten by

ρ1 ← c1MA:: (52)

other selection guidelines for comparison include

ρ2 ← c2MA
1
2
:: (53)

ρ3 ← c3MA
2
:: (54)

and

ρ4 ← c4M. (55)

The constant c1 is set to be 1. And c2–c4 are set by mak-
ing ρ1–ρ4 equal when the edge density starts at 0.1, which
corresponds to the intersection point in Fig. 5(b). Recall that
the value of A:: is positively related to the edge density. The
comparison results given in Fig. 5 witness the robustness of
the proposed guideline (52) with respect to the edge density.
It may be counterintuitive that the inlier number estimated by
ρ2 is usually larger than ρ3 because intuitively ρ2 should be
larger than ρ3 and therefore should result in a smaller inlier
number estimation. The reason is that as shown in Fig. 5(b)
ρ2 is actually smaller than ρ3 by the calculation method of
c2 and c3.

The running time with respect to the problem size is com-
pared in Fig. 6. The plot is in a logarithmic style, and the
growth rates of the curves indicate the computational com-
plexities of different algorithms. Specifically, the growth rates
of GA and PGM are about 4.9 ± 0.3, and that of RRWM is
about 3.5±0.6, and those of SM and ADM are about 4.1±0.4.

1) Case Study on Subgraph Matching: By setting ρ small
enough, the inlier number estimated by ADM would always
be M, i.e., x ∈ DM , and thus the general case Problem 2 is
degenerated to the part-in-whole subgraph matching problem
in which outliers exist in at most one graph. Below an exper-
imental case study on this problem is done by setting ρ = 0
for ADM. In this case, some other graduated projection-based
algorithms including IPFP [8], FGM [18], and SGM [17], are
available for comparison. And in this case recall rate and
accuracy defined in (47) and (48) are the same, and therefore
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Fig. 6. Running time comparison with respect to problem size. The plot is
shown in a logarithmic manner, where T in the y-axis denotes the running
time in seconds.

Fig. 7. Quantitative comparison results of case study on subgraph matching.
The comparisons with respect to noise level, problem size, outlier number, and
edge density are, respectively, shown in the four rows. The criteria accuracy
and objective value are, respectively, used in the left and right columns.

accuracy is used as one criterion. Meanwhile, when ρ = 0 all
the algorithms actually use the same objective function (2),
and therefore objective value is adopted as another criterion.

Fig. 8. Quantitative comparison results on House sequence. The criteria
accuracy and recall rate are, respectively, used in the left and right columns.

Fig. 9. Quantitative comparison results on Motorbike and Car images. The
criteria accuracy and recall rate are, respectively, used in the left and right
columns.

The generation of the synthetic points, the construction of
graphs, and the comparison settings are the same with the
above experiment except for setting L = M. The experimental
results are shown in Fig. 7. It can be observed that the part-in-
whole subgraph matching problem is easier than the general
case, given that all the methods get higher accuracies than
those in Fig. 4. Generally the performance of ADM is compa-
rable with other graduated projection-based methods, such as
FGM and SGM, even better than IPFP. However, they are inap-
plicable to the general adaptive graph matching problem. The
inconsistency between the accuracy and objective value is also
observed, that is a higher accuracy may be sometimes asso-
ciated with a lower objective value. It is because the ground
truth assignments may not always correspond to the lowest
objective value.

B. House Sequence

The first experiment on the real world images is carried
out on the CMU House sequence,8 which consists of 111
frames sampled from a 3-D-rotating House video clip. All
the frames are manually labeled with 30 landmark points as
in [33], where a larger gap between frames (denoted by frame
no. gap) implies a more difficult matching. The frame no. gap
is increased from 0 to 100 by a step size of 10. For each frame
no. gap, ten image pairs are randomly chosen, and thus 110
image pairs are obtained. Since this paper deals with the situa-
tion where outliers exist in both images, the matching problem
is made as follows. First 20 ground truth assignments are ran-
domly chosen and the corresponding points are preserved in
both images; then the other ten assignments are divided into

8The House sequence dataset is available at http://vasc.ri.cmu.edu//idb/
html/motion/house/index.html.

http://vasc.ri.cmu.edu//idb/ html/motion/house/index.html
http://vasc.ri.cmu.edu//idb/ html/motion/house/index.html
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Fig. 10. Typical House, Motorbike, and Car matching instances by different algorithms. In the House matching, the numbers of ground truth assignments
and selected assignments are, respectively, 20 and 20. In the Motorbike matching, the numbers are, respectively, 21 and 20. And in the Car matching, the
numbers are, respectively, 28 and 26. The correct and wrong assignments are shown in green and red, respectively. For the two-step algorithms, the unselected
assignments with low assignment confidences are shown in blue.

two parts with size M′ + N′ = 10 and the corresponding
points are preserved separately; finally, two point sets with
size M = 20 + M′ and N = 20 + N′ are obtained. Without
loss of generality, it is guaranteed M ≤ N in the division.
The normalized length and normalized direction are used as
edge weights and the graph structure is constructed by full
connection. The parameter ρ is set to be MA::.

The quantitative comparison results are given in Fig. 8.
Generally ADM obtains higher accuracy and recall rate than
the other algorithms. Note that the previous works [7], [18]
show that on the House sequence RRWM and PGM get almost
100% accuracy at the frame no. gap of 80, and it is less than
80% in Fig. 8, which implies the difficulty of the adaptive
graph matching problem with outliers in both images. Some
typical matching instances by different algorithms are given
in Fig. 10.

C. Car and Motorbike Images

This dataset consists of five pairs of Motorbike images and
five pairs of Car images fetched from a benchmark matching

dataset9 [8], [9], where the ground truth assignment number
varies from 15 to 34. The performances are compared with
respect to the outlier number which is increased from 0 to
10 by a step size of 1, and therefore 110 matching pairs are
obtained. The normalized length and normalized direction are
used as edge weights and the graph structure is built by the
Delaunay triangulation [34]. It is set that ρ = 2MA::. The
quantitative comparison results are given in Fig. 9. By setting
ρ a bit larger than MA::, the more balanced accuracy and recall
rate can be observed, which implies a more accurate inlier
number estimation of ADM. When the outlier number is zero,
the algorithms GA, RRWM, PGM, and ADM all achieve quite
excellent matching performance, similarly to the observations
in [14] and [18]. And when the outlier number increases, the
accuracies and recall rates all obviously decrease. Generally,
on the Car and Motorbike images, ADM achieves comparable
performance with GA, RRWM, and PGM, and slightly better
performance with more outliers. Some matching instances are
given in Fig. 10.

9The Car and Motorbike dataset is available at
http://109.101.234.42/code.phps.

http://109.101.234.42/code.phps
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Fig. 11. Handwritten Chinese character samples. The inliers and outliers
are, respectively, shown in red and blue. The graph structure by the character
skeleton and randomness are, respectively, shown in green and yellow.

Fig. 12. Quantitative comparison results on handwritten Chinese character
images. The criteria accuracy and objective value are, respectively, used in
the left and right columns.

Fig. 13. Typical handwritten Chinese character matching instances by ADM.
The correct and wrong assignments are shown in green and red, respectively.

D. Handwritten Chinese Character Images

In the handwritten Chinese character images, there are four
characters and each character consists of ten image samples
fetched from [35]. Hence there are totally 45 image pairs. For
the first and third characters, 28 ground truth points are man-
ually labeled, and for the second and fourth characters, 23
ground truth points are manually labeled. Further, ten outliers
in each image are randomly labeled. The graph structure is
built by taking into account both character skeleton and ran-
domness, about which please refer to [14] for details. Some
samples with labeled points and graph structures are illus-
trated in Fig. 11. The comparison is performed with respect
the outlier number which is increased from 0 to 10 by a step
size of 1. The quantitative comparison results are given in
Fig. 12, which show the superior performance of ADM. Some
matching instances are given in Fig. 13.

V. CONCLUSION

This paper introduces an adaptive graph matching algorithm
to deal with the point correspondence problem when there

exist outliers in both point sets and the number of inliers
is unknown. Consequently, the proposed method is able to
adaptively estimate the number of inliers and figure out their
correspondence. From the perspective of objective function,
the proposed one is a natural extension of existing graph
matching algorithms, and from the perspective of optimiza-
tion techniques, the proposed method introduces a graduated
projection scheme for the objective function. Simulations on
both synthetic data and real-world images witness its effec-
tiveness. Related issues include the cluster problem which can
be interpreted by graph theory and it often needs to adaptively
determine the number of cluster centers.
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