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Abstract— We propose a weighted common subgraph (WCS) matching
algorithm to find the most similar subgraphs in two labeled weighted
graphs. WCS matching, as a natural generalization of equal-sized graph
matching and subgraph matching, has found wide applications in many
computer vision and machine learning tasks. In this brief, WCS matching
is first formulated as a combinatorial optimization problem over the set
of partial permutation matrices. Then, it is approximately solved by
a recently proposed combinatorial optimization framework—graduated
nonconvexity and concavity procedure. Experimental comparisons on
both synthetic graphs and real-world images validate its robustness
against noise level, problem size, outlier number, and edge density.

Index Terms— Adjacency matrix, graph algorithms, graph
matching, weighted common subgraph (WCS) matching.

I. INTRODUCTION

Graph matching aims to find the optimal correspondence between
vertices of two graphs. It is a fundamental problem in theoretical
computer science, and also plays a key role in many computer vision
and pattern recognition tasks [1], [2].

Bipartite graph matching can be effectively and efficiently solved
by the Hungarian algorithm [3] or linear programming methods [4].
When further considering pairwise constraints, the matching problem
becomes in general NP-hard. Approximation methods, which make
certain relaxations to the original problem, are necessary for effi-
ciency reasons [1].

In the last ten years, significant progresses have been achieved on
the approximation methods. For instance, the computational complex-
ity has been decreased to as low as O(N3)—the complexity of matrix
multiplication. On the other hand, the accuracy, taking the benchmark
data set “House sequence”1 for example, has been increased from
about 60% [5] to nearly 100% [6], [7], due to the new graph
similarity measures as well as new optimization techniques. Typical
algorithms in the literature include graduated assignment (GA) [8],
spectral technique (SM) [9], path following [7], and probabilistic
graph matching (PGM) [10].

In this brief, we consider the matching problem involving outliers.
Most existing methods treat it as a part-in-whole (PIW) problem [11],
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commonly known as subgraph matching, which recognizes the
smaller graph as a part of the bigger one. Moreover, some recently
proposed effective graph matching algorithms [7], [12] are only
applicable to equal-sized graphs. However, in real applications, such
as object recognition in computer vision, outliers may exist in both
images because of image background, object occlusion, or geometric
transformations. Thus, it is reasonable to formulate the matching
problem as finding the most similar subgraphs within two graphs
extracted from the images. Furthermore, to obtain a robust similarity
measure, the number of matched vertices should sometimes be
specified and kept smaller than the estimated number of inliers repre-
senting the objects [13]. Then, the problem can be defined as finding
the most similar subgraphs of a given size in two labeled weighted
graphs. Such a problem is named weighted common subgraph (WCS)
matching, a generalization of the equal-sized graph matching and
subgraph matching from the perspective of outlier distribution.

Another similar term in the literature is the maximum common
subgraph (MCS) problem, or known as MCS isomorphism [14].
Given two graphs, MCS aims to find the largest subgraph in one graph
isomorphic to an unknown subgraph in the other one. MCS has a long
tradition in structural data processing, such as cheminformatics. MCS
and WCS are different mainly in the following two aspects. First,
MCS requires the two common subgraphs to be strictly isomorphic
to each other, even on weighted graphs, while WCS tolerates some
disparities between them. The latter one is more reasonable in most
real tasks when involving noises. Second, MCS searches for the
largest common subgraphs while WCS for the common subgraphs
of a given size.

In the literature, there also exist some algorithms [9], [10], which
can be used for WCS matching, by a two-step schema, which first
matches all the vertices, and then finds a specified number of best
assignments by ranking techniques. Such a two-step idea is, however,
not consistent with the WCS matching problem. That is, even both
the two steps are optimally solved, and the obtained subgraphs may
not be the optimal pair.

Different from the above-mentioned methods, in this brief, we pro-
pose a novel WCS matching algorithm, which unifies the two steps
and targets directly at the specified number of best assignments.
Specifically, we first formulate WCS matching as a combinatorial
problem over the partial permutation matrices, and then develop
a graduated nonconvexity and concavity procedure (GNCCP)-
based [15], [16] optimization algorithm. To this end, we also propose
two relaxations of the objective function to make the calculation
tractable.

The WCS matching algorithm is proposed in Section II, and
experimentally evaluated in Section III on both synthetic graphs and
real-world images. Finally, concluding remarks and future extensions
are discussed in Section IV.

II. METHOD

In this section, we first formulate WCS matching as a combi-
natorial optimization problem, and then approximately solve it by
the GNCCP. Finally, we give two relaxations to make the algorithm
implementable.
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A. Formulation

A graph G = (V, E) of size M is defined by a finite vertex set
V = {1, 2, · · · , M} and an edge set E ⊆ V×V . The labeled weighted
graph is further defined by assigning a real number vector lG

i as a
label to vertex i , and assigning a nonnegative real number wG

i j as a
weight to edge i j in G. Taking feature correspondence for example,
by treating feature points as vertices, some local descriptor, e.g., the
scale invariant feature transform (SIFT) descriptor, can be used as the
vertex label, and the distance between two feature points as the edge
weight. The weighted adjacency matrix AG ∈ R

M×M is commonly
used to record adjacency and weights of edges. Hereafter, by terms
graph and adjacency matrix, we mean the labeled weighted graph
and weighted adjacency matrix, respectively.

Given two graphs G and H of size M and N , respectively, and an
integer L ≤ M ≤ N , WCS matching is formulated as the following
combinatorial programming problem:

min
X

F(X)

s.t. X ∈ P,P :=
⎧
⎨

⎩
X

∣
∣
∣
∣
∣
∣

M∑

i=1

Xi j ≤ 1,

N∑

j=1

Xi j ≤ 1,

M∑

i=1

N∑

j=1

Xi j = L , Xi j ∈ {0, 1}
⎫
⎬

⎭
, L≤ M ≤N

(1)

where P is the set of partial permutation matrices shown in Fig. 1.
As a generalization of the recent adjacency matrix-based objective
functions [7], [15], which have the advantage of low computational
complexity and storage complexity. In this brief, the objective func-
tion F(X) is constructed by

F(X) = α‖U ◦ AG − XAH XT ‖2F + (1− α)tr(CT X). (2)

For further derivation convenience, the higher order term is denoted
by H0(X), that is

H0(X) = ‖U ◦ AG − XAH XT ‖2F . (3)

The two adjacency matrices AG and AH are, respectively, associated
with the graphs G and H . ‖ · ‖F denotes the Frobenius matrix
norm defined as ‖A‖F = (

∑
i
∑

j A2
i j )

1/2 = (tr(AT A))1/2 with
tr(·) denoting the matrix trace. The symbol ◦ denotes the Hadamard
product (entrywise product) of two matrices defined as (A ◦ B)i j =
Ai j Bi j assuming conformability. The matrix U = X1N×N XT is
to “pick out" the vertices with corresponding relations in G, where
every entry in 1N×N is “1," as shown in Fig. 2. In the unary term
tr(CT X), C is a cost matrix with Ci j measuring the dissimilarity
between labels lG

i and l H
j . The parameter α satisfying 0 ≤ α ≤ 1 is

used to balance the two terms.
When L = M ≤ N , WCS matching degenerates to the PIW

problem [15], and when L = M = N , it further degenerates to
the equal-sized matching problem [7], [12].

By defining the problem over P , we actually introduce the one-to-
one constraints on the WCS matching, a commonly used assumption
in graph matching [6]. Particularly, if Xi j = 1, vertex i in G is
assigned to j in H . If

∑M
i Xi j = 0, there are no corresponding

vertices in G for vertex j in H . It is similar when
∑N

j Xi j = 0,
as shown in Fig. 1.

The formulation equation (1) directly targets at the WCS
matching problem, without resorting to the conventional two-step
schema [9], [10]. However, it meanwhile becomes more difficult to
handle, as to be discussed later in Section II-C.

Fig. 1. Matching L = 4 vertices between the graphs G and H with size
M = 5 and N = 6. The black box and white box in X mean 1 and 0,
respectively.

Fig. 2. Graphic description for the objective. Here, M = 5, N = 6, and
L = 4. AsubG and AsubH denote the adjacency matrices for the subgraphs
from G and H , respectively. (a) U = X1N×N XT . (b) AsubG = U ◦ AG .
(c) AsubH = XAH XT . (d) H0(X) = ‖AsubG − AsubH‖2F .

B. Optimization

The combinatorial optimization problem (1) is NP-hard with a
factorial complexity, which calls for some approximations in real-
istic applications. In the following, we propose an approximation
algorithm based on the GNCCP [15], [16], a relaxation technique.

The GNCCP has its root in the convex–concave relaxation proce-
dures (CCRPs) [7], [12], [17]. Combining both convex and concave
relaxations, CCRP achieved a superior performance on the equal-
sized graph matching. The GNCCP realizes exactly a type of CCRP,
but in a much simpler way without needing to construct the con-
vex or concave relaxations explicitly, making it very easy to use in
practice. This is particularly important for WCS matching, because
both the convex and concave relaxations are difficult to construct.

To utilize the GNCCP to solve (1), first, we need to get the convex
hull D of P as follows.

Theorem 1: The convex hull of the set of partial matrices P is D,
where

D :=
⎧
⎨

⎩
X

∣
∣
∣
∣
∣
∣

M∑

i=1

Xi j ≤ 1,

N∑

j=1

Xi j ≤ 1,

M∑

i=1

N∑

j=1

Xi j = L , Xi j ≥ 0

⎫
⎬

⎭
.

Proof: See Appendix A in the Supplementary Material.
Note that D can be regarded as a generalization of the set of doubly

stochastic matrices [18], the convex hull of the set of permutation
matrices. Then, the GNCCP takes the following form:

Jζ (X) =
{

(1− ζ )F(X)+ ζ tr(XT X), if 1 ≥ ζ ≥ 0

(1+ ζ )F(X)+ ζ tr(XT X), if 0 > ζ ≥ −1

X ∈ D. (4)
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In implementation, ζ decreases gradually from 1 to 0 (graduated
nonconvexity) and finally to −1 (graduated concavity). During the
process, GNCCP implicitly transfers from the convex relaxation to
the concave relaxation. When reaching the concave relaxation whose
minimum points locate exactly in P , the algorithm terminates. The
readers are referred to [15] for more details of GNCCP.

For a specific ζ , Jζ (P) is optimized by the Frank–Wolfe
algorithm [19], which iteratively updates X by X ← X + λd until
convergence. The initial X is the solution of Jζ (X) obtained at the
previous ζ . And the optimal search direction d = Y−X is given by
solving the following linear programming problem:

Y = arg max tr(−∇ Jζ (X)T Y)

s.t. Y ∈ D (5)

which can be solved by, for example, the interior point method [20].
The gradient ∇ Jζ (X) in (5) takes the following form:

∇ Jζ (X) =
{

(1− ζ )∇F(X)+ 2ζX, if 1 ≥ ζ ≥ 0

(1+ ζ )∇F(X)+ 2ζX, if 0 > ζ ≥ −1

X ∈ D (6)

where

∇F(X) = ∇H0(X)+ (1− α)C. (7)

The optimal step size λ is given by

λ = arg min Jζ (X+ λ(Y− X))

s.t. 0 ≤ λ ≤ 1 (8)

which can be solved by an inexact line search, e.g., backtracking
algorithm [20].

Finally, the GNCCP-based WCS matching algorithm is summa-
rized by Algorithm 1.

Algorithm 1 : Weighted Common Subgraph Matching Algorithm
Input: Two graphs G and H
Initialization: X← 1M×N

L
M×N , ζ ← 1

GNCCP:
Repeat

FW process
ζ = ζ − dζ

Until ζ < −1 ∨ X ∈ P
Output: The matching result X

C. Implementation Details

In implementation, it is difficult to directly calculate ∇H0(X),
which involves a Hadamard product. Instead, in the following,
we propose two types of relaxations of H0(X) to make it cal-
culable. Similar relaxation techniques were widely used in graph
matching [7], [12].

The first relaxation H1(X) is given as follows:
H1(X) = ‖U ◦ AG − XAH XT ‖2F = tr((AG ◦ AG )U T )

−2tr
(
AGXAT

H XT )+ tr
(
XAH XT XAT

H XT )
(9)

where we take advantage of

U ◦ U = U (10a)

U ◦ (XAH XT ) = XAH XT . (10b)

See Appendix B in the Supplementary Material for the derivation
details of (9). Its gradient is then figured out as follows:
∇H1(X) = (

AT
G ◦ AT

G + AG ◦ AG
)
X1N×N − 2

(
AT

GXAH

+AGXAT
H

)+2
(
XAH XT XAT

H+XAT
H XT XAH

)
. (11)

The second relaxation H2(X) is derived as follows:
H2(X) = ‖U ◦ AG−XAH XT‖2F = ‖(XXT)AG (XXT)−XAH XT ‖2F

= tr
(
XXT AT

GXXT AGXXT )− 2tr
(
XXT AT

GXAH XT )

+ tr
(
XAT

H XT XAH XT) = T1(X)−2T2(X)+ T3(X) (12)

where we take advantage of

U ◦ A = XXT AXXT (13a)

XXT XXT = XXT (13b)

XXT X = X (13c)

XT XXT = XT . (13d)

Then, the gradient is given as follows:
∇H2(X) = ∇T1(X)− 2∇T2(X)+ ∇T3(X) (14)

where

∇T1(X) = 2
(
XXT AT

GXXT AGX+ AT
GXXT AGXXT X

+ AGXXT XXT AT
GX

)

∇T2(X) = XAT
H XT AGX+ AT

GXAH XT X+ AGXXT XAT
H

+ XXT AT
GXAH

∇T3(X) = 2
(
XAT

H XT XAH + XAH XT XAT
H

)
.

Consequently, by replacing H0(X) with H1(X) or H2(X),
the GNCCP can be implemented to solve the WCS matching prob-
lem. It is noted that both H1(X) and H2(X) are relaxations of
H0(X), because H0(X) = H1(X) = H2(X), ∀X ∈ P . However,
the equivalence becomes in general unsatisfied when X ∈ D\P . It is
similar to previous works [7], [15] where the relaxation functions are
not necessarily equivalent to the original objective function in the
continuous domain.

It is hard to evaluate the two relaxations theoretically by error
bounds, because neither of them is convex relaxation. However,
as revealed by the experimental comparisons in Section III, H1(X)

outperforms H2(X) in most of the experiments. The advantage of
H1(X) may be due to the fact that it has the same fourth order as
H0(X), which is lower than the sixth order of H2(X). Furthermore,
H1(X) is computationally more efficient than H2(X).

Last but not least, when degenerating to the PIW problem, i.e.,
L = M , the GNCCP can be directly implemented, with H0(X) and
its gradient ∇H0(X) given as follows [15]:

H ′0(X) = ‖AG − XAH XT ‖2F (15)

∇H ′0(X) = 2X
(
AT

H XT XAH + AH XT XAT
H

)

− 2
(
AGXAT

H + AT
GXAH

)
. (16)

D. Storage and Computational Complexity

The proposed method formulates the graph matching problem
based on the adjacency matrix. Compared with the affinity matrix2-
based algorithms [6], [8]–[10], [21], one most important advantage
of the adjacency matrix-based methods is storage saving. Without

2The affinity matrix can be seen as the adjacency matrix for the associate
graph of G and H , whose size is M N × M N .
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Fig. 3. Results on synthetic data with respect to noise level, problem size, outlier number, and edge density, summarized from 30 random runs for each
fixed configuration. The WCS and PIW results are in the top and bottom rows, respectively. Matching accuracy comparison results with respect to (a) noise
level in WCS, (b) problem size in WCS, (c) outlier number in WCS, (d) edge density in WCS, (e) noise level in PIW, (f) problem size in PIW, (g) outlier
number in PIW, and (h) edge density in PIW.

considering the sparsity, the storage complexity of the affinity matrix-
based methods is O(M2 N2), while that of adjacency matrix-based
methods, including the proposed method, is as low as O(N2).

The computational complexity of the proposed method is mainly
determined by the linear programming problem (5), which can be
solved in polynomial time. When L = M ≤ N , (5) can be
solved by the rectangular Hungarian algorithm [22] with an O(M2 N)
computational complexity. It is smaller than the matrix multiplication
complexity O(M N2), so the overall complexity is O(M N2). When
L < M ≤ N , the Hungarian algorithm or other efficient linear
assignment algorithms [4] are inapplicable. Linear programming
algorithms involving an O(N6) computational complexity, such as
the interior point method, are usually used to solve (5).

To make the algorithm more efficient, a fast method based on the
rectangular Hungarian algorithm [22] is presented to approximately
solve (5), which still enjoys the complexity O(M N2). Specifically,
it first finds a solution Y1 for (5) with M “1”s by the rectangular
Hungarian algorithm [22]. Then, it removes the M − L “1”s values
of Y1 that correspond to the M − L smallest values of −∇ Jζ (X) to
get the final approximate solution Y. The cost for the computational
efficiency is a slight loss of accuracy, as to be experimentally
demonstrated in Section III.

III. EXPERIMENTAL RESULTS

We apply the proposed algorithm on synthetic graphs as well as
real-world images,3 to evaluate its performance against noise level,
problem size, outlier number, and edge density. The experiments
are conducted on both WCS matching and PIW problems. The
methods included for comparison are SM [9], GA [8], PGM [10],
and (extended) path following method (EPF) [7], [12]. The proposed
algorithm with two relaxations is denoted by RLX1 and RLX2,
respectively. When the fast method described in Section II-D is used

3More experimental results are given in the supplementary materi-
als (Sup_Mat_II_Add_Exp.pdf), including an experiment on handwritten
Chinese character recognition and typical results on Motorbike and Pisa
images.

to solve the linear programming (5), the two algorithms are then,
respectively, denoted by RLX1F and RLX2F. When used on the PIW
problem, the proposed algorithm becomes exactly the one proposed
in [15], denoted by GNCCP_PGM.

The algorithms are implemented by MATLAB R2011 on a personal
computer with a 3.07-GHz CPU (two core) and 2-GB RAM, using
mex (dll) files lpsolve toolbox4 and the rectangular assignment
toolbox5 for the linear programming problem (5).

A. On Synthetic Data

1) Experimental Settings: In this experiment, the accuracies of dif-
ferent algorithms are first compared on randomly generated synthetic
graphs. First, two spatial point sets G = {gi }Mi=1, H = {hi }Nj=1 are

randomly generated by uniform sampling, i.e., gi , h j ∼ U(0, 1)1×2.
A partial permutation matrix Xgt ∈ R

M×N with L “1"s is randomly
generated as the ground truth correspondence. Then, part of points
in G are updated by permutating H with Xgt as

gi = h j + η, η ∼ N(0, σ 2), if Xgt
i j = 1

where η is the additive gaussian noise. Finally, the distances between
points are utilized as the edge weights. And the adjacency, i.e., the
graph structure, is built in a sparse manner by adjusting the edge
density. The graph structure is disturbed by the noise η following the
way in [7]. Specifically, (1/2)σ#Edge edges are randomly added
to and removed from each sparse graph, where #Edge denotes the
number of edges. The adjacency matrices AG , AH , and the affinity
matrix are then generated, where the affinity matrix, required by SM,
GA, and PGM, is built in the same way as in [10]. The parameter α

is set as 1.
For WCS matching, the following four scenarios are implemented.

1) Noise Level: Set M = 30, N = M + 5, L = M − 5, set edge
density as 0.5, and increase σ from 0 to 0.1 by a step 0.01.

4Available at http://sourceforge.net/projects/lpsolve/files/lpsolve/
5Available http://www.mathworks.com/matlabcentral/fileexchange/6543
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Fig. 4. Running time comparison in WCS matching with respect to noise level, problem size, outlier number, and edge density, summarized from 50 random
runs for each fixed configuration. Running time comparison results with respect to (a) noise level, (b) problem size, (c) outlier number, and (d) edge density.

Fig. 5. Results on real-world images with respect to problem size and outlier
number, summarized from 200 random runs for each fixed configuration.
The WCS and PIW results are in the top and bottom rows, respectively.
Matching accuracy comparison results with respect to (a) problem size in
WCS, (b) outlier number in WCS, (c) problem size in PIW, and (d) outlier
number in PIW.

2) Problem Size: Set σ = 0.05, N = M+5, L = M−5, set edge
density as 0.5, and increase M from 20 to 40 by a step 2.

3) Outlier Number: Set σ = 0.05, M = 30, N = M + 5, set edge
density as 0.5, and decrease L from 30 to 20 by a step 1.

4) Edge Density: Set σ = 0.05, M = 30, N = M+5, L = M−5,
and increase the density from 0.1 to 1 by a step 0.1.

For the PIW problem, the following four similar scenarios are
implemented.

1) Noise Level: Set N = 50, L = M = N − 5, set edge density
as 0.5, and increasing σ from 0 to 0.1 by a step 0.01.

2) Problem Size: Set σ = 0.05, L = M = N −5, set edge density
as 0.5, and increase N from 40 to 60 by a step 2.

3) Outlier Number: Set σ = 0.05, N = 50, L = M , set edge
density as 0.5, and decrease L from 50 to 40 by a step 1.

4) Edge Density: Set σ = 0.05, N = 50, L = M = N − 5, and
increase the density from 0.1 to 1 by a step 0.1.

2) Results: The WCS matching performance is shown in Fig. 3,
from which we can draw the following observations. First, generally
the proposed algorithm RLX1 achieves better results than other
algorithms, and the performance of RLX2 is comparable with PGM,
a state-of-the-art algorithm in the literature. Second, RLX1 outper-
forms RLX2, probably because H1(X) provides a better relaxation

for H0(X). Third, the fast algorithm for approximating (5) introduced
in Section II-D shows good performance. For instance, RLX1F
achieves a comparable performance to PGM. It is also reasonable
to observe that RLX1 and RLX2 outperform slightly RLX1F and
RLX2F, respectively, but the latter ones enjoy a much smaller
computational complexity, as to be discussed in the following. Finally,
it is also reasonable to witness that the accuracies of all the algorithms
decrease as the noise level, problem size, or outlier number increase.
Since the number of local minimum points is CL

M CL
N L !, a larger

M , N , or L implies that the algorithm is easier to be trapped in a
poor local minimum. Besides, the algorithms achieve their best results
when the edge density is set about 0.5, at which the objective function
seems to get a good balance between the appearance and structure
cues. When the edge density is 0, the matching problem degenerates
to a pure appearance matching without structural cues. As the edge
density increases, incorporation of more structural information results
in a better performance. However, high edge density may make the
graphs less distinctive, and thus result in a decrease in performance.

The computation time of different algorithms in WCS matching is
compared in Fig. 4. It can be observed that generally the computation
time with respect to the varying noise level and outlier number is
relatively stable, but they are positively correlated with problem size
and edge density. The computation time with respect to problem size
is plotted in log scale in Fig. 4(b), and the slopes of the lines indicate
the computational complexities of different algorithms, which are,
respectively, 5.4± 0.5 for RLX1 and RLX2, 4.3± 0.5 for SM, GA,
and PGM, and 3.5± 0.5 for RLX1F and RLX2F.

The PIW results are also given in Fig. 3. All the algorithms achieve
better performances on the PIW problem than on WCS matching,
implying that WCS matching is a more difficult problem. EPF trans-
forms the subgraph matching problem into the equal-sized adjacency
matrix matching by adding dummy nodes, which may, however,
change the original problem [15]. By contrast, GNCCP_PGM directly
optimizes the subgraph matching objective, and thus achieves better
results.

B. On Real-World Images

We also apply the proposed method on a data set fetched from
Pascal 2007 Challenge. The data set consists of ten pairs of Motorbike
images and ten pairs of Pisa images. Each image pair is manually
labeled with 60 ground-truth correspondence points. The graph
structure is constructed by Delaunay triangulation. SIFT descriptor
is utilized as the vertex label with α = 0.5. The comparisons with
respect to different problem sizes and outlier numbers are carried
out, with the same experimental settings as those on the previous
synthetic graph matching. The smaller number of ground truth points
are randomly selected from the original ones. For instance, when the
problem size is 35 and the outlier number is 5, only 30 ground-truth
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correspondence points are randomly selected from the 60 ground truth
ones. For each image pair, the outliers are randomly sampled for ten
times. Thus for each fixed configuration, the matching are repeated
randomly for 200 times.

The real-image matching results are shown in Fig. 5, which reveals
that the proposed algorithms achieve better or at least comparable
performances with the state-of-the-art algorithms on both WCS
and PIW.

IV. CONCLUSION AND FUTURE WORKS

A new algorithm is proposed to match subgraphs with given size
in two labeled weighted graphs. Different from the commonly used
two-step strategy, the proposed algorithm could directly find the
most similar subgraphs in one optimization framework. In the current
version, the common subgraph size must be prespecified, but in some
tasks, it needs automatic determination. We would try to solve the
problem in our future works.
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