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Abstract—Graph matching is a fundamental problem in the-
oretical computer science and artificial intelligence, and lays
the foundation for many computer vision and machine learning
tasks. Approximate algorithms are necessary for graph match-
ing due to its NP-complete nature. Inspired by the usage in
network-related tasks, random walk is generalized to graph
matching as a type of approximate algorithm. However, it may
be inappropriate for the previous random walk-based graph
matching algorithms to utilize continuous techniques without con-
sidering the discrete property. In this paper, we propose a novel
random walk-based graph matching algorithm by incorporat-
ing both continuous and discrete constraints in the optimization
process. Specifically, after interpreting graph matching by ran-
dom walk, the continuous constraints are directly embedded in
the random walk constraint in each iteration. Further, both the
assignment matrix (vector) and the pairwise similarity measure
between graphs are iteratively updated according the discrete
constraints, which automatically leads the continuous solution
to the discrete domain. Comparisons on both synthetic and
real-world data demonstrate the effectiveness of the proposed
algorithm.

Index Terms—Feature correspondence, feature extraction,
graph matching, image registration, image representation.

I. INTRODUCTION

GRAPH matching is a fundamental problem in theoreti-
cal computer science and artificial intelligence, such as

chemical compound classification [1], [2], biomedical and bio-
logical applications [3], [4], network-related problems [5], etc.
It lays the foundation for many computer vision and pattern
analysis tasks, including gesture recognition [6], feature cor-
respondence [7], facial landmark point localization [8], and
computer-aided design [9].

Manuscript received January 11, 2017; accepted March 30, 2017. This
work was supported in part by the National Key Research and Development
Plan of China under Grant 2016YFC0300801, in part by the National Natural
Science Foundation of China under Grant 61503383, Grant 61633009, Grant
U1613213, Grant 61375005, and Grant 61210009, and in part by the Strategic
Priority Research Program of the Chinese Academy of Sciences under
Grant XDB02080003. This paper was recommended by Associate Editor
J. A. Lozano. (Corresponding author: Xu Yang.)

X. Yang is with the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: xu.yang@ia.ac.cn).

Z.-Y. Liu and H. Qiao are with the State Key Laboratory of Management
and Control for Complex Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing 100190, China, also with the Center for Excellence in
Brain Science and Intelligence Technology, Chinese Academy of Sciences,
Shanghai 200031, China, and also with the University of Chinese Academy
of Sciences, Beijing 100049, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2017.2693029

Most graph matching problems are known to be NP-
complete.1 Therefore researchers have introduced various
types of algorithms to approximately solve them, as briefly
surveyed below. A group of methods relax the graph match-
ing problem to convex optimization formulations, for which
the optimal solution can be found in polynomial time. For
instance, [10] approximates graph matching by a linear pro-
gramming problem, and [11] and [12] adopt the semidefinite
programming formulations. A major disadvantage of these
methods is that they usually involve a hard-cut projection of
the continuous solution to the discrete domain, which may
introduce significant additional error [13]. Another group of
methods approximately solve the problem by deterministic
annealing, which can usually result in a suboptimal solution
in reasonable time. A typical instance is the famous graduated
assignment (GA) method [14], which is still considered to be a
state-of-the-art algorithm [15], [16]. Besides, the recently pro-
posed path following algorithms [13], [17]–[19] also belong to
the deterministic annealing. By introducing the convex relax-
ation and concave relaxation of the original objective function,
they push the continuous solution gradually to the discrete
domain following a path, and usually result in a better dis-
crete solution than that obtained by the hard-cut projection.
Another group of methods explore the spectral property of
matrices associated with the graphs. The first spectral algo-
rithm for graph matching is proposed by Umeyama [20],
which involves the spectral decomposition of the adjacency
matrix for either graph. Another important spectral algo-
rithm [21] aims at the rank-one approximation of an affinity
matrix which precomputes and stores the pairwise similarity
between graphs. This algorithm is further improved by many
works [15], [22], [23]. Particularly, the work [23] introduces
a discrete (integer) projection scheme by utilizing the condi-
tional gradient ascent [24], [25] method, which significantly
improves the matching accuracy. Other types of approximate
algorithms include those based on dual decomposition [26],
based on game theory [27], etc.

Random walk has been successfully applied to many
network-related tasks, e.g., Google’s Pagerank algorithm [28]
in ranking problems, which witness its efficacy and efficiency.
Therefore some researchers also tried to use random walk to
approximately solve the graph matching problem. Two typi-
cal random walk-based graph matching algorithms [29], [30]

1Almost all the graph matching problems are NP-complete except graph
isomorphism [3], which is a GI-hard problem, i.e., neither known to be
NP-complete nor known to have solution in polynomial time.
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are introduced in Section II-A. Briefly, [29] origins from the
difference minimization between adjacency matrices associ-
ated with the two graphs, and presents their random walk
algorithm by proving its connection with the stationary dis-
tributions of the two graphs. The other algorithm [30] directly
targets at the stationary distribution of the association graph
of the two graphs, and presents their random walk method
by further incorporating the continuous matching constraints,
which is realized by the Sinkhorn method [31] in a person-
alized Pagerank way. Some other random walk-based graph
matching algorithms include [32] and [33]. Basically speak-
ing, random walk is applied to the graph matching algorithm
by taking advantages of the techniques and explanations of
random walk in ranking problems.

However, there is an important difference between the rank-
ing problems and graph matching that the latter one is in
nature a combinatorial optimization problem with specific
discrete constraints. For instance, the commonly used bilin-
ear objective function is adopted by many graph matching
algorithms [18], [21], [22], [30], and from this perspective
what makes graph matching different from other problems
involving bilinear objective functions is its specific discrete
constraints. Therefore, it may be inappropriate for the previ-
ous random walk algorithms to utilize continuous techniques
without considering the discrete property. On the other hand,
as surveyed above, some methods [13], [18], [19], [23] signif-
icantly improve the matching performance by introducing the
graduated projection to the discrete domain instead of the hard-
cut projection, which also reflects the necessity of considering
the discrete property in the optimization process.

Based on the above observations, in this paper we pro-
pose a novel random walk-based graph matching algorithm
by incorporating both continuous and discrete constraints in
the optimization process. Specifically, after interpreting graph
matching by random walk, the continuous constraints are
directly embedded in the random walk constraint in each iter-
ation. Further, to get a better discrete matching solution, both
the assignment matrix (vector) and the pairwise similarity
measure between graphs are iteratively updated according the
discrete constraints, which automatically leads the continuous
solution to the discrete domain.

The remainder of this paper is organized as follows. The
preliminaries for graph matching and random walk are first
presented in Section II, together with detailed introductions to
two representative random walk methods for graph matching.
Then the main contributions of this paper are proposed in
Section III, and experimentally verified in Section IV. Finally,
Section V concludes this paper.

II. PRELIMINARIES: GRAPH MATCHING

AND RANDOM WALK

Please refer to Table I in the Appendix for the explorations
of notations used in this paper.

A graph G = {V, E} of size M is defined by a finite ver-
tex set V = {1, 2, . . . , M} and an edge set E ⊆ V × V .
The labeled weighted graph is further defined by assigning
an appearance descriptor [34]–[36] vector liG ∈ R

dl×1 as a

label to the vertex iG, and assigning a nonnegative pairwise
descriptor vector wiGjG ∈ R

dw×1 as a weight to the edge iGjG.
For instance, when using vertices to represent the SIFT key
points in an image, liG could be the appearance descriptor of
size dl = 128 around the iGth point, and wiGjG could be a vec-
tor of size dw = 2 consisting of the distance descriptor and
orientation descriptor between the points iG and jG.

Association graph of size MN, or modular product of two
graphs G of size M and H of size N, has long been an impor-
tant concept in graph matching, especially in subgraph match-
ing problems. For instance, the exact graph matching problem
finding the maximum common subgraph of two graphs, can
be reduced to the problem of finding the maximum clique
in their association graph [3]. In the proposed algorithm, we
use a type of quasi-association graph A, which certain inex-
act weighted graph matching algorithms [14], [18], [21], [30]
also use or implicitly use. Similar to the traditional association
graph, in A each assignment (iG, iH) is treated as a vertex,
and if iG and jG are adjacent in G, and iH and jH are adjacent
in H, the vertices (iG, iH) and ( jG, jH) are then adjacent in
A. Differently, in the traditional association graph, the vertex
(iG, iH) is also considered to be adjacent with ( jG, jH) if nei-
ther iG is adjacent with iH nor jG is adjacent with jH , while
in the quasi-association graph A the vertex (iG, iH) is consid-
ered to be nonadjacent with ( jG, jH) if either iG is nonadjacent
jG or iH is nonadjacent with jH . One major advantage of this
modification is that A is sparse if G and H are sparse. Note
A is also a labeled weighted graph, where its label l(iG,iH)

and weight w(iG,iH)( jG,jH) are usually non-negative real values
which, respectively, measure the affinity between liG and liH ,
and the consistency between wiGjG and wiHjH .

It is common in studying and exploring graphs to use matri-
ces naturally associated with those graphs. The “weighted”
adjacency matrix G ∈ R

M×M recording the adjacency and
weights of edges is one most common type of matrix associ-
ated with the weighted graph. Specifically, GiG,jG = wiGjG if
iG and j are adjacent, and GiG,jG = 0 otherwise. Hereafter the
weighted adjacency matrix is abbreviated by adjacency matrix.
The adjacency matrix associated with the quasi-association
graph A is denoted by A ∈ R

MN×MN , and defined by

Ai,j = A(iG−1)N+iH , ( jG−1)N+jH (1)

=

⎧
⎪⎨

⎪⎩

w(iG,iH)( jG,jH), if vertices (iG, iH) and

( jG, jH) are adjacent

0, otherwise.

(2)

The walk matrix WG ∈ R
M×M associated with the graph

G is closely related to its adjacency matrix G. It is column
stochastic by

WG
iG,jG = GiG,jG

∑M
iG=1 GiG,jG

(3)

where WG
iG,jG

can be explained by the relative importance of
iG from the perspective of jG. And it can be used to encode
the dynamics of a random walk on G [37].

A random walk is a stochastic process where a walker starts
at a random vertex jG, walks randomly to another vertex iG
with the probability WG

iG,jG
, and so on. Let pt

jG
∈ [0, 1] denote
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the probability of the walker on jG at the step t, and then at
the step t + 1 the probability on iG is

pt+1
iG

=
∑

jG

WG
iG,jG pt

jG . (4)

In matrix form, it is

pt+1 = WGpt (5)

where the vector p ∈ [0, 1]M denotes the probability distri-
bution over all the vertices in G. Such an updating (5) is
exactly the well-known power iteration [38]. At a certain step
t′, when the probability distribution does not change anymore,
i.e., pt′+1 = pt′ , the stationary distribution p∗ = pt′ of the
random walk is obtained. In this paper, the random walk on
the quasi-association graph A is utilized, and its walk matrix
W ∈ [0, 1]MN×MN can be given following (3) by2

Wi,j = Ai,j
∑MN

i=1 Ai,j
. (6)

For further reference, the updating (5) is correspondingly
rewritten by

pt+1 = Wpt (7)

where the vector p ∈ [0, 1]MN is then the probability dis-
tribution over all the vertices of A, i.e., all the possible
assignments.

Matching two graphs G and H is to find an appropriate set of
assignments between their vertices, where the assignments can
be also represented by a matrix X ∈ {0, 1}M×N by indicating
the assignment between iG to iH with XiG,iH = 1. If the one-to-
one mapping assumption is further considered, the assignment
matrix X becomes a partial permutation matrix, that is

X ∈ D :=
⎧
⎨

⎩
X|
∑

i

Xi,j ≤ 1,
∑

j

Xi,j = 1, Xi,j ∈ {0, 1}
⎫
⎬

⎭
. (8)

The row-wise replica of X is denoted by x.

A. Existing Random Walk Methods

Before presenting our algorithm in the next section, two
representative random walk algorithms for graph matching
are first introduced based on the above mathematical nota-
tions, which are respectively, proposed by Gori et al. [29] and
Cho et al. [30].

Specifically, to get X, [29] origins from the difference
minimization between two adjacency matrices G and per-
mutated H, i.e., min(G, XHXT). Under certain conditions it
can be deduced that the difference between p∗

G and Xp∗
H

is correspondingly minimized, where p∗ denotes the station-
ary distribution explained above. To make the vice-versa still
hold, [29] instead minimizes the difference between Z∗

G and
XZ∗

H , where the full rank matrix Z∗ named by the graph dis-
crete spectrum matrix is made up of a series of p∗ with varying

2In [30], to preserve the original affinity relations, the walk matrix con-
struction can also be constructed by adding an absorbing node as W =[

A/dmax 0
1 − dT/dmax 1

]

where dj = ∑
i Ai,j and dmax = maxj dj.

model parameters. Then the matching result X is obtained by
well developed bipartite graph matching techniques.

Based on the quasi-association graph A, [30] first develops
an affinity preserving random walk algorithm, which pursues
the stationary distribution p∗ of A. Then the affinity preserving
random walk algorithm is further improved by incorporating
the continuous matching constraints in each iteration based
on the Sinkhorn method [31] in a personalized Pagerank way.
The latter algorithm is named by the reweighted random walk
matching algorithm (RRWM), which achieves the state-of-the-
art performance.

Since the proposed method also adopts the quasi-
association graph A as in [30], it is obviously different
from [29]. And a major feature distinguishing the proposed
method from [30] is that it incorporates the discrete graph
matching constraints in the optimization process, by iter-
atively updating the assignment probability vector and the
pairwise similarity measure to lead the continuous solu-
tion automatically to the discrete domain. Another difference
is that in the proposed method the continuous constraints
are directly embedded in the random walk constraint in
each iteration, rather than building an additional, continuous
constraints-related term in [30].

III. PROPOSED METHOD

Based on the above preliminaries, the contributions of
this paper are presented in this section, with Section III-A
applying random walk to graph matching and Section III-B
incorporating graph matching constraints into the scheme.

A. Graph Matching by Random Walk

Given two labeled weighted graphs G of size M and H of
size N, their quasi-association graph A is constructed as in
Section II, and the adjacency matrix A associated with A is
given by (1). Based on A, the walk matrix W is given by (6).
Then graph matching can be formulated by random walk as
follows.

Assuming that each assignment (iG, iH) is associated with
an initial probability P0((iG, iH)), iteratively the probability
for an assignment (iG, iH) at the step t + 1 can be given by

Pt+1((iG, iH)) =
∑

( jG,jH)

Pt((iG, iH)|( jG, jH))Pt(( jG, jH)) (9)

where P((iG, iH)|( jG, jH)) is the conditional probability of
the assignment (iG, iH) given the assignment ( jG, jH). Since
each entry Wi,j = W(iG−1)N+iH ,( jG−1)N+jH in the walk matrix
can be regraded as the belief of the assignment (iG, iH)

from the perspective of the assignment ( jG, jH), in proba-
bilistic manner it is equivalent to the conditional probability
P((iG, iH)|( jG, jH)), that is

Pt((iG, iH)|( jG, jH)) = W(iG−1)N+iH , ( jG−1)N+jH (10)

= Wi,j. (11)

Accordingly, given the probability distribution p over all the
assignments as in Section II, there is

Pt((iG, iH)) = pt
(iG−1)N+iH = pt

i. (12)
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Denoting the (iG − 1)N + iH th row in W by W(iG−1)N+iH ,:,
based on (10) and (12), the updating (9) can be equivalently
written as

pt+1
i = Wi,:pt (13)

which is exactly the random walk iteration (7). The stationary
distribution p∗ is obtained until the convergence of p, which
can be regarded as the softened matching result. Note the graph
matching constraints are abandoned in the formulation, and
only the random walk constraint is used, that is

pT1 = 1, pi ∈ [0, 1]. (14)

By the above formulation, random walk is directly applied
to the graph matching problem. An explicit shortcoming of
such a straightforward generalization is that only the pairwise
information stored in W is used, while the appearance cues,
i.e., the vertex labels, are not considered. Therefore inspired
by the personalized Pagerank algorithm, (7) is extended by

pt+1 = (1 − α)Wpt + αq. (15)

The vector q ∈ [0, 1]MN is related to the appearance cues,
which is also a probability distribution over all the assign-
ments, that is

qT1 = 1, qi ∈ [0, 1]. (16)

And a feasible construction of q is

qi = q(iG−1)N+iH = l(iG,iH)
∑

(iG,iH) l(iG,iH)

(17)

where the label l(iG,iH) of vertex (iG, iH) measures the affinity
between liG and liH as introduced in Section II.

Note since the diagonal entries in A are all zeros, for con-
venience some graph matching algorithms [15], [21], [23]
replace the zeros by the vertex similarity measures (i.e., liG,iH ),
and name the modified A by the affinity matrix. Following
these algorithms, the previous random walk algorithm [30]
constructs A in the same way, and further utilizes the modified
A in the stochastic normalization of W as follows:

W(iG−1)N+iH ,(iG−1)N+iH = A(iG−1)N+iH ,(iG−1)N+iH
∑MN

i=1 Ai,( jG−1)N+jH

(18)

= l(iG,iH)

l(iG,iH) +∑
(iG,iH) w(iG,iH)( jG,jH)

(19)

and

W(iG−1)N+iH ,( jG−1)N+jH = A(iG−1)N+iH ,( jG−1)N+jH
∑MN

i=1 Ai,( jG−1)N+jH

(20)

= w(iG,iH)( jG,jH)

l(iG,iH) +∑
( jG,jH) w(iG,iH)( jG,jH)

.

(21)

However, the influence of such a modification on W for a
random walk seems not well justified. Besides, because of
different physical meanings, there is also a scaling problem
between the vertex similarity l(iG,iH) and the edge similar-
ity w(iG,iH)( jG,jH) in [30]. Instead in this paper, we use the
extension (15) to incorporate the appearance cues.

An advantage of the extension (15) is that it is convenient to
incorporate the matching prior, which may be either obtained
by elementary matching techniques, or reflect the preference
of assignments. Denoting the matching prior by a probabil-
ity distribution r ∈ [0, 1]MN over all the assignments, it is
straightforward that the updating (15) becomes

pt+1 = (1 − α1 − α2)Wpt + α1q + α2r (22)

= (1 − (α1 + α2))Wpt

+ (α1 + α2)

(
α1

α1 + α2
q + α2

α1 + α2
r
)

(23)

= (
1 − α′)Wpt + α′q′ (24)

where

α′ = α1 + α2 (25)

q′ = α1

α1 + α2
q + α2

α1 + α2
r. (26)

The vector q′ is still a probability distribution over all
the assignments, and therefore (22) actually uses the same
formulation with (15).

Another advantage of the extension (15) is about the con-
vergence. For a random walk on a graph, the stationary
distribution is actually the primary right eigenvector of the
walk matrix, which corresponds to the largest eigenvalue
λ1 = 1 [37]. The convergence of the scheme and the rate
of convergence are closely related to the second largest eigen-
value λ2 in magnitude. Specifically, if λ2 < 1, the iteration
would converge to a unique stationary distribution p∗ , and the
rate of convergence is positively related to 1 − |λ2|. By (15),
the real walk matrix utilized is (1 − α)W + α1qT , and it has
been proved that λ2 < 1 − α [39]. Hence the convergence of
the scheme can be guaranteed.

However, as explained in Section II, graph matching is a
combinatorial optimization problem with specific discrete con-
straints. In the above scheme, the graph matching constraints
are ignored in the optimization process. Below we show how
to incorporate both continuous and discrete constraints in the
optimization process.

B. Incorporation of Graph Matching Constraints

In this section, we show how to introduce graph matching
constraints into the above random walk scheme. First, the con-
tinuous constraints are directly embedded in the random walk
constraint in each iteration. Then both the assignment proba-
bility vector p and the walk matrix W are iteratively updated
according the discrete constraints, which automatically leads
the continuous solution to the discrete domain.

1) Incorporation of Continuous Constraints: As mentioned
in Section I, approximate algorithms are necessary for the
NP-complete graph matching problems. Quite a number of
approximate algorithms [13], [21]–[23], [30] involve relax-
ing the discrete constraints to the continuous constraints. And
for those algorithms utilizing the discrete domain D [defined
in (8)], a most reasonable continuous relaxation may be

X ∈ C :=
⎧
⎨

⎩
X

∣
∣
∣
∣

∑

i

Xi,j ≤ 1,
∑

j

Xi,j = 1, Xi,j ∈ [0, 1]

⎫
⎬

⎭
.

(27)
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In the vector form, C can be rewritten as
{
x
∣
∣
(
1T

M ⊗ IN
)
x ≤ 1N,

(
IM ⊗ 1T

N

)
x = 1M, xi ∈ [0, 1]

}
(28)

where 1M denotes an all-one vector of size M, IN denotes
the identity matrix of size N, and ⊗ denotes the Kronecker
product of two matrices. The reasonability is reflected in the
doubly stochastic form of the continuous assignment matrix
X in C, which is interpretable in a probabilistic manner, i.e.,
XiG,iH denotes the probability of iG in G being assigned to
iH in H under the one-to-one matching assumption. Besides,
some algorithms [18], [19] also take advantage of the property
that C is the convex hull of D with D as its extreme point set.
Therefore, the incorporation of continuous constraints C in the
optimization process may improve the performance. Thanks to
the fact that for xi ∈ C,

∑
i xi = M is always a constant, in the

optimization process x can be constrained by embedding (28)
in the random walk constraint (14) as follows:

C1 :=
{

p
∣
∣
(
1T

M ⊗ IN
)
p ≤ 1N

M
,
(
IM ⊗ 1T

N

)
p = 1M

M

pi ∈
[

0,
1

M

]}

. (29)

Unfortunately, after the updating of p by (15), though the
random walk constraint (14) still hold, the combined con-
straints (29) are broken. Therefore p is normalized based on
the Sinkhorn method [31] (see steps 5 and 6 in Algorithm 1).
Note except the updating step by (15), in the whole
Algorithm 1 including the incorporation of discrete constraints,
there is always p ∈ C1.

2) Incorporation of Discrete Constraints—p: Though the
continuous constraints are incorporated in the optimization
process, still only a continues matching result p∗ rather than
a discrete one is obtained. And as mentioned in Section I, a
hard-cut projection of p∗ directly to the discrete domain, may
introduce significant additional error [13], while the gradu-
ated projection-based methods [13], [19], [23] would improve
the matching performance. Therefore below the discrete con-
straints are further incorporated in the optimization process to
lead the continuous solution gradually to the discrete domain,
which consists the updating of both p and W. The common
basic idea is to enhance the more probable assignments and at
the same time weaken the less probable assignments in each
iteration.

Specifically, the updating of p consists of the computation
of the projection direction e, and the search of the step size s.
First, corresponding to (29), a discrete domain is defined by

D1 :=
{

p
∣
∣
(
1T

M ⊗ IN
)
p ≤ 1N

M
,
(
IM ⊗ 1T

N

)
p = 1M

M

pi =
{

0,
1

M

}}

(30)

which is the same with D except for a constant multiplication
factor M. Then the projection direction e is given by

e = y − p, y ∈ D1 (31)

which is a direction from the current point p to a discrete
point y. Particularly, the discrete point y is obtained by the

projection of the doubly stochasticized, exponentially inflated
p, rather than the direct projection of p. More specifically, the
exponential operator is applied to p as follows:

p′ = exp

(
p

mean(p)

)

= exp(MNp) (32)

and then p′ is doubly stochasticized also by the Sinkhorn
method (steps 7.2 and 7.3 in Algorithm 1). These operations
are intended to emphasize the more reliable assignments and
depress the less reliable ones. Then y is obtained by finding
the nearest point in D1 to p′, which can be formulated by the
following linear assignment problem:

y = arg max
y

yTp′

s.t. y ∈ D1 (33)

and further be solved by for instance the efficient
Kuhn–Munkres algorithm [40]. For the step size s, since the
proposed algorithm does not explicitly involve an objective
function, we choose to find the point p + se, s ∈ [0, 1]
maximizing

(p + se)TA(p + se) (34)

which, similar as in [18] and [23], is a quadratic optimization
problem with one variable s. Therefore, the step size can be
found by exact line search as follows:

s =

⎧
⎪⎨

⎪⎩

s′, if 0 ≤ s′ ≤ 1

0, if s′ < 0

1, if s′ > 1

(35)

where

s′ = eT
(
A + AT

)
p

2eTAe
. (36)

Then in each iteration, the continuous solution is updated
toward the discrete domain D1 by

p = p + se. (37)

3) Incorporation of Discrete Constraints—W:
Reconsidering (9), heretofore the conditional probability
Pt((iG, iH)|( jG, jH)) is treated as an invariant. Below based
on the updating of assignment probabilities (i.e., p), the
conditional probabilities (i.e., W) are also updated in
the optimization process, which could in return help to
push p to discrete domain D1. The operation also origins
from the idea that more probable assignments should be
enhanced while the less probable ones should be weakened.
Specifically, if at the step t + 1 the probability P((iG, iH))

(i.e., p(iG−1)N+iH ) increases, then the conditional probabilities
P((iG, iH)|( jG, jH)), ∀( jG, jH) (i.e., W(iG−1)N+iH ,:) should
also be increased, and similarly if P((iG, iH)) decreases, then
P((iG, iH)|( jG, jH)),∀( jG, jH) should also be decreased. In
matrix form W is updated by

Wt+1 = EWt (38)

where E is a diagonal matrix defined by

Ei,i = pt+1
i

pt
i

. (39)
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Algorithm 1 Random Walk-Based Graph Matching
Input: Two labeled weighted graphs G and H
1: Initialize the walk matrix W0 by (1) and (6), and

the assignment probability vector by p0 = 1MN
MN

2: Build the probability vector q by (17), and initialize
the factor α

3: repeat
4: Update pt+1 based on Wt and pt by (15), i.e.,

pt+1 = (1 − α)Wpt + αq
5: Repeat (incorporation of the continuous constraints)

5.1: pt+1
(iG−1)N+iH

= pt+1
(iG−1)N+iH

N
∑M

iG=1 pt+1
(iG−1)N+iH

5.2: pt+1
(iG−1)N+iH

= pt+1
(iG−1)N+iH

M
∑N

iH=1 pt+1
(iG−1)N+iH

6: Until iteration maximum is reached
7: Further Update pt+1 (Incorporation of the discrete

constraints: p)
7.1: Compute the exponentially inflated p′ by (32)
7.2: Repeat (Doubly stochasticization of p′)
7.2.1: p′

(iG−1)N+iH
= p′

(iG−1)N+iH

N
∑M

iG=1 p′
(iG−1)N+iH

7.2.2: p′
(iG−1)N+iH

= p′
(iG−1)N+iH

M
∑N

iH=1 p′
(iG−1)N+iH

7.3: Until iteration maximum is reached
7.4: Compute the projection direction e by (31), i.e.,

e = y − pt+1, where y ∈ D1 is obtained by (33)
7.5: Find the step size s by (35)
7.6: Update pt+1 by (37), i.e.,

pt+1 = pt+1 + se
8: Update Wt+1 (Incorporation of the discrete

constraints: W) by (38), i.e.,
Wt+1 = EWt, where E is given by (39)

9: until pt+1 = pt and pt+1 ∈ D1
10: Multiply pt+1 by M to get the assignment vector x
Output: An assignment vector x

After the updating by (38), Wt+1 is usually not in the standard
walk matrix form, i.e., usually

∑MN
i=1 Wt+1

i,j 
= 1,∀j. Therefore,
Wt+1 is further normalized to make it column stochastic
simply by

Wt+1
i,j = Wt+1

i,j
∑MN

i=1 Wt+1
i,j

. (40)

Note that in the implementation, the updating (38) and nor-
malization (40) are only performed when there are no zero
entries in both pt+1 and pt.

The whole scheme is summarized in Algorithm 1. The com-
putational complexity is maxO(pq),O(N3) where p and q
denote the edges numbers and N denotes the vertex number.
Specifically, O(pq) are related to operations on W, such as
Wp or EW. And O(N3) are mostly related to operations on
p, such as the linear assignment problem (33).

Below some related works are discussed from the algo-
rithmic perspective. First, the proposed method is closely
related to the existing random walk-based graph match-
ing algorithms [29], [30], especially [30], as discussed in

Section II-A. The proposed algorithm is also related to the
algorithms [13], [19], [23] which involve the graduated pro-
jection of the continuous solution to the discrete domain. The
difference is that they typically build explicit objective func-
tions, and take advantage of the conditional gradient method,
or known as the Frank–Wolfe algorithm3 in the objective func-
tion optimization. Besides, the proposed algorithm is inspired
by those algorithms [15], [18], [41] involving the updat-
ing of matrices encoding pairwise relations. These matrices
include, for instance the affinity matrix [15], [18] as in (1),
or the dissimilarity matrix [41]. And the proposed method
generalizes their thoughts to the random walk-based graph
matching. Some state-of-the-arts among these algorithms will
be experimentally compared with below.

IV. EXPERIMENTS

In this section, the proposed algorithm is experimentally
evaluated by comparing it with the following algorithms: the
RRWM [30], the spectral matching technique (SM) [21], the
GA algorithm [14], the integer projected fixed point method
(IPFP) [23], and the probabilistic SM (PSM) [15]. The pro-
posed algorithm is denoted by OUR. All the algorithms for
comparison are reimplemented by us using the MATLAB soft-
ware except IPFP, for which the MATLAB codes4 are publicly
available. For RRWM, we use the same parameters suggested
by Cho et al. [30]. For GA, the parameters are fixed to be same
as in [18]. For IPFP, we follow [23] to use a flat, uniform con-
tinuous solution to initialize the assignment vector. For OUR,
we empirically fixed α = 0.05 in all the experiments.

The comparisons are carried out on a synthetic point
dataset, two benchmark graph matching datasets, i.e., the
House sequence5 and the real-world Car & Motorbike image
datasets,6 and a handwritten Chinese character image dataset.
On all the datasets, the matching accuracy is used as the
comparison criterion, which is the ratio between the num-
ber of correct assignments and the number of ground truth
assignments.

A. Synthetic Points

The proposed method is first evaluated on 3-D synthetic spa-
tial points. The two point sets are generated as follows. First
randomly generate a point set H = {hj}N

j=1, hj ∼ U[0, 1]1×3

by uniform sampling in a 3-D cubic; randomly generate a
ground truth assignment vector xgt ∈ D; get the second point
set G = {gi}N

i=1 based on H and x by

gi = hj + η, η ∼ N(0, σ )

if xgt
(i−1)N+j = 1 (41)

where η is the additive noise. Each point set is represented by
a graph, and the graph structure is built in a sparse manner by
setting the edge density to be 0.1. The two graph structures
are different by disturbing the second one following the way

3Despite not explicitly mentioned in [23], their optimization method is
actually a generalization of the Frank–Wolfe algorithm.

4Available at https://sites.google.com/site/mariusleordeanu/
5Available at http://vasc.ri.cmu.edu/idb/html/motion/house/
6Available at https://sites.google.com/site/graphmatchingmethods/

https://sites.google.com/site/mariusleordeanu/
http://vasc.ri.cmu.edu/idb/html/motion/house/
https://sites.google.com/site/graphmatchingmethods/
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Fig. 1. Three-dimensional synthetic point matching results. The upper plot
shows the comparison with respect to graph size, and the lower plot shows
the comparison with respect to noise level.

Fig. 2. Running time comparison in 3-D synthetic point matching.

in [13], that is to randomly add and remove (1/2)σp edges in
the second graph, where p denotes the total edge number. In
this experiment, the globally normalized length of an edge is
used as its 1-D edge weight, that is

wiGjG = diGjG

maxiG 
=jG diGjG
(42)

Fig. 3. House samples. The image number is provided below each image,
which is abbreviated by img. no. The ground truth points are shown in blue.

Fig. 4. House matching results.

where diGjG denotes the length of the edge iGjG. And further,
the edge weight w(iG,iH)( jG,jH) in the quasi-association graph
A is defined by

w(iG,iH)( jG,jH) = exp

(

−
(
wiGjG − wiHjH

)2

σ L

)

(43)

where the kernel width parameter σ L is empirically fixed as
0.15. The vertex appearance descriptor is not considered to
fairly compared the pairwise matching performance of differ-
ent algorithms, and correspondingly in the proposed algorithm
q in (15) is set to be a flat distribution, that is

q = 1MN

MN
. (44)

The performance is first compared with respect to the graph
size, which are increased from N = 30 to N = 60 by a step
size 3 with M = N −5 and σ = 0.05. It is also compared with
respect to σ , which is increased from σ = 0 to σ = 0.1 by
a step size 0.01 with M = 40 and N = 45. The comparison
results are illustrated in Fig. 1. It can be observed that OUR
and GA achieve comparable performances, which are better
than the other algorithms. Note that intuitively the matching
accuracy should decrease as the graph size increases because
larger problem size implies more local optimal points. By con-
trast, in the upper plot of Fig. 1, the matching accuracies are
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Fig. 5. Typical House matching instances. The img. no. sep. is 50. Green/red lines, respectively, denote correct/incorrect assignments, and yellow lines
denote graph structures.

Fig. 6. Running time comparison in House matching.

positively related with the graph size, which is mainly because
that by our settings the outlier ratio decreases as the graph size
increases.

The running time is compared with respect to the graph
size, which is increased from N = 10 to N = 60 by a
step size 5 with M = N − 5 and σ = 0.05. The results
are shown in Fig. 2 in a logarithmic manner, by which the
slope rates empirically indicate the computational complexi-
ties. Specifically, the slope rates of RRWM, SM, and IPFP
are around 3.8 ± 0.3, and those of GA, PGM, and OUR are
around 4.2±0.3. The proposed method involves a comparable
computational complexity with the other algorithms, which is
about O(N4). For a specified edge density, the graph contains
p = O(M2) edges. Theoretically, the computational complex-
ity max(O(pq),O(N3)) analyzed in Section III-B2 would be
O(M2N2), similar to the above experimental results.

B. House Sequence

The House sequence consists of 111 images, which are
sequentially sampled from a video clip of rotating artificial
House model. Some image samples are illustrated in Fig. 3.
Basically, a larger separation between the sequence numbers of
two images implies a more difficult matching task. Each image
is manually labeled with 30 ground truth points as in [7].

Fig. 7. Car and Motorbike samples. The key points, including both ground
truth points and outliers, are shown in blue. The outlier number in either
image pair is 10.

Fig. 8. Car and Motorbike matching results.

The graph structure is constructed by the Delaunay triangula-
tion method. The edge weight and vertex label are set to be
the same with the first experiment.

The matching accuracies of different algorithms are com-
pared with respect to the image number separation (abbre-
viated by img. no. sep.), which is increased from 0 to 100
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Fig. 9. Typical Car and Motorbike matching instances. Green/red lines, respectively, denote correct/incorrect assignments, and yellow lines denote graph
structures.

with a step size of 10. For each img. no. sep., 10 matching
pairs of images are randomly selected without repetition, and
there are totally 110 matching pairs. The matching results are
shown in Fig. 4, from which we can observe that generally the
accuracies of different algorithm decrease as the img. no. sep.
increases, and OUR outperforms the other algorithms. Some
matching instances by different algorithms are illustrated in
Fig. 5.

The running time of different algorithms is also compared,
and graph size is increased from 10 to 30 by a step size 2.
For each step, 30 matching pairs are randomly selected, and
the img. no. sep. is fixed to be 50. The results are shown in
Fig. 6 also in a logarithmic manner. It can be observed that
the slope rates are a little smaller than those in Fig. 2. The
reduction may be due to the Delaunay triangulation method
in building the graph structures, by which the edge number p
increases linearly with respect to the vertex number M.

C. Car and Motorbike Dataset

The experimental comparisons are also carried out on the
real-world Car and Motorbike image dataset, which consists
of 30 Car image pairs and 20 Motorbike image pairs. Some
samples of these image pair are shown in Fig. 7. In each image
pair, a certain number (ranging from 15 to 52) of key points
are manually labeled, and are associated with ground truth
assignments. Similarly to the above experiment, Delaunay tri-
angulation is used to construct the graph structure. Differently,
in this experiment two types of pairwise information from both

the length and orientation aspects are used to compute the 2-D
edge weight wiGjG , of which the two entries are, respectively,
denoted by wL

iGjG
and wO

iGjG
for convenience. The entry wL

iGjG
is similarly defined as in (42), and wO

iGjG
is defined by

wO
iGjG = 2∠iGjG

π
(45)

where ∠iGjG denotes the acute angle between the edge iGjG
and the horizontal axis. Then the edge weight w(iG,iH)( jG,jH) in
A is defined by

w(iG,iH)( jG,jH) = 0.5 exp

⎛

⎜
⎝−

(
wL

iGjG
− wL

iHjH

)2

σ L

⎞

⎟
⎠

+ 0.5 exp

(

− (wO
iGjG

− wO
iHjH

)2

σO

)

(46)

and we empirically set the kernel width parameters to be σ L =
0.15 and σO = 0.2. The label liG of vertex iG is obtained by
the shape context descriptor [42], and based on it the vertex
label l(iG,iH) in A is defined by

l(iG,iH) = exp

(‖liG − liH ‖2

σV

)

(47)

where ‖·‖ denote the Euclidean norm and the σV is the kernel
width parameter set to be 1. Then q is obtained by (17).

The matching accuracies of different algorithms are com-
pared with respect to the outlier number, which is increased
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Fig. 10. Handwritten Chinese character samples.

Fig. 11. Handwritten Chinese character matching results.

from 0 to 20 with a step size of 2. The matching results are
shown in Fig. 8, and we can observe that OUR outperform
the other algorithms on the real-world image dataset. Some
matching instances by different algorithms are illustrated in
Fig. 9.

D. Handwritten Chinese Character Images

The proposed algorithm is also applied to the handwritten
Chinese character images. As shown in Fig. 10, there are four
characters in the dataset and each one consists of ten image
samples written by different persons fetched from [43]. We
follow the settings in [41]. Specifically, for the first and third
characters 28 ground truth points are manually labeled, and
for the second and fourth characters 23 ground truth points are
manually labeled. Besides, 10 outliers are randomly labeled in
each image. The graph structure is built by taking into account
both the character skeleton and randomness. The performance

Fig. 12. Typical Handwritten Chinese character matching instances by OUR.
Green/red lines, respectively, denote correct/incorrect assignments, and yellow
lines denote graph structures.

TABLE I
SOME NOTATIONS USED IN THIS PAPER AND THEIR EXPLANATIONS

is compared with respect to outlier number which is increased
from 0 to 10 by a step size 1. The results are shown in Fig. 11,
and some matching instances are given in Fig. 12.

V. CONCLUSION

This paper proposes a novel random walk-based graph
matching algorithm by incorporating both continuous and dis-
crete constraints in the optimization process, of which the
effectiveness is validated by experimental comparisons on
benchmark graph matching datasets. And it also demonstrates
the necessity of considering the combinatorial optimization
nature of the graph matching problem when generalizing
efficient continuous methods to it.

APPENDIX

NOTATIONS

Some notations used in this paper and their explanations are
described in Table I.
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